Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 152
Filter
Add more filters

Publication year range
1.
Nature ; 610(7931): 343-348, 2022 10.
Article in English | MEDLINE | ID: mdl-36071165

ABSTRACT

Cancer progression is driven in part by genomic alterations1. The genomic characterization of cancers has shown interpatient heterogeneity regarding driver alterations2, leading to the concept that generation of genomic profiling in patients with cancer could allow the selection of effective therapies3,4. Although DNA sequencing has been implemented in practice, it remains unclear how to use its results. A total of 1,462 patients with HER2-non-overexpressing metastatic breast cancer were enroled to receive genomic profiling in the SAFIR02-BREAST trial. Two hundred and thirty-eight of these patients were randomized in two trials (nos. NCT02299999 and NCT03386162) comparing the efficacy of maintenance treatment5 with a targeted therapy matched to genomic alteration. Targeted therapies matched to genomics improves progression-free survival when genomic alterations are classified as level I/II according to the ESMO Scale for Clinical Actionability of Molecular Targets (ESCAT)6 (adjusted hazards ratio (HR): 0.41, 90% confidence interval (CI): 0.27-0.61, P < 0.001), but not when alterations are unselected using ESCAT (adjusted HR: 0.77, 95% CI: 0.56-1.06, P = 0.109). No improvement in progression-free survival was observed in the targeted therapies arm (unadjusted HR: 1.15, 95% CI: 0.76-1.75) for patients presenting with ESCAT alteration beyond level I/II. Patients with germline BRCA1/2 mutations (n = 49) derived high benefit from olaparib (gBRCA1: HR = 0.36, 90% CI: 0.14-0.89; gBRCA2: HR = 0.37, 90% CI: 0.17-0.78). This trial provides evidence that the treatment decision led by genomics should be driven by a framework of target actionability in patients with metastatic breast cancer.


Subject(s)
Breast Neoplasms , Clinical Decision-Making , Genome, Human , Genomics , Neoplasm Metastasis , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Clinical Decision-Making/methods , DNA Mutational Analysis , Disease Progression , Female , Genes, BRCA1 , Genes, BRCA2 , Genome, Human/genetics , Humans , Neoplasm Metastasis/drug therapy , Neoplasm Metastasis/genetics , Neoplasm Metastasis/pathology , Phthalazines/therapeutic use , Piperazines/therapeutic use
2.
J Med Genet ; 61(2): 158-162, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-37775264

ABSTRACT

Differential diagnosis between constitutional mismatch repair deficiency (CMMRD) and neurofibromatosis type 1 (NF1) is crucial as treatment and surveillance differ. We report the case of a girl with a clinical diagnosis of sporadic NF1 who developed a glioblastoma. Immunohistochemistry for MMR proteins identified PMS2 loss in tumour and normal cells and WES showed the tumour had an ultra-hypermutated phenotype, supporting the diagnosis of CMMRD. Germline analyses identified two variants (one pathogenic variant and one classified as variant(s) of unknown significance) in the PMS2 gene and subsequent functional assays on blood lymphocytes confirmed the diagnosis of CMMRD. The large plexiform neurofibroma of the thigh and the freckling were however more compatible with NF1. Indeed, a NF1 PV (variant allele frequencies of 20%, 3% and 9% and in blood, skin and saliva samples, respectively) was identified confirming a mosaicism for NF1. Retrospective analysis of a French cohort identified NF1 mosaicism in blood DNA in 2 out of 22 patients with CMMRD, underlining the existence of early postzygotic PV of NF1 gene in patients with CMMRD whose tumours have been frequently reported to exhibit somatic NF1 mutations. It highlights the potential role of this pathway in the pathogenesis of CMMRD-associated gliomas and argues in favour of testing MEK inhibitors in this context.


Subject(s)
Brain Neoplasms , Colorectal Neoplasms , Neoplastic Syndromes, Hereditary , Neurofibromatosis 1 , Female , Humans , Neurofibromatosis 1/diagnosis , Neurofibromatosis 1/genetics , Mosaicism , Retrospective Studies , Mismatch Repair Endonuclease PMS2/genetics , Neoplastic Syndromes, Hereditary/genetics , Brain Neoplasms/genetics , Colorectal Neoplasms/genetics , DNA Mismatch Repair/genetics
3.
Nucleic Acids Res ; 2023 Dec 24.
Article in English | MEDLINE | ID: mdl-38142462

