ABSTRACT
There has been substantial progress in the development of regenerative medicine strategies for CNS disorders over the last decade, with progression to early clinical studies for some conditions. However, there are multiple challenges along the translational pipeline, many of which are common across diseases and pertinent to multiple donor cell types. These include defining the point at which the preclinical data are sufficiently compelling to permit progression to the first clinical studies; scaling-up, characterization, quality control and validation of the cell product; design, validation and approval of the surgical device; and operative procedures for safe and effective delivery of cell product to the brain. Furthermore, clinical trials that incorporate principles of efficient design and disease-specific outcomes are urgently needed (particularly for those undertaken in rare diseases, where relatively small cohorts are an additional limiting factor), and all processes must be adaptable in a dynamic regulatory environment. Here we set out the challenges associated with the clinical translation of cell therapy, using Huntington's disease as a specific example, and suggest potential strategies to address these challenges. Huntington's disease presents a clear unmet need, but, importantly, it is an autosomal dominant condition with a readily available gene test, full genetic penetrance and a wide range of associated animal models, which together mean that it is a powerful condition in which to develop principles and test experimental therapeutics. We propose that solving these challenges in Huntington's disease would provide a road map for many other neurological conditions. This white paper represents a consensus opinion emerging from a series of meetings of the international translational platforms Stem Cells for Huntington's Disease and the European Huntington's Disease Network Advanced Therapies Working Group, established to identify the challenges of cell therapy, share experience, develop guidance and highlight future directions, with the aim to expedite progress towards therapies for clinical benefit in Huntington's disease.
Subject(s)
Huntington Disease , Neurodegenerative Diseases , Animals , Brain/metabolism , Cell- and Tissue-Based Therapy , Humans , Huntington Disease/genetics , Huntington Disease/metabolism , Huntington Disease/therapy , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/therapyABSTRACT
Inhibitory GABAergic interneurons originate in the embryonic medial ganglionic eminence (MGE) and control network activity in the neocortex. Dysfunction of these cells is believed to lead to runaway excitation underlying seizure-based neurological disorders such as epilepsy, autism, and schizophrenia. Despite their importance in heath and disease, our knowledge about the development of this diverse neuronal population remains incomplete. Here we conducted single-cell RNA sequencing (scRNA-seq) of human foetal MGE from 10 to 15 weeks post conception. These MGE tissues are composed of largely cycling progenitors and immature post-mitotic interneurons with characteristic regional marker expression. Analysis of integrated human and mouse MGE data revealed species-conserved transcriptomic profiles and regulatory programs. Moreover, we identified novel candidate transcription regulators for human interneuron differentiation. These findings provide a framework for in vitro modelling of interneuron development and a strategy for potentially enhancing interneuron production from human pluripotent stem cells.
Subject(s)
Neocortex , Transcriptome , Humans , Mice , Animals , Interneurons/metabolism , Cell Differentiation/genetics , GABAergic Neurons/metabolismABSTRACT
White matter (WM) alterations have been observed in Huntington disease (HD) but their role in the disease-pathophysiology remains unknown. We assessed WM changes in premanifest HD by exploiting ultra-strong-gradient magnetic resonance imaging (MRI). This allowed to separately quantify magnetization transfer ratio (MTR) and hindered and restricted diffusion-weighted signal fractions, and assess how they drove WM microstructure differences between patients and controls. We used tractometry to investigate region-specific alterations across callosal segments with well-characterized early- and late-myelinating axon populations, while brain-wise differences were explored with tract-based cluster analysis (TBCA). Behavioral measures were included to explore disease-associated brain-function relationships. We detected lower MTR in patients' callosal rostrum (tractometry: p = .03; TBCA: p = .03), but higher MTR in their splenium (tractometry: p = .02). Importantly, patients' mutation-size and MTR were positively correlated (all p-values < .01), indicating that MTR alterations may directly result from the mutation. Further, MTR was higher in younger, but lower in older patients relative to controls (p = .003), suggesting that MTR increases are detrimental later in the disease. Finally, patients showed higher restricted diffusion signal fraction (FR) from the composite hindered and restricted model of diffusion (CHARMED) in the cortico-spinal tract (p = .03), which correlated positively with MTR in the posterior callosum (p = .033), potentially reflecting compensatory mechanisms. In summary, this first comprehensive, ultra-strong gradient MRI study in HD provides novel evidence of mutation-driven MTR alterations at the premanifest disease stage which may reflect neurodevelopmental changes in iron, myelin, or a combination of these.
