Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Nanotechnology ; 28(46): 465601, 2017 Nov 17.
Article in English | MEDLINE | ID: mdl-28854157

ABSTRACT

Real-time monitoring of the growth is essential for synthesizing high quality two dimensional (2D) transition-metal dichalcogenides with precisely controlled thickness. Here, we report the first real time in situ optical spectroscopic study on the molecular beam epitaxy of atomically thin molybdenum diselenide (MoSe2) films on sapphire substrates using differential reflectance spectroscopy. The characteristic optical spectrum of MoSe2 monolayer is clearly distinct from that of bilayer allowing a precise control of the film thickness during the growth. Furthermore, the evolution of the characteristic differential reflectance spectrum of the MoSe2 thin film as a function of the thickness sheds light on the details of the growth process. Our result demonstrates the importance and the great potential of the real time in situ optical spectroscopy for the realization of controlled growth of 2D semiconductor materials.

2.
Langmuir ; 31(35): 9628-35, 2015 Sep 08.
Article in English | MEDLINE | ID: mdl-26200443

ABSTRACT

Low-energy ion scattering (LEIS) is known for its extreme surface sensitivity, as it yields a quantitative analysis of the outermost surface as well as highly resolved in-depth information for ultrathin surface layers. Hence, it could have been generally considered to be a suitable technique for the analysis of graphene samples. However, due to the low scattering cross section for light elements such as carbon, LEIS has not become a common technique for the characterization of graphene. In the present study we use a high-sensitivity LEIS instrument with parallel energy analysis for the characterization of CVD graphene transferred to thermal silica/silicon substrates. Thanks to its high sensitivity and the exceptional depth resolution typical of LEIS, the graphene layer closure was verified, and different kinds of contaminants were detected, quantified, and localized within the graphene structure. Utilizing the extraordinarily strong neutralization of helium by carbon atoms in graphene, LEIS experiments performed at several primary ion energies permit us to distinguish carbon in graphene from that in nongraphitic forms (e.g., the remains of a resist). Furthermore, metal impurities such as Fe, Sn, and Na located at the graphene-silica interface (intercalated) are detected, and the coverages of Fe and Sn are determined. Hence, high-resolution LEIS is capable of both checking the purity of graphene surfaces and detecting impurities incorporated into graphene layers or their interfaces. Thus, it is a suitable method for monitoring the quality of the whole fabrication process of graphene, including its transfer on various substrates.

3.
Appl Radiat Isot ; 153: 108836, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31387079

ABSTRACT

A pilot proficiency test (PT) on measurements of the massic activity of 222Rn in drinking water was organised by JRC-Geel. Fourteen environmental radioactivity monitoring laboratories were invited to participate. The key aim of the study was to test, optimise and stream-line the complete process for conducting such a PT in order to perform a large scale Europe-wide PT in a robust manner. The process involved using all state-of-the art knowledge on sampling, transporting and measuring 222Rn in water. It was found that the majority of the participants' results (92%) were within the ±15% reference range. The pilot-PT showed that the applied process was suitable and can be used for the large scale European PT planned for the third quarter of 2018.

4.
Sci Rep ; 7(1): 16114, 2017 11 23.
Article in English | MEDLINE | ID: mdl-29170483

ABSTRACT

The revival of interest in Ge1-xSnx alloys with x ≥ 10% is mainly owed to the recent demonstration of optical gain in this group-IV heterosystem. Yet, Ge and Sn are immiscible over about 98% of the composition range, which renders epilayers based on this material system inherently metastable. Here, we address the temperature stability of pseudomorphic Ge1-xSnx films grown by molecular beam epitaxy. Both the growth temperature dependence and the influence of post-growth annealing steps were investigated. In either case we observe that the decomposition of epilayers with Sn concentrations of around 10% sets in above ≈230 °C, the eutectic temperature of the Ge/Sn system. Time-resolved in-situ annealing experiments in a scanning electron microscope reveal the crucial role of liquid Sn precipitates in this phase separation process. Driven by a gradient of the chemical potential, the Sn droplets move on the surface along preferential crystallographic directions, thereby taking up Sn and Ge from the strained Ge1-xSnx layer. While Sn-uptake increases the volume of the melt, single-crystalline Ge becomes re-deposited by a liquid-phase epitaxial process at the trailing edge of the droplet. This process makes phase separation of metastable GeSn layers particularly efficient at rather low temperatures.

SELECTION OF CITATIONS
SEARCH DETAIL