ABSTRACT

BRCA2 tumor suppressor protein ensures genome integrity by mediating DNA repair via homologous recombination (HR). This function is executed in part by its canonical DNA binding domain located at the C-terminus (BRCA2CTD), the only folded domain of the protein. Most germline pathogenic missense variants are located in this highly conserved region which binds to single-stranded DNA (ssDNA) and to the acidic protein DSS1. These interactions are essential for the HR function of BRCA2. Here, we report that the variant R2645G, identified in breast cancer and located at the DSS1 interface, unexpectedly increases the ssDNA binding activity of BRCA2CTDin vitro. Human cells expressing this variant display a hyper-recombination phenotype, chromosomal instability in the form of chromatid gaps when exposed to DNA damage, and increased PARP inhibitor sensitivity. In mouse embryonic stem cells (mES), this variant alters viability and confers sensitivity to cisplatin and Mitomycin C. These results suggest that BRCA2 interaction with ssDNA needs to be tightly regulated to limit HR and prevent chromosomal instability and we propose that this control mechanism involves DSS1. Given that several missense variants located within this region have been identified in breast cancer patients, these findings might have clinical implications for carriers.

4.
Cancer ; 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38824658

ABSTRACT

BACKGROUND: Molecular characterization has significantly improved the management of advanced endometrial cancer (EC). It distinguishes four molecular subclasses associated with prognosis and personalized therapeutic strategies. This study assesses the clinical utility of cell-free DNA (cfDNA) profiling in EC to identify targetable alterations. METHODS: Women with metastatic or recurrent EC were prospectively recruited within the framework of the STING trial (NCT04932525), during which cfDNA was analyzed. Genomic alterations were identified with the FoundationOne CDx assay. Each molecular report underwent review by a molecular tumor board. Alterations were categorized via the European Society of Medical Oncology Scale for Clinical Actionability of Molecular Targets (ESCAT). RESULTS: A total of 61 patients were enrolled. The median age was 66.9 years, with 43% presenting frontline metastatic disease. All histologic subgroups were represented. Notably, 89% of patients yielded informative cfDNA analysis. Six tumors were classified with deficient mismatch repair/microsatellite instability (11%) and 37 as TP53 gene mutant (67%), and 12 had nonspecific molecular profiles (22%). Molecular classification based on liquid biopsy showed 87.5% accuracy in correlating with tissue results. Moreover, 65% of cases exhibited ≥1 actionable alteration, including 25% ESCAT I alterations and 13% ESCAT II alterations. Consequently, 16% of patients received a molecularly matched therapy, and presented with a 56% response rate and median progression-free survival of 7.7 months. CONCLUSIONS: cfDNA sequencing in EC is a feasible approach that produces informative results in 89% of cases and accurately categorizes patients into the main molecular subclasses. It also reveals multiple actionable alterations, which offers the potential for personalized therapeutic strategies.

5.
Br J Cancer ; 130(4): 613-619, 2024 03.
Article in English | MEDLINE | ID: mdl-38182687

ABSTRACT

BACKGROUND: To identify patients most likely to respond to everolimus, a mammalian target of rapamycin (mTOR) inhibitor, a prospective biomarker study was conducted in hormone receptor-positive endocrine-resistant metastatic breast cancer patients treated with exemestane-everolimus therapy. METHODS: Metastatic tumor biopsies were processed for immunohistochemical staining (p4EBP1, PTEN, pAKT, LKB1, and pS6K). ESR1, PIK3CA and AKT1 gene mutations were detected by NGS. The primary endpoint was the association between the p4EBP1 expression and clinical benefit rate (CBR) at 6 months of everolimus plus exemestane treatment. RESULTS: Of 150 patients included, 107 were evaluable for the primary endpoint. p4EBP1 staining above the median (Allred score ≥6) was associated with a higher CBR at 6 months (62% versus 40% in high-p4EBP1 versus low-p4EBP1, χ2 test, p = 0.026) and a longer progression-free survival (PFS) (median PFS of 9.2 versus 5.8 months in high-p4EBP1 versus low-p4EBP1; p = 0.02). When tested with other biomarkers, only p4EBP1 remained a significant predictive marker of PFS in multivariate analysis (hazard ratio, 0.591; p = 0.01). CONCLUSIONS: This study identified a subset of patients with hormone receptor-positive endocrine-resistant metastatic breast cancer and poor outcome who would derive less benefit from everolimus and exemestane. p4EBP1 may be a useful predictive biomarker in routine clinical practice. CLINICAL TRIAL REGISTRATION: NCT02444390.


Subject(s)
Breast Neoplasms , Everolimus , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Androstadienes/therapeutic use , Biomarkers , Receptor, ErbB-2/metabolism
6.
Am J Hum Genet ; 108(10): 1907-1923, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34597585

ABSTRACT

Up to 80% of BRCA1 and BRCA2 genetic variants remain of uncertain clinical significance (VUSs). Only variants classified as pathogenic or likely pathogenic can guide breast and ovarian cancer prevention measures and treatment by PARP inhibitors. We report the first results of the ongoing French national COVAR (cosegregation variant) study, the aim of which is to classify BRCA1/2 VUSs. The classification method was a multifactorial model combining different associations between VUSs and cancer, including cosegregation data. At this time, among the 653 variants selected, 101 (15%) distinct variants shared by 1,624 families were classified as pathogenic/likely pathogenic or benign/likely benign by the COVAR study. Sixty-six of the 101 (65%) variants classified by COVAR would have remained VUSs without cosegregation data. Of note, among the 34 variants classified as pathogenic by COVAR, 16 remained VUSs or likely pathogenic when following the ACMG/AMP variant classification guidelines. Although the initiation and organization of cosegregation analyses require a considerable effort, the growing number of available genetic tests results in an increasing number of families sharing a particular variant, and thereby increases the power of such analyses. Here we demonstrate that variant cosegregation analyses are a powerful tool for the classification of variants in the BRCA1/2 breast-ovarian cancer predisposition genes.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/pathology , Genetic Predisposition to Disease , Genetic Variation , Ovarian Neoplasms/pathology , Breast Neoplasms/classification , Breast Neoplasms/genetics , Female , Genetic Testing , Genotype , Humans , Ovarian Neoplasms/classification , Ovarian Neoplasms/genetics
7.
Future Oncol ; : 1-10, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722139

ABSTRACT

Exhaustive efforts have been dedicated to uncovering genomic aberrations linked to cancer susceptibility. Noncoding sequence variants and epigenetic alterations significantly influence gene regulation and could contribute to cancer development. However, exploring noncoding regions in hereditary cancer susceptibility demands cutting-edge methodologies for functionally characterizing genomic discoveries. Additionally, comprehending the impact on cancer development of variants in noncoding DNA and the epigenome necessitates integrating diverse data through bioinformatic analyses. As novel technologies and analytical methods continue to advance, this realm of research is rapidly gaining traction. Within this mini-review, we delve into future research domains concerning aberrations in noncoding DNA regions, such as pseudoexons, promoter variants and cis-epimutations.


[Box: see text].

8.
Mol Cancer ; 22(1): 176, 2023 11 04.
Article in English | MEDLINE | ID: mdl-37924050

ABSTRACT

BACKGROUND: Despite the effectiveness of the various targeted therapies currently approved for solid tumors, acquired resistance remains a persistent problem that limits the ultimate effectiveness of these treatments. Polyclonal resistance to targeted therapy has been described in multiple solid tumors through high-throughput analysis of multiple tumor tissue samples from a single patient. However, biopsies at the time of acquired resistance to targeted agents may not always be feasible and may not capture the genetic heterogeneity that could exist within a patient. METHODS: We analyzed circulating tumor DNA (ctDNA) with a large next-generation sequencing panel to characterize the landscape of secondary resistance mechanisms in two independent prospective cohorts of patients (STING: n = 626; BIP: n = 437) with solid tumors who were treated with various types of targeted therapies: tyrosine kinase inhibitors, monoclonal antibodies and hormonal therapies. RESULTS: Emerging alterations involved in secondary resistance were observed in the plasma of up 34% of patients regardless of the type of targeted therapy. Alterations were polyclonal in up to 14% of patients. Emerging ctDNA alterations were associated with significantly shorter overall survival for patients with some tumor types. CONCLUSION: This comprehensive landscape of genomic aberrations indicates that genetic alterations involved in secondary resistance to targeted therapy occur frequently and suggests that the detection of such alterations before disease progression may guide personalized treatment and improve patient outcome.


Subject(s)
Circulating Tumor DNA , Neoplasms , Humans , Circulating Tumor DNA/genetics , Precision Medicine , Prognosis , Prospective Studies , Biomarkers, Tumor/genetics , Mutation , Neoplasms/drug therapy , Neoplasms/genetics , High-Throughput Nucleotide Sequencing
9.
Mol Cancer ; 22(1): 178, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37932736