Subject(s)
Huntington Disease , White Matter , Aged , Brain/diagnostic imaging , Brain/pathology , Humans , Huntington Disease/diagnostic imaging , Huntington Disease/genetics , Huntington Disease/pathology , Magnetic Resonance Imaging/methods , Mutation , White Matter/diagnostic imaging , White Matter/pathologyABSTRACT
BACKGROUND: Cell replacement therapy (CRT) for Huntington disease (HD) requires a source of striatal (STR) progenitors capable of restoring the function lost due to STR degeneration. Authentic STR progenitors can be collected from the fetal putative striatum, or whole ganglionic eminence (WGE), but these tissues remain impractical for widespread clinical application, and alternative donor sources are required. Here we begin exploring the possibility that induced pluripotent stem cells (iPSC) derived from WGE may retain an epigenetic memory of their tissue of origin, which could enhance their ability to differentiate into STR cells. RESULTS: We generate four iPSC lines from human WGE (hWGE) and establish that they have a capacity similar to human embryonic stem cells with regard to their ability to differentiate toward an STR phenotype, as measured by expression and demethylation of key STR genes, while maintaining an overall different methylome. Finally, we demonstrate that these STR-differentiated hWGE iPSCs share characteristics with hWGE (i.e., authentic STR tissues) both in vitro and following transplantation into an HD model. Overall, iPSCs derived from human WGE show promise as a donor source for CRT for HD.
Subject(s)
Cell- and Tissue-Based Therapy , Corpus Striatum , Huntington Disease , Induced Pluripotent Stem Cells , Cell Differentiation , Corpus Striatum/cytology , Humans , Huntington Disease/therapyABSTRACT
Huntington's disease is a neurodegenerative disorder, characterised by progressive cognitive, motor and psychiatric symptoms. Patients with advanced disease presenting to emergency medical services can pose a diagnostic and management challenge for physicians unfamiliar with the condition. We describe two patients with Huntington's disease in whom the diagnosis of traumatic spinal cord injury was delayed, discuss the role that cognitive bias and other factors played in this delay, and the lessons we can learn.
Subject(s)
Huntington Disease , Neurodegenerative Diseases , Spinal Cord Injuries , Delayed Diagnosis , Female , Humans , Huntington Disease/diagnosis , Male , Middle Aged , Spinal Cord Injuries/diagnosisABSTRACT
BACKGROUND: Hypertension is a modifiable cardiovascular risk factor implicated in neurodegeneration and dementia risk. In Huntington's disease, a monogenic neurodegenerative disease, autonomic and vascular abnormalities have been reported. This study's objective was to examine the relationship between hypertension and disease severity and progression in Huntington's disease. METHODS: Using longitudinal data from the largest worldwide observational study of Huntington's disease (n = 14,534), we assessed the relationship between hypertension, disease severity, and rate of clinical progression in Huntington's disease mutation carriers. Propensity score matching was used to statistically match normotensive and hypertensive participants for age, sex, body mass index, ethnicity, and CAG length. RESULTS: Huntington's disease patients had a lower prevalence of hypertension compared with age-matched gene-negative controls. Huntington's disease patients with hypertension had worse cognitive function, a higher depression score, and more marked motor progression over time compared with Huntington's disease patients without hypertension. However, hypertensive patients taking antihypertensive medication had less motor, cognitive, and functional impairment than Huntington's disease patients with untreated hypertension and a later age of clinical onset compared with untreated hypertensive patients and normotensive individuals with Huntington's disease. CONCLUSIONS: We report the novel finding that hypertension and antihypertensive medication use are associated with altered disease severity, progression, and clinical onset in patients with Huntington's disease. These findings have implications for the management of hypertension in Huntington's disease and suggest that prospective studies of the symptomatic or disease-modifying potential of antihypertensives in neurodegenerative diseases are warranted. © 2020 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Subject(s)
Antihypertensive Agents/therapeutic use , Huntington Disease/complications , Hypertension/drug therapy , Antihypertensive Agents/adverse effects , Disease Progression , Female , Humans , Huntington Disease/epidemiology , Huntington Disease/genetics , Hypertension/epidemiology , Male , Neurodegenerative Diseases , Prospective StudiesABSTRACT
For patients with incurable neurodegenerative disorders such as Huntington's (HD) and Parkinson's disease, cell transplantation has been explored as a potential treatment option. Here, we present the first clinicopathological study of a patient with HD in receipt of cell-suspension striatal allografts who took part in the NEST-UK multicenter clinical transplantation trial. Using various immunohistochemical techniques, we found a discrepancy in the survival of grafted projection neurons with respect to grafted interneurons as well as major ongoing inflammatory and immune responses to the grafted tissue with evidence of mutant huntingtin aggregates within the transplant area. Our results indicate that grafts can survive more than a decade post-transplantation, but show compromised survival with inflammation and mutant protein being observed within the transplant site. Ann Neurol 2018;84:950-956.
Subject(s)
Allografts/pathology , Huntington Disease/surgery , Acetylcholinesterase/metabolism , Adult , Antigens, CD/metabolism , Brain/pathology , Brain Tissue Transplantation/methods , Calbindin 2/metabolism , Humans , Huntingtin Protein/genetics , Huntington Disease/genetics , Interneurons/metabolism , Interneurons/pathology , Male , Microglia/metabolism , Microglia/pathology , Nerve Tissue Proteins/metabolism , Parvalbumins/metabolismABSTRACT
BACKGROUND: Apathy is a deficit in goal-directed behavior that significantly affects quality of life and function. It is common in Huntington's disease and other disorders affecting corticostriatal pathways. Deficits in processing of reward, altered effort, and executive dysfunction are associated with apathy in other disorders, but the cognitive processes leading to apathy in Huntington's disease remain largely unknown. A previously reported deficit in learning from losses in Huntington's disease raises the possibility of a hitherto unrecognized mechanism leading to apathy. This study's objective was to delineate the cognitive processes associated with apathy in HD. METHODS: We tested 51 Huntington's disease participants and 26 controls on a battery of novel and established measures to assess the contribution to apathy in Huntington's disease of executive function, reward value, reward-effort calculations, instrumental learning, and response to reward and loss. RESULTS: Huntington's disase participants had deficits in instrumental learning with impaired response to loss, but no evidence to suggest altered reward-related behavior or effort. We also saw an executive dysfunction contribution to apathy in Huntington's disease. DISCUSSION: We report the novel finding that apathy in Huntington's disease is associated with blunted responses to losses and impaired instrumental learning. This association is consistent with the known early degeneration of the indirect pathway and amygdala involvement in apathy in Huntington's disease, but is previously unreported in any disorder. In keeping with the comparative preservation of the ventral striatum and orbitofrontal cortex in Huntington's disease, reward valuation and reward-effort calculations did not contribute to apathy. © 2019 International Parkinson and Movement Disorder Society.
Subject(s)
Apathy , Huntington Disease/psychology , Adult , Aged , Aged, 80 and over , Disease Progression , Executive Function , Female , Humans , Learning , Male , Middle Aged , Neuropsychological Tests , Psychomotor Performance , Quality of Life , Reward , Verbal Behavior , Young AdultABSTRACT
Kv7 channels determine the resting membrane potential of neurons and regulate their excitability. Even though dysfunction of Kv7 channels has been linked to several debilitating childhood neuronal disorders, the ontogeny of the constituent genes, which encode Kv7 channels (KNCQ), and expression of their subunits have been largely unexplored. Here, we show that developmentally regulated expression of specific KCNQ mRNA and Kv7 channel subunits in mouse and human striatum is crucial to the functional maturation of mouse striatal neurons and human-induced pluripotent stem cell-derived neurons. This demonstrates their pivotal role in normal development and maturation, the knowledge of which can now be harnessed to synchronise and accelerate neuronal differentiation of stem cell-derived neurons, enhancing their utility for disease modelling and drug discovery.
Subject(s)
Induced Pluripotent Stem Cells/metabolism , KCNQ1 Potassium Channel/metabolism , Neurons/metabolism , Up-Regulation/physiology , Animals , Cell Differentiation/physiology , Cells, Cultured , Humans , Membrane Potentials/physiology , Mice , RNA, Messenger/metabolismABSTRACT
The efficient generation of striatal neurons from human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) is fundamental for realising their promise in disease modelling, pharmaceutical drug screening and cell therapy for Huntington's disease. GABAergic medium-sized spiny neurons (MSNs) are the principal projection neurons of the striatum and specifically degenerate in the early phase of Huntington's disease. Here we report that activin A induces lateral ganglionic eminence (LGE) characteristics in nascent neural progenitors derived from hESCs and hiPSCs in a sonic hedgehog-independent manner. Correct specification of striatal phenotype was further demonstrated by the induction of the striatal transcription factors CTIP2, GSX2 and FOXP2. Crucially, these human LGE progenitors readily differentiate into postmitotic neurons expressing the striatal projection neuron signature marker DARPP32, both in culture and following transplantation in the adult striatum in a rat model of Huntington's disease. Activin-induced neurons also exhibit appropriate striatal-like electrophysiology in vitro. Together, our findings demonstrate a novel route for efficient differentiation of GABAergic striatal MSNs from human pluripotent stem cells.
Subject(s)
Activins/pharmacology , Cell Differentiation/drug effects , Neostriatum/cytology , Neurons/cytology , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/drug effects , Animals , Cell Line , Cell Survival/drug effects , Disease Models, Animal , Dopamine and cAMP-Regulated Phosphoprotein 32/metabolism , Embryonic Stem Cells/cytology , Embryonic Stem Cells/drug effects , Embryonic Stem Cells/metabolism , GABAergic Neurons/cytology , GABAergic Neurons/drug effects , GABAergic Neurons/metabolism , Ganglia/drug effects , Ganglia/metabolism , Hedgehog Proteins/metabolism , Humans , Huntington Disease/pathology , Huntington Disease/therapy , Neurons/metabolism , Neurons/transplantation , Pluripotent Stem Cells/metabolism , Rats , Repressor Proteins/metabolism , Signal Transduction/drug effects , Tumor Suppressor Proteins/metabolismABSTRACT
We review the first generations of clinical trials of novel cell therapies applied to a range of neurodegenerative diseases in the context of mechanisms of functional efficacy. This in turn helps to determine the best strategies to be adopted and the potential chances for success in developing new cell therapies to clinical application in different conditions. We then consider the scientific, technical, ethical, regulatory and logistic issues to be resolved in translating effective laboratory cell-based protocols to patients in clinical trials. We draw optimistic conclusions about the likelihood of success in developing radical new approaches to a range of devastating, and currently untreatable, neurodegenerative conditions, but caution that the problems are complex and the solutions are likely to be slow and costly to achieve in order to overcome significant ethical and regulatory as well as scientific challenges.
Subject(s)
Clinical Trials as Topic , Neurodegenerative Diseases/therapy , Stem Cell Transplantation , Humans , Stem Cell Transplantation/ethics , Stem Cell Transplantation/legislation & jurisprudenceABSTRACT
Huntington's disease is caused by a CAG repeat expansion in the first exon of the HTT gene, leading to the production of gain-of-toxic-function mutant huntingtin protein species and consequent transcriptional dysregulation and disrupted cell metabolism. The brunt of the disease process is borne by the striatum from the earliest disease stages, with striatal atrophy beginning approximately a decade prior to the onset of neurologic signs. Although the expanded CAG repeat in the HTT gene is necessary and sufficient to cause HD, other genes can influence the age at onset of symptoms and how they progress. Many of these modifier genes have roles in DNA repair and are likely to modulate the stability of the CAG repeat in somatic cells. Currently, there are no disease-modifying treatments for HD that can be prescribed to patients and few symptomatic treatments, but there is a lot of interest in therapeutics that can target the pathogenic pathways at the DNA and RNA levels, some of which have reached the stage of human studies. In contrast, cell therapies aim to replace key neural cells lost to the disease process and/or to support the host vulnerable striatum by direct delivery of cells to the brain. Ultimately it may be possible to combine gene and cell therapies to both slow disease processes and provide some level of neural repair. In this chapter we consider the current status of these therapeutic strategies along with their prospects and challenges.
Subject(s)
Genetic Therapy , Huntington Disease , Huntington Disease/therapy , Huntington Disease/genetics , Humans , Genetic Therapy/methods , Animals , Cell- and Tissue-Based Therapy/methods , Huntingtin Protein/geneticsABSTRACT
INTRODUCTION: Huntington's disease (HD) is an inherited neurodegenerative disease causing progressive cognitive and motor decline, largely due to basal ganglia (BG) atrophy. Rhythmic training offers promise as therapy to counteract BG-regulated deficits. We have developed HD-DRUM, a tablet-based app to enhance movement synchronisation skills and improve cognitive and motor abilities in people with HD. This paper outlines a randomised controlled unblinded trial protocol to determine the feasibility of a larger effectiveness trial for HD-DRUM. Additionally, the trial investigates cognitive and motor function measures, along with brain microstructure, aiming to advance our understanding of the neural mechanisms underlying training effects. METHODS, DESIGN AND ANALYSIS: 50 individuals with HD, confirmed by genetic testing, and a Total Functional Capacity (TFC) score of 9-13, will be recruited into a two-arm randomised controlled feasibility trial. Consenting individuals with HD will be randomised to the intervention group, which entails 8 weeks of at-home usage of HD-DRUM or a usual-activity control group. All participants will undergo cognitive and motor assessments, alongside ultra-strong gradient (300 mT/m) brain microstructural MRI before and after the 8-week period. The feasibility assessment will encompass recruitment, retention, adherence and acceptability of HD-DRUM following prespecified criteria. The study will also evaluate variations in cognitive and motor performance and brain microstructure changes resulting from the intervention to determine effect size estimates for future sample size calculations. ETHICS AND DISSEMINATION: The study has received favourable ethical opinion from the Wales Research Ethics Committee 2 (REC reference: 22/WA/0147) and is sponsored by Cardiff University (SPON1895-22) (Research Integrity, Governance and Ethics Team, Research & Innovation Services, Cardiff University, second Floor, Lakeside Building, University Hospital of Wales, Cardiff, CF14 4XW). Findings will be disseminated to researchers and clinicians in peer-reviewed publications and conference presentations, and to participants, carers and the general public via newsletters and public engagement activities. Data will be shared with the research community via the Enroll-HD platform. TRIAL REGISTRATION NUMBER: ISRCTN11906973.
Subject(s)
Feasibility Studies , Huntington Disease , Adult , Female , Humans , Male , Cognition , Exercise Therapy/methods , Huntington Disease/complications , Huntington Disease/therapy , Magnetic Resonance Imaging , Mobile Applications , Randomized Controlled Trials as TopicABSTRACT
PURPOSE: Changes in voice and speech are characteristic symptoms of Huntington's disease (HD). Objective methods for quantifying speech impairment that can be used across languages could facilitate assessment of disease progression and intervention strategies. The aim of this study was to analyze acoustic features to identify language-independent features that could be used to quantify speech dysfunction in English-, Spanish-, and Polish-speaking participants with HD. METHOD: Ninety participants with HD and 83 control participants performed sustained vowel, syllable repetition, and reading passage tasks recorded with previously validated methods using mobile devices. Language-independent features that differed between HD and controls were identified. Principal component analysis (PCA) and unsupervised clustering were applied to the language-independent features of the HD data set to identify subgroups within the HD data. RESULTS: Forty-six language-independent acoustic features that were significantly different between control participants and participants with HD were identified. Following dimensionality reduction using PCA, four speech clusters were identified in the HD data set. Unified Huntington's Disease Rating Scale (UHDRS) total motor score, total functional capacity, and composite UHDRS were significantly different for pairwise comparisons of subgroups. The percentage of HD participants with higher dysarthria score and disease stage also increased across clusters. CONCLUSION: The results support the application of acoustic features to objectively quantify speech impairment and disease severity in HD in multilanguage studies. SUPPLEMENTAL MATERIAL: https://doi.org/10.23641/asha.25447171.
Subject(s)
Huntington Disease , Speech Acoustics , Speech Production Measurement , Humans , Huntington Disease/diagnosis , Huntington Disease/complications , Male , Female , Middle Aged , Adult , Case-Control Studies , Aged , Dysarthria/diagnosis , Dysarthria/etiology , Dysarthria/physiopathology , Principal Component Analysis , Voice Quality , Speech Disorders/diagnosis , Speech Disorders/etiology , Predictive Value of TestsABSTRACT
Huntington's disease (HD) is a fatal autosomal dominant neurodegenerative disease involving progressive motor, cognitive and behavioural decline, leading to death approximately 20 years after motor onset. The disease is characterised pathologically by an early and progressive striatal neuronal cell loss and atrophy, which has provided the rationale for first clinical trials of neural repair using fetal striatal cell transplantation. Between 2000 and 2003, the 'NEST-UK' consortium carried out bilateral striatal transplants of human fetal striatal tissue in five HD patients. This paper describes the long-term follow up over a 3-10-year postoperative period of the patients, grafted and non-grafted, recruited to this cohort using the 'Core assessment program for intracerebral transplantations-HD' assessment protocol. No significant differences were found over time between the patients, grafted and non-grafted, on any subscore of the Unified Huntington's Disease Rating Scale, nor on the Mini Mental State Examination. There was a trend towards a slowing of progression on some timed motor tasks in four of the five patients with transplants, but overall, the trial showed no significant benefit of striatal allografts in comparison with a reference cohort of patients without grafts. Importantly, no significant adverse or placebo effects were seen. Notably, the raclopride positron emission tomography (PET) signal in individuals with transplants, indicated that there was no obvious surviving striatal graft tissue. This study concludes that fetal striatal allografting in HD is safe. While no sustained functional benefit was seen, we conclude that this may relate to the small amount of tissue that was grafted in this safety study compared with other reports of more successful transplants in patients with HD.
Subject(s)
Brain Tissue Transplantation , Corpus Striatum/transplantation , Fetal Tissue Transplantation , Huntington Disease/surgery , Adult , Brain Tissue Transplantation/adverse effects , Brain Tissue Transplantation/methods , Corpus Striatum/embryology , Female , Fetal Tissue Transplantation/adverse effects , Fetal Tissue Transplantation/methods , Humans , Male , Middle Aged , Neuropsychological Tests , Treatment OutcomeABSTRACT
BACKGROUND: Huntington's disease (HD) is a rare inherited neurodegenerative disorder characterized by complex evolving needs that change as the condition progresses. There is limited understanding about the organization of HD clinical services and their resourcing in the United Kingdom (UK). OBJECTIVE: To understand the organization and resourcing of specialist HD services for people with HD (PwHD) in the UKMethods:This cross-sectional study collected quantitative data via on online survey, and qualitative data via telephone semi-structured interviews. Descriptive statistics were used to describe quantitative outcomes, and qualitative results were analyzed using content analysis. RESULTS: A total of 31 specialist services for HD were identified. Of the 27 services that completed the online survey, 23 had an active multidisciplinary team of healthcare professionals (HCPs) and were led primarily by a mental health trust (26%) or tertiary referral hospital (26%). Specialist services offered outpatient clinics (96%), outreach in the community (74%), telemedicine (70%), inpatient beds (26%) and satellite clinics (26%). Many services indicated that their capacity (ability to see patients as often as needed with current resources) was difficult, with some services reporting more difficulty at the early or later stages of HD. Key resourcing gaps were identified with access to facilities, HCPs and referral networks. CONCLUSIONS: This research highlights the variation in organization and capacity within individual HD services as well as current resourcing and gaps in access that influence this capacity. Further research should be done to understand the impact of service organization and current resourcing gaps in access on the quality of care provided for PwHD in the UK.
Subject(s)
Huntington Disease , Telemedicine , Humans , Huntington Disease/therapy , Cross-Sectional Studies , United Kingdom , Ambulatory Care FacilitiesABSTRACT
Preclinical development of human cells for potential therapeutic application in neurodegenerative diseases requires that their long-term survival, stability and functional efficacy be studied in animal models of human disease. Here we describe a strategy for long-term immune protection of human fetal and stem cell-derived neural cells transplanted into the adult rat brain, by desensitizing the host rat to similar cells in the neonatal period, without the need for additional immunosuppression.
Subject(s)
Brain/cytology , Brain/surgery , Desensitization, Immunologic/methods , Graft Survival/immunology , Neurons/immunology , Neurons/transplantation , Stem Cell Transplantation/methods , Animals , Animals, Newborn , Cell Survival , Cells, Cultured , Humans , Immunosuppression Therapy , RatsABSTRACT
Background: Irritable and impulsive behaviour are common in Huntington's disease (HD: an autosomal dominant disorder causing degeneration in cortico-striatal networks). However, the cognitive mechanisms underlying these symptoms remain unclear, and previous research has not determined if common mechanisms underpin both symptoms. Here we used established and novel tasks to probe different aspects of irritable and impulsive behaviour to determine the neural mechanisms involved. Methods: We recruited a cohort of 53 gene positive HD participants and 26 controls from non-affected family members and local volunteers. We used established questionnaire measures of irritability in HD (Snaith Irritability Scale, Problem Behaviours Assessment) and impulsivity [Urgency, Premeditation Perseverance, Sensation-seeking, Positive urgency scale (UPPSP), Barratt Impulsivity Scale], in addition to cognitive tasks of provocation, motor inhibition, delay discounting and decision making under uncertainty. We used generalised linear models to determine differences between cases and controls, and associations with irritability in the HD group. Results: We found differences between cases and controls on the negative urgency subscale of the UPPSP, which was associated with irritability in HD. The frustrative non-reward provocation task also showed differences between cases and controls, in addition to predicting irritability in HD. The stop signal reaction time task showed case-control differences but was not associated with irritability in HD. None of the other measures showed group differences or predicted irritability in HD after correcting for confounding variables. Discussion: Irritability in HD is mediated by excessive response to provocation, rather than a failure of motor inhibition.
ABSTRACT
Huntington's disease (HD) is a hereditary, neurodegenerative disorder characterized by a triad of symptoms: motor, cognitive and psychiatric. HD is caused by a genetic mutation, expansion of the CAG repeat in the huntingtin gene, which results in loss of medium spiny neurons (MSNs) of the striatum. Cell replacement therapy (CRT) has emerged as a possible therapy for HD, aiming to replace those cells lost to the disease process and alleviate its symptoms. Initial pre-clinical studies used primary fetal striatal cells to provide proof-of-principal that CRT can bring about functional recovery on some behavioral tasks following transplantation into HD models. Alternative donor cell sources are required if CRT is to become a viable therapeutic option and human pluripotent stem cell (hPSC) sources, which have undergone differentiation toward the MSNs lost to the disease process, have proved to be strong candidates. The focus of this chapter is to review work conducted on the functional assessment of animals following transplantation of hPSC-derived MSNs. We discuss different ways that graft function has been assessed, and the results that have been achieved to date. In addition, this chapter presents and discusses challenges that remain in this field.