Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Nature ; 626(8001): 1094-1101, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38383783

ABSTRACT

Persistent SARS-CoV-2 infections may act as viral reservoirs that could seed future outbreaks1-5, give rise to highly divergent lineages6-8 and contribute to cases with post-acute COVID-19 sequelae (long COVID)9,10. However, the population prevalence of persistent infections, their viral load kinetics and evolutionary dynamics over the course of infections remain largely unknown. Here, using viral sequence data collected as part of a national infection survey, we identified 381 individuals with SARS-CoV-2 RNA at high titre persisting for at least 30 days, of which 54 had viral RNA persisting at least 60 days. We refer to these as 'persistent infections' as available evidence suggests that they represent ongoing viral replication, although the persistence of non-replicating RNA cannot be ruled out in all. Individuals with persistent infection had more than 50% higher odds of self-reporting long COVID than individuals with non-persistent infection. We estimate that 0.1-0.5% of infections may become persistent with typically rebounding high viral loads and last for at least 60 days. In some individuals, we identified many viral amino acid substitutions, indicating periods of strong positive selection, whereas others had no consensus change in the sequences for prolonged periods, consistent with weak selection. Substitutions included mutations that are lineage defining for SARS-CoV-2 variants, at target sites for monoclonal antibodies and/or are commonly found in immunocompromised people11-14. This work has profound implications for understanding and characterizing SARS-CoV-2 infection, epidemiology and evolution.


Subject(s)
COVID-19 , Health Surveys , Persistent Infection , SARS-CoV-2 , Humans , Amino Acid Substitution , Antibodies, Monoclonal/immunology , COVID-19/epidemiology , COVID-19/virology , Evolution, Molecular , Immunocompromised Host/immunology , Mutation , Persistent Infection/epidemiology , Persistent Infection/virology , Post-Acute COVID-19 Syndrome/epidemiology , Post-Acute COVID-19 Syndrome/virology , Prevalence , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/chemistry , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Selection, Genetic , Self Report , Time Factors , Viral Load , Virus Replication
2.
Am J Epidemiol ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808625

ABSTRACT

Detecting and quantifying changes in growth rates of infectious diseases is vital to informing public health strategy and can inform policymakers' rationale for implementing or continuing interventions aimed at reducing impact. Substantial changes in SARS-CoV-2 prevalence with emergence of variants provides opportunity to investigate different methods to do this. We included PCR results from all participants in the UK's COVID-19 Infection Survey between August 2020-June 2022. Change-points for growth rates were identified using iterative sequential regression (ISR) and second derivatives of generalised additive models (GAMs). Consistency between methods and timeliness of detection were compared. Of 8,799,079 visits, 147,278 (1.7%) were PCR-positive. Change-points associated with emergence of major variants were estimated to occur a median 4 days earlier (IQR 0-8) in GAMs versus ISR. When estimating recent change-points using successive data periods, four change-points (4/96) identified by GAMs were not found when adding later data or by ISR. Change-points were detected 3-5 weeks after they occurred in both methods but could be detected earlier within specific subgroups. Change-points in growth rates of SARS-CoV-2 can be detected in near real-time using ISR and second derivatives of GAMs. To increase certainty about changes in epidemic trajectories both methods could be run in parallel.

3.
BMC Med ; 22(1): 143, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532381

ABSTRACT

BACKGROUND: Syndromic surveillance often relies on patients presenting to healthcare. Community cohorts, although more challenging to recