ABSTRACT
PURPOSE: Watercress is a rich source of phytochemicals with anticancer potential, including phenethyl isothiocyanate (PEITC). We examined the potential for watercress extracts and PEITC to increase the DNA damage caused by ionising radiation (IR) in breast cancer cells and to be protective against radiation-induced collateral damage in healthy breast cells. The metabolic events that mediate such responses were explored using metabolic profiling. METHODS: 1H nuclear magnetic resonance spectroscopy-based metabolic profiling was coupled with DNA damage-related assays (cell cycle, Comet assay, viability assays) to profile the comparative effects of watercress and PEITC in MCF-7 breast cancer cells and MCF-10A non-tumorigenic breast cells with and without exposure to IR. RESULTS: Both the watercress extract and PEITC-modulated biosynthetic pathways of lipid and protein synthesis and resulted in changes in cellular bioenergetics. Disruptions to the redox balance occurred with both treatments in the two cell lines, characterised by shifts in the abundance of glutathione. PEITC enhanced the sensitivity of the breast cancer cells to IR increasing the effectiveness of the cancer-killing process. In contrast, watercress-protected non-tumorigenic breast cells from radiation-induced damage. These effects were driven by changes in the cellular content of the antioxidant glutathione following exposure to PEITC and other phytochemicals in watercress. CONCLUSION: These findings support the potential prophylactic impact of watercress during radiotherapy. Extracted compounds from watercress and PEITC differentially modulate cellular metabolism collectively enhancing the therapeutic outcomes of radiotherapy.
Subject(s)
Anticarcinogenic Agents/metabolism , Anticarcinogenic Agents/pharmacology , Isothiocyanates/metabolism , Isothiocyanates/pharmacology , Nasturtium/metabolism , Radiation, Ionizing , Apoptosis , Cell Line, Tumor , Humans , MCF-7 Cells , Magnetic Resonance SpectroscopyABSTRACT
We describe two new species of the genus Xanthomonas, represented by yellow mucoid bacterial strains isolated from diseased leaves of watercress (Nasturtium officinale) produced in Florida, USA. One strain was pathogenic on watercress, but not in other species including a range of brassicas; other strains were not pathogenic in any of the tested plants. Data from Biolog carbon source utilization tests and nucleotide sequence data from 16S and gyrB loci suggested that both pathogenic and non-pathogenic strains were related to, yet distinct from, previously described Xanthomonas species. Multilocus sequence analysis and whole genome-wide comparisons of the average nucleotide identity (ANI) of genomes of two strains from watercress showed that these are distinct and share less than 95â% ANI with all other known species; the non-pathogenic strain WHRI 8848 is close to Xanthomonascassavae (ANI of 93.72â%) whilst the pathogenic strain WHRI 8853 is close to a large clade of species that includes Xanthomonasvesicatoria (ANI ≤90.25â%). Based on these results, we propose that both strains represent new Xanthomonas species named Xanthomonas floridensis sp. nov. (type strain WHRI 8848=ATCC TSD-60=ICMP 21312=LMG 29665=NCPPB 4601) and Xanthomonas nasturtii sp. nov. (type strain WHRI 8853=ATCC TSD-61=ICMP 21313=LMG 29666=NCPPB 4600), respectively. The presence of non-pathogenic Xanthomonas strains in watercress and their interaction with pathogenic strains needs to be further investigated. Although the importance of the new pathogenic species is yet to be determined, the bacterial disease that it causes constitutes a threat to watercress production and its distribution should be monitored.
Subject(s)
Nasturtium/microbiology , Phylogeny , Plant Diseases/microbiology , Plant Leaves/microbiology , Xanthomonas/classification , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Florida , Genes, Bacterial , Multilocus Sequence Typing , Nucleic Acid Hybridization , Pigmentation , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Xanthomonas/genetics , Xanthomonas/isolation & purificationABSTRACT
BACKGROUND: Consuming watercress is thought to provide health benefits as a consequence of its phytonutrient composition. However, for watercress there are currently limited genetic resources underpinning breeding efforts for either yield or phytonutritional traits. In this paper, we use RNASeq data from twelve watercress accessions to characterize the transcriptome, perform candidate gene mining and conduct differential expression analysis for two key phytonutritional traits: antioxidant (AO) capacity and glucosinolate (GLS) content. RESULTS: The watercress transcriptome was assembled to 80,800 transcripts (48,732 unigenes); 71 % of which were annotated based on orthology to Arabidopsis. Differential expression analysis comparing watercress accessions with 'high' and 'low' AO and GLS resulted in 145 and 94 differentially expressed loci for AO capacity and GLS respectively. Differentially expressed loci between high and low AO watercress were significantly enriched for genes involved in plant defence and response to stimuli, in line with the observation that AO are involved in plant stress-response. Differential expression between the high and low GLS watercress identified links to GLS regulation and also novel transcripts warranting further investigation. Additionally, we successfully identified watercress orthologs for Arabidopsis phenylpropanoid, GLS and shikimate biosynthesis pathway genes, and compiled a catalogue of polymorphic markers for future applications. CONCLUSIONS: Our work describes the first transcriptome of watercress and establishes the foundation for further molecular study by providing valuable resources, including sequence data, annotated transcripts, candidate genes and markers.
Subject(s)
Genes, Plant , High-Throughput Nucleotide Sequencing , Nasturtium/genetics , Quantitative Trait, Heritable , Transcriptome , Antioxidants/metabolism , Computational Biology/methods , Gene Expression Profiling , Glucosinolates/metabolism , Humans , Molecular Sequence Annotation , Nasturtium/chemistry , Phenotype , Phylogeny , Phytochemicals , Plants, Edible/chemistry , Plants, Edible/genetics , Polymorphism, Genetic , Signal TransductionABSTRACT
It is proposed that post-harvest longevity and appearance of salad crops is closely linked to pre-harvest leaf morphology (cell and leaf size) and biophysical structure (leaf strength). Transgenic lettuce plants (Lactuca sativa cv. Valeria) were produced in which the production of the cell wall-modifying enzyme xyloglucan endotransglucosylase/hydrolase (XTH) was down-regulated by antisense inhibition. Independently transformed lines were shown to have multiple members of the LsXTH gene family down-regulated in mature leaves of 6-week-old plants and during the course of shelf life. Consequently, xyloglucan endotransglucosylase (XET) enzyme activity and action were down-regulated in the cell walls of these leaves and it was established that leaf area and fresh weight were decreased while leaf strength was increased in the transgenic lines. Membrane permeability was reduced towards the end of shelf life in the transgenic lines relative to the controls and bacteria were evident inside the leaves of control plants only. Most importantly, an extended shelf-life of transgenic lines was observed relative to the non-transgenic control plants. These data illustrate the potential for engineering cell wall traits for improving quality and longevity of salad crops using either genetic modification directly, or by using markers associated with XTH genes to inform a commercial breeding programme.
Subject(s)
Cell Wall/enzymology , Food Handling , Glycosyltransferases/metabolism , Lactuca/enzymology , Plant Proteins/metabolism , Plants, Genetically Modified/enzymology , Cell Membrane Permeability , Cell Wall/chemistry , Cell Wall/genetics , Cell Wall/ultrastructure , Gene Expression Regulation, Plant , Glycosyltransferases/genetics , Lactuca/chemistry , Lactuca/genetics , Lactuca/ultrastructure , Plant Proteins/genetics , Plants, Genetically Modified/chemistry , Plants, Genetically Modified/genetics , Plants, Genetically Modified/ultrastructureABSTRACT
The microbiological safety of fresh produce is monitored almost exclusively by culture-based detection methods. However, bacterial food-borne pathogens are known to enter a viable-but-nonculturable (VBNC) state in response to environmental stresses such as chlorine, which is commonly used for fresh produce decontamination. Here, complete VBNC induction of green fluorescent protein-tagged Listeria monocytogenes and Salmonella enterica serovar Thompson was achieved by exposure to 12 and 3 ppm chlorine, respectively. The pathogens were subjected to chlorine washing following incubation on spinach leaves. Culture data revealed that total viable L. monocytogenes and Salmonella Thompson populations became VBNC by 50 and 100 ppm chlorine, respectively, while enumeration by direct viable counting found that chlorine caused a <1-log reduction in viability. The pathogenicity of chlorine-induced VBNC L. monocytogenes and Salmonella Thompson was assessed by using Caenorhabditis elegans Ingestion of VBNC pathogens by C. elegans resulted in a significant life span reduction (P = 0.0064 and P < 0.0001), and no significant difference between the life span reductions caused by the VBNC and culturable L. monocytogenes treatments was observed. L. monocytogenes was visualized beyond the nematode intestinal lumen, indicating resuscitation and cell invasion. These data emphasize the risk that VBNC food-borne pathogens could pose to public health should they continue to go undetected.IMPORTANCE Many bacteria are known to enter a viable-but-nonculturable (VBNC) state in response to environmental stresses. VBNC cells cannot be detected by standard laboratory culture techniques, presenting a problem for the food industry, which uses these techniques to detect pathogen contaminants. This study found that chlorine, a sanitizer commonly used for fresh produce, induces a VBNC state in the food-borne pathogens Listeria monocytogenes and Salmonella enterica It was also found that chlorine is ineffective at killing total populations of the pathogens. A life span reduction was observed in Caenorhabditis elegans that ingested these VBNC pathogens, with VBNC L. monocytogenes as infectious as its culturable counterpart. These data show that VBNC food-borne pathogens can both be generated and avoid detection by industrial practices while potentially retaining the ability to cause disease.
Subject(s)
Anti-Infective Agents/metabolism , Chlorine/metabolism , Listeria monocytogenes/drug effects , Listeriosis/microbiology , Microbial Viability/drug effects , Salmonella Infections/microbiology , Salmonella enterica/drug effects , Animals , Caenorhabditis elegans , Disease Models, Animal , Listeria monocytogenes/growth & development , Listeria monocytogenes/pathogenicity , Salmonella enterica/growth & development , Salmonella enterica/pathogenicity , Spinacia oleracea/microbiology , Survival Analysis , VirulenceABSTRACT
The prominence of fresh produce as a vehicle for foodborne pathogens such as enterohaemorrhagic Escherichia coli (EHEC) O157 is rising, where disease cases can cause hospitalization and in some cases death. This rise emphasises the necessity for accurate and sensitive methods for detection of pathogens in soil, potential sources of contamination of fresh produce. The complexity of the soil matrix has previously proven prohibitive to pathogen detection via molecular methods without the use of a culture enrichment step, thereby excluding the detection of viable but non-culturable cells. Here, a sample preparation procedure to facilitate a direct qPCR assay is developed for the detection of E. coli O157 in soil, bypassing culture steps in favour of sample separation through pulsification release and filtration. In sand and peat-based compost, the method is sensitive to 10 CFU g-1 soil. When testing soils from agricultural sites, it was found that several were qPCR positive for E. coli O157 while being culture-negative, with peat-based compost possessing a concentration of 200 tir gene copies per gram. This procedure offers a rapid, quantitative assessment of the potential presence of E. coli O157 in soils which can act as a prescreen of their suitability to grow fresh produce safely.
Subject(s)
Bacterial Load/methods , Escherichia coli O157/isolation & purification , Real-Time Polymerase Chain Reaction/methods , Soil Microbiology , Escherichia coli O157/geneticsABSTRACT
Post-harvest treatments of pre-packaged salad leaves potentially cause l-ascorbate loss, but the mechanisms of ascorbate degradation remain incompletely understood, especially in planta. We explored the extent and pathways of ascorbate loss in variously washed and stored salad leaves. Ascorbate was assayed by 2,6-dichlorophenolindophenol titration, and pathways were monitored by 14C-radiolabelling followed by high-voltage electrophoresis. All leaves tested showed ascorbate loss during storage: lettuce showed the greatest percentage loss, wild rocket the least. Spinach leaves were particularly prone to losing ascorbate during washing, especially with simultaneous mechanical agitation; however, washing in the presence of hypochlorite did not significantly increase ascorbate loss. In spinach, [14C]oxalate was the major product of [14C]ascorbate degradation, suggesting that commercial washing causes oxidative stress. This study highlights that ascorbate/dehydroascorbic acid are lost via the oxidative pathway during washing and post-harvest storage of salad leaves. Thus changes to washing procedures could potentially increase the post-harvest retention of ascorbate.
Subject(s)
Spinacia oleracea , Ascorbic Acid , Lactuca , Plant Leaves , VegetablesABSTRACT
Watercress (Nasturtium officinale R. Br.) is a nutrient intense, leafy crop that is consumed raw or in soups across the globe, but for which, currently no genomic resources or breeding programme exists. Promising morphological, biochemical and functional genomic variation was identified for the first time in a newly established watercress germplasm collection, consisting of 48 watercress accessions sourced from contrasting global locations. Stem length, stem diameter and anti-oxidant (AO) potential varied across the accessions. This variation was used to identify three extreme contrasting accessions for further analysis. Variation in global gene expression was investigated using an Affymetrix Arabidopsis ATH1 microarray gene chip, using the commercial control (C), an accession selected for dwarf phenotype with a high AO potential (dwarfAO, called 'Boldrewood') and one with high AO potential alone. A set of transcripts significantly differentially expressed between these three accessions, were identified, including transcripts involved in the regulation of growth and development and those involved in secondary metabolism. In particular, when differential gene expression was compared between C and dwarfAO, the dwarfAO was characterised by increased expression of genes encoding glucosinolates, which are known precursors of phenethyl isothiocyanate, linked to the anti-carcinogenic effects well-documented in watercress. This study provides the first analysis of natural variation across the watercress genome and has identified important underpinning information for future breeding for enhanced anti-carcinogenic properties and morphology traits in this nutrient-intense crop.
ABSTRACT
A diet rich in phytonutrients from fruit and vegetables has been acknowledged to afford protection against a range of human diseases, but many of the most popular vegetables are low in phytonutrients. Wild relatives of crops may contain allelic variation for genes determining the concentrations of these beneficial phytonutrients, and therefore understanding the genetic basis of this variation is important for breeding efforts to enhance nutritional quality. In this study, lettuce recombinant inbred lines, generated from a cross between wild and cultivated lettuce (Lactuca serriola and Lactuca sativa, respectively), were analysed for antioxidant (AO) potential and important phytonutrients including carotenoids, chlorophyll and phenolic compounds. When grown in two environments, 96 quantitative trait loci (QTL) were identified for these nutritional traits: 4 for AO potential, 2 for carotenoid content, 3 for total chlorophyll content and 87 for individual phenolic compounds (two per compound on average). Most often, the L. serriola alleles conferred an increase in total AOs and metabolites. Candidate genes underlying these QTL were identified by BLASTn searches; in several cases, these had functions suggesting involvement in phytonutrient biosynthetic pathways. Analysis of a QTL on linkage group 3, which accounted for >30% of the variation in AO potential, revealed several candidate genes encoding multiple MYB transcription factors which regulate flavonoid biosynthesis and flavanone 3-hydroxylase, an enzyme involved in the biosynthesis of the flavonoids quercetin and kaempferol, which are known to have powerful AO activity. Follow-up quantitative RT-PCR of these candidates revealed that 5 out of 10 genes investigated were significantly differentially expressed between the wild and cultivated parents, providing further evidence of their potential involvement in determining the contrasting phenotypes. These results offer exciting opportunities to improve the nutritional content and health benefits of lettuce through marker-assisted breeding.
ABSTRACT
Developmental and biophysical leaf characteristics that influence post-harvest shelf life in lettuce, an important leafy crop, have been examined. The traits were studied using 60 informative F9 recombinant inbed lines (RILs) derived from a cross between cultivated lettuce (Lactuca sativa cv. Salinas) and wild lettuce (L. serriola acc. UC96US23). Quantitative trait loci (QTLs) for shelf life co-located most closely with those for leaf biophysical properties such as plasticity, elasticity, and breakstrength, suggesting that these are appropriate targets for molecular breeding for improved shelf life. Significant correlations were found between shelf life and leaf size, leaf weight, leaf chlorophyll content, leaf stomatal index, and epidermal cell number per leaf, indicating that these pre-harvest leaf development traits confer post-harvest properties. By studying the population in two contrasting environments in northern and southern Europe, the genotype by environment interaction effects of the QTLs relevant to leaf development and shelf life were assessed. In total, 107 QTLs, distributed on all nine linkage groups, were detected from the 29 traits. Only five QTLs were common in both environments. Several areas where many QTLs co-located (hotspots) on the genome were identified, with relatively little overlap between developmental hotspots and those relating to shelf life. However, QTLs for leaf biophysical properties (breakstrength, plasticity, and elasticity) and cell area correlated well with shelf life, confirming that the ideal ideotype lettuce should have small cells with strong cell walls. The identification of QTLs for leaf development, strength, and longevity will lead to a better understanding of processability at a genetic and cellular level, and allow the improvement of salad leaf quality through marker-assisted breeding.