ABSTRACT

BACKGROUND: Knowing the homologous recombination deficiency (HRD) status in advanced epithelial ovarian cancer (EOC) is vital for patient management. HRD is determined by BRCA1/BRCA2 pathogenic variants or genomic instability. However, tumor DNA analysis is inconclusive in 15-19% of cases. Peritoneal fluid, available in > 95% of advanced EOC cases, could serve as an alternative source of cell-free tumor DNA (cftDNA) for HRD testing. Limited data show the feasibility of cancer panel gene testing on ascites cfDNA but no study, to date, has investigated HRD testing. METHODS: We collected ascites/peritoneal washings from 53 EOC patients (19 from retrospective cohort and 34 from prospective cohort) and performed a Cancer Gene Panel (CGP) using NGS for TP53/HR genes and shallow Whole Genome Sequencing (sWGS) for genomic instability on cfDNA. RESULTS: cfDNA was detectable in 49 out of 53 patients (92.5%), including those with limited peritoneal fluid. Median cfDNA was 3700 ng/ml, with a turnaround time of 21 days. TP53 pathogenic variants were detected in 86% (42/49) of patients, all with HGSOC. BRCA1 and BRCA2 pathogenic variants were found in 14% (7/49) and 10% (5/49) of cases, respectively. Peritoneal cftDNA showed high sensitivity (97%), specificity (83%), and concordance (95%) with tumor-based TP53 variant detection. NGS CGP on cftDNA identified BRCA2 pathogenic variants in one case where tumor-based testing failed. sWGS on cftDNA provided informative results even when tumor-based genomic instability testing failed. CONCLUSION: Profiling cftDNA from peritoneal fluid is feasible, providing a significant amount of tumor DNA. This fast and reliable approach enables HRD testing, including BRCA1/2 mutations and genomic instability assessment. HRD testing on cfDNA from peritoneal fluid should be offered to all primary laparoscopy patients.


Subject(s)
Circulating Tumor DNA , Ovarian Neoplasms , Female , Humans , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Mutation , Ovarian Neoplasms/genetics , Homologous Recombination , Ascitic Fluid/pathology , Ascites , Prospective Studies , Retrospective Studies , Carcinoma, Ovarian Epithelial , Genomic Instability
10.
Gynecol Oncol ; 171: 106-113, 2023 04.
Article in English | MEDLINE | ID: mdl-36868112

ABSTRACT

RATIONALE: Homologous recombination deficiency (HRD), defined as BRCA1/2 mutation (BRCAmut) or high genomic instability, is used to identify ovarian cancer (OC) patients most likely to benefit from PARP inhibitors. While these tests are useful, they are imperfect. Another approach is to measure the capacity of tumor cells to form RAD51 foci in the presence of DNA damage using an immunofluorescence assay (IF). We aimed to describe for the first time this assay in OC and correlate it to platinum response and BRCAmut. METHODS: Tumor samples were prospectively collected from the randomized CHIVA trial of neoadjuvant platinum +/- nintedanib. IF for RAD51, GMN and gH2AX was performed on FFPE blocks. Tumors were considered RAD51-low if ≤10% of GMN-positive tumor cells had ≥5 RAD51 foci. BRCAmut were identified by NGS. RESULTS: 155 samples were available. RAD51 assay was contributive for 92% of samples and NGS available for 77%. gH2AX foci confirmed the presence of significant basal DNA damage. 54% of samples were considered HRD by RAD51 and presented higher overall response rates to neoadjuvant platinum (P = 0.04) and longer progression-free survival (P = 0.02). In addition, 67% of BRCAmut were HRD by RAD51. Among BRCAmut, RAD51-high tumors seem to harbor poorer response to chemotherapy (P = 0.02). CONCLUSIONS: We evaluated a functional assay of HR competency. OC demonstrate high levels of DNA damage, yet 54% fail to form RAD51 foci. These RAD51-low OC tend to be more sensitive to neoadjuvant platinum. The RAD51 assay also identified a subset of RAD51-high BRCAmut tumors with unexpected poor platinum response.


Subject(s)
Ovarian Neoplasms , Platinum , Humans , Female , Platinum/therapeutic use , Homologous Recombination , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , DNA Damage , BRCA1 Protein/genetics , Rad51 Recombinase/genetics
11.
Int J Mol Sci ; 24(14)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37511329

ABSTRACT

Somatic/germline BRCA1/2 mutations (m)/(likely) pathogenic variants (PV) (s/gBRCAm) remain the best predictive biomarker for PARP inhibitor efficacy. As >95% of high-grade serous ovarian cancers (HGSOC) have a somatic TP53m, combined tumor-based BRCA1/2 (tBRCA) and TP53 mutation testing (tBRCA/TP53m) may improve the quality of results in somatic BRCAm identification and interpretation of the 'second hit' event, i.e., loss of heterozygosity (LOH). A total of 237 patients with HGSOC underwent tBRCA/TP53m testing. The ratio of allelic fractions (AFs) for tBRCA/TP53m was calculated to estimate the proportion of cells carrying BRCAm and to infer LOH. Among the 142/237 gBRCA results, 16.2% demonstrated a pathogenic/deleterious variant (DEL) gBRCA1/2m. Among the 195 contributive tumor samples, 43 DEL of tBRCAm (22.1%) were identified (23 gBRCAm and 20 sBRCAm) with LOH identified in 37/41 conclusive samples. The median AF of TP53m was 0.52 (0.01-0.93), confirming huge variability in tumor cellularity. Initially, three samples were considered as wild type with <10% cellularity. However, additional testing detected a very low AF (<0.05) in both BRCA1/2m and TP53m, thus reidentifying them as sBRCA1/2m. Combined tBRCA/TP53m testing is rapid, sensitive, and identifies somatic and germline BRCA1/2m. AF TP53m is essential for interpreting sBRCA1/2m in low-cellularity samples and provides indirect evidence for LOH as the 'second hit' of BRCA1/2-related tumorigenesis.


Subject(s)
BRCA1 Protein , Ovarian Neoplasms , Humans , Female , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Mutation , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Germ-Line Mutation , Tumor Suppressor Protein p53/genetics
12.
Hum Mutat ; 43(3): 316-327, 2022 03.
Article in English | MEDLINE | ID: mdl-34882875

ABSTRACT

Hereditary papillary renal cell carcinoma (HPRC) is a rare inherited renal cancer syndrome characterized by bilateral and multifocal papillary type 1 renal tumors (PRCC1). Activating germline pathogenic variants of the MET gene were identified in HPRC families. We reviewed the medical and molecular records of a large French series of 158 patients screened for MET oncogenic variants. MET pathogenic and likely pathogenic variants rate was 12.4% with 40.6% among patients with familial PRCC1 and 5% among patients with sporadic PRCC1. The phenotype in cases with MET pathogenic and likely pathogenic variants was characteristic: PRCC1 tumors were mainly bilateral (84.3%) and multifocal (87.5%). Histologically, six out of seven patients with MET pathogenic variant harbored biphasic squamoid alveolar PRCC. Genetic screening identified one novel pathogenic variant MET c.3389T>C, p.(Leu1130Ser) and three novel likely pathogenic variants: MET c.3257A>T, p.(His1086Leu); MET c.3305T>C, p.(Ile1102Thr) and MET c.3373T>G, p.(Cys1125Gly). Functional assay confirmed their oncogenic effect as they induced an abnormal focus formation. The genotype-phenotype correlation between MET pathogenic variants and PRCC1 presentation should encourage to widen the screening, especially toward nonfamilial PRCC1. This precise phenotype also constitutes a strong argument for the classification of novel missense variants within the tyrosine kinase domain when functional assays are not accessible.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Neoplastic Syndromes, Hereditary , Proto-Oncogene Proteins c-met , Carcinoma, Renal Cell/genetics , Female , Germ Cells/metabolism , Humans , Kidney Neoplasms/genetics , Male , Phenotype , Proto-Oncogene Proteins c-met/genetics
13.
BMC Cancer ; 22(1): 759, 2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35820813

ABSTRACT

BACKGROUND: Circulating cell free DNA (cfDNA) testing of plasma for EGFR somatic variants in lung cancer patients is being widely implemented and with any new service, external quality assessment (EQA) is required to ensure patient safety. An international consortium, International Quality Network for Pathology (IQNPath), has delivered a second round of assessment to measure the accuracy of cfDNA testing for lung cancer and the interpretation of the results. METHODS: A collaboration of five EQA provider organisations, all members of IQNPath, have delivered the assessment during 2018-19 to a total of 264 laboratories from 45 countries. Bespoke plasma reference material containing a range of EGFR mutations at varying allelic frequencies were supplied to laboratories for testing and reporting according to routine procedures. The genotyping accuracy and clinical reporting was reviewed against standardised criteria and feedback was provided to participants. RESULTS: The overall genotyping error rate in the EQA was found to be 11.1%. Low allelic frequency samples were the most challenging and were not detected by some testing methods, resulting in critical genotyping errors. This was reflected in higher false negative rates for samples with variant allele frequencies (VAF) rates less than 1.5% compared to higher frequencies. A sample with two different EGFR mutations gave inconsistent detection of both mutations. However, for one sample, where two variants were present at a VAF of less than 1% then both mutations were correctly detected in 145/263 laboratories. Reports often did not address the risk that tumour DNA may have not been tested and limitations of the methodologies provided by participants were insufficient. This was reflected in the average interpretation score for the EQA being 1.49 out of a maximum of 2. CONCLUSIONS: The variability in the standard of genotyping and reporting highlighted the need for EQA and educational guidance in this field to ensure the delivery of high-quality clinical services where testing of cfDNA is the only option for clinical management.


Subject(s)
Cell-Free Nucleic Acids , Lung Neoplasms , ErbB Receptors/genetics , Gene Frequency , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Mutation
14.
BMC Cancer ; 22(1): 736, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35794532

ABSTRACT

BACKGROUND: For patients with non-small cell lung cancer (NSCLC), targeted therapies are becoming part of the standard treatment. It is of question which information the clinicians provide on test requests and how the laboratories adapt test conclusions to this knowledge and regulations. METHODS: This study consisted of two components; 1) checking the presence of pre-defined elements (administrative and key for therapy-choice) on completed requests and corresponding reports in Belgian laboratories, both for tissue- and liquid biopsy (LB)-testing and b) opinion analysis from Belgian pathologists/molecular biologists and clinicians during national pathology/oncology meetings. RESULTS: Data from 4 out of 6 Belgian laboratories with ISO-accreditation for LB-testing were analyzed, of which 75% were university hospitals. On the scored requests (N = 4), 12 out of 19 ISO-required elements were present for tissue and 11 for LB-testing. Especially relevant patient history, such as line of therapy (for LB), tumor histology and the reason for testing were lacking. Similarly, 11 and 9 out of 18 elements were present in the reports (N = 4) for tissue and LB, respectively. Elements that pathologists/molecular biologists (N = 18) were missing on the request were the initial activating mutation, previous therapies, a clinical question and testing-related information. For reporting, an item considered important by both groups is the clinical interpretation of the test result. In addition, clinicians (N = 28) indicated that they also wish to read the percentage of neoplastic cells. CONCLUSIONS: Communication flows between the laboratory and the clinician, together with possible pitfalls were identified. Based on the study results, templates for complete requesting and reporting were proposed.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/genetics , Humans , Liquid Biopsy , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Molecular Diagnostic Techniques , Pathology, Molecular
15.
J Med Genet ; 58(6): 357-361, 2021 06.
Article in English | MEDLINE | ID: mdl-32576655

ABSTRACT

INTRODUCTION: We report a very rare case of familial breast cancer and diffuse gastric cancer, with germline pathogenic variants in both BRCA1 and CDH1 genes. To the best of our knowledge, this is the first report of such an association.Family description: The proband is a woman diagnosed with breast cancer at the age of 52 years. She requested genetic counselling in 2012, at the age of 91 years, because of a history of breast cancer in her daughter, her sister, her niece and her paternal grandmother and was therefore concerned about her relatives. Her sister and maternal aunt also had gastric cancer. She was tested for several genes associated with hereditary breast cancer. RESULTS: A large deletion of BRCA1 from exons 1 to 7 and two CDH1 pathogenic cis variants were identified. CONCLUSION: This complex situation is challenging for genetic counselling and management of at-risk individuals.


Subject(s)
Antigens, CD/genetics , Breast Neoplasms/genetics , Cadherins/genetics , Genes, BRCA1 , Germ-Line Mutation , Neoplasms, Multiple Primary/genetics , Stomach Neoplasms/genetics , Aged, 80 and over , Breast Neoplasms/complications , Female , Humans , Medical History Taking , Pedigree , Stomach Neoplasms/complications
16.
Hum Mutat ; 41(1): 7-16, 2020 01.
Article in English | MEDLINE | ID: mdl-31553104

ABSTRACT

A standardized nomenclature for reporting oncology biomarker variants is key to avoid misinterpretation of results and unambiguous registration in clinical databases. External quality assessment (EQA) schemes have revealed a need for more consistent nomenclature use in clinical genetics. We evaluated the propensity of EQA for improvement of compliance with Human Genome Variation Society (HGVS) recommendations for reporting of predictive somatic variants in lung and colorectal cancer. Variant entries between 2012 and 2018 were collected from written reports and electronic results sheets. In total, 4,053 variants were assessed, of which 12.1% complied with HGVS recommendations. Compliance improved over time from 2.1% (2012) to 22.3% (2018), especially when laboratories participated in multiple EQA schemes. Compliance was better for next-generation sequencing (20.9%) compared with targeted techniques (9.8%). In the 1792 reports, HGVS recommendations for reference sequences were met for 31.9% of reports, for 36.0% of noncommercial, and 26.5% of commercial test methods. Compliance improved from 16.7% (2012) to 33.1% (2018), and after repeated EQA participation. EQA participation improves compliance with HGVS recommendations. The residual percentage of errors in the most recent schemes suggests that laboratories, companies, and EQA providers need to collaborate for additional improvement of harmonization in clinical test reporting.


Subject(s)
Genetic Predisposition to Disease , Genetic Variation , Medical Oncology , Neoplasms/genetics , Neoplasms/therapy , Biomarkers, Tumor , Clinical Decision-Making , Disease Management , Guideline Adherence , High-Throughput Nucleotide Sequencing , Humans , Medical Oncology/methods , Medical Oncology/standards , Neoplasms/diagnosis , Quality Assurance, Health Care , Quality Control , Reproducibility of Results , Terminology as Topic
17.
BMC Cancer ; 20(1): 366, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32357863

ABSTRACT

BACKGROUND: Correct identification of the EGFR c.2369C>T p.(Thr790Met) variant is key to decide on a targeted therapeutic strategy for patients with acquired EGFR TKI resistance in non-small cell lung cancer. The aim of this study was to evaluate the correct detection of this variant in 12 tumor tissue specimens tested by 324 laboratories participating in External Quality Assessment (EQA) schemes. METHODS: Data from EQA schemes were evaluated between 2013 and 2018 from cell lines (6) and resections (6) containing the EGFR c.2369C>T p.(Thr790Met) mutation. Adequate performance was defined as the percentage of tests for which an outcome was available and correct. Additional data on the used test method were collected from the participants. Chi-squared tests on contingency tables and a biserial rank correlation were applied by IBM SPSS Statistics version 25 (IBM, Armonk, NY, USA). RESULTS: In 26 of the 1190 tests (2.2%) a technical failure occurred. For the remaining 1164 results, 1008 (86.6%) were correct, 151 (12.9%) were false-negative and 5 (0.4%) included incorrect mutations. Correct p.(Thr790Met) detection improved over time and for repeated scheme participations. In-house non-next-generation sequencing (NGS) techniques performed worse (81.1%, n = 293) compared to non-NGS commercial kits (85.2%, n = 656) and NGS (97.0%, n = 239). Over time there was an increase in the users of NGS. Resection specimens performed worse (82.6%, n = 610 tests) compared to cell line material (90.9%, n = 578 tests), except for NGS (96.3%, n = 344 for resections and 98.6%, n = 312 for cell lines). Samples with multiple mutations were more difficult compared to samples with the single p.(Thr790Met) variant. A change of the test method was shown beneficial to reduce errors but introduced additional analysis failures. CONCLUSIONS: A significant number of laboratories that offer p.(Thr790Met) testing did not detect this relevant mutation compared to the other EQA participants. However, correct identification of this variant is improving over time and was higher for NGS users. Revising the methodology might be useful to resolve errors, especially for resection specimens with low frequency or multiple variants. EQA providers should include challenging resections in the scheme.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/genetics , Mutation , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/enzymology , ErbB Receptors/genetics , Follow-Up Studies , Genetic Testing/methods , Genetic Testing/standards , Humans , Longitudinal Studies , Lung Neoplasms/diagnosis , Lung Neoplasms/enzymology , Polymorphism, Single Nucleotide , Quality Control , Tumor Cells, Cultured
18.
Eur Radiol ; 30(9): 5021-5028, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32323012

ABSTRACT

OBJECTIVES: The aim of our study was to investigate the association between driver oncogene alterations and metastatic patterns on imaging assessment, in a large cohort of metastatic lung adenocarcinoma patients. METHODS: From January 2010 to May 2017, 550 patients with stage IV lung adenocarcinoma with molecular analysis were studied retrospectively including 135 EGFR-mutated, 81 ALK-rearrangement, 47 BRAF-mutated, 141 KRAS-mutated, and 146 negative tumors for these 4 mutations (4N). After review of the complete imaging report by two radiologists (junior and senior) to identify metastatic sites, univariate correlation analyzes were performed. RESULTS: We found differences in metastatic tropism depending on the molecular alteration type when compared with the non-mutated 4N group: in the EGFR group, pleural metastases were more frequent (32% versus 20%; p = 0.021), and adrenal and node metastases less common (6% versus 23%; p < 0.001 and 11% versus 23%; p = 0.011). In the ALK group, there were more brain and lung metastases (respectively 42% versus 29%; p = 0.043 and 37% versus 24%; p = 0.037). In the BRAF group, pleural and pericardial metastases were more common (respectively 47% versus 20%; p < 0.001 and 11% versus 3%; p = 0.04) and bone metastases were rarer (21% versus 42%; p = 0.011). Lymphangitis was more frequent in EGFR, ALK, and BRAF groups (respectively 6%, 7%, and 15% versus 1%); p = 0.016; p = 0.009; and p < 0.001. CONCLUSION: The application of these correlations between molecular status and metastatic tropism in clinical practice may lead to earlier and more accurate identification of patients for targeted therapy. KEY POINTS: • Bone and brain metastasis are the most common organs involved in lung adenocarcinoma but the relative incidence of each metastatic site depends on the molecular alteration. • EGFR-mutated tumors preferentially spread to the pleura and less commonly to adrenals, ALK-rearrangement tumors usually spread to the brain and the lungs, whereas BRAF-mutated tumors are unlikely to spread to bones and have a serous (pericardial ad pleural) tropism. • These correlations could help in the clinical management of patients with metastatic lung adenocarcinoma.


Subject(s)
Bone Neoplasms/secondary , Carcinoma, Non-Small-Cell Lung/diagnosis , DNA, Neoplasm/genetics , ErbB Receptors/genetics , Lung Neoplasms/diagnosis , Mutation , Neoplasm Staging , Adult , Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Bone Neoplasms/diagnosis , Bone Neoplasms/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/secondary , ErbB Receptors/metabolism , Female , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Male , Middle Aged , Retrospective Studies
19.
Nucleic Acids Res ; 46(15): 7913-7923, 2018 09 06.
Article in English | MEDLINE | ID: mdl-29750258

ABSTRACT

Variant interpretation is the key issue in molecular diagnosis. Spliceogenic variants exemplify this issue as each nucleotide variant can be deleterious via disruption or creation of splice site consensus sequences. Consequently, reliable in silico prediction of variant spliceogenicity would be a major improvement. Thanks to an international effort, a set of 395 variants studied at the mRNA level and occurring in 5' and 3' consensus regions (defined as the 11 and 14 bases surrounding the exon/intron junction, respectively) was collected for 11 different genes, including BRCA1, BRCA2, CFTR and RHD, and used to train and validate a new prediction protocol named Splicing Prediction in Consensus Elements (SPiCE). SPiCE combines in silico predictions from SpliceSiteFinder-like and MaxEntScan and uses logistic regression to define optimal decision thresholds. It revealed an unprecedented sensitivity and specificity of 99.5 and 95.2%, respectively, and the impact on splicing was correctly predicted for 98.8% of variants. We therefore propose SPiCE as the new tool for predicting variant spliceogenicity. It could be easily implemented in any diagnostic laboratory as a routine decision making tool to help geneticists to face the deluge of variants in the next-generation sequencing era. SPiCE is accessible at (https://sourceforge.net/projects/spicev2-1/).


Subject(s)
Computational Biology/methods , Computer Simulation , Genetic Variation , RNA Splice Sites/genetics , RNA Splicing , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Female , Humans , International Cooperation , Internet , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/genetics , Reproducibility of Results , Sensitivity and Specificity
20.
Ann Diagn Pathol ; 46: 151522, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32442860

ABSTRACT

Beta-catenin, encoded by the CTNNB1 gene, plays an important role in cell proliferation. Mutations of CTNNB1 are oncogenic in several tumor types and are often associated with a nuclear abnormal expression. However, such mutations have only rarely been reported in non-small cell lung carcinomas and their clinical signification is not well described. Our study was conducted on 26 CTNNB1-mutated non-small cell lung carcinomas. Tumors were routinely tested by next generation sequencing for mutations in exon 3 of CTNNB1 gene. Twenty three cases were from a series of 925 tumors (2.48%). The hospital files and pathological data, from surgical samples (n = 16), small biopsies (n = 5) and trans-bronchial fine needle aspirations (n = 5), were reviewed. Immunohistochemistry was performed with an anti-beta-catenin antibody. There were 10 female and 16 male patients aged 52 to 83. Eleven of 25 patients were no-smoking or light smokers. Three cases were diagnosed while under treatment with EGFR tyrosine kinase inhibitor. There were 25 adenocarcinomas and 1 squamous cell carcinoma. Most adenocarcinomas had a papillary component and were TTF1-positive. One case was a well-differentiated fetal adenocarcinoma. Eleven cases (42%) with CTNNB1 mutations showed associated EGFR mutations. The frequency of CTNNB1 mutations was higher among EGFR mutated carcinomas. Immunohistochemistry showed heterogeneous nuclear or cytoplasmic abnormal expression. Our study shows that CTNNB1 mutations mostly occur in TTF1-positive adenocarcinomas with a papillary pattern. These mutations are often associated with EGFR mutations and possibly interfer in the mechanism of resistance to tyrosine kinase inhibitors. Our experience suggests that immuno-histochemistry cannot be used for screening.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , beta Catenin/genetics , Aged , Aged, 80 and over , DNA Mutational Analysis , ErbB Receptors/genetics , Female , Humans , Male , Middle Aged , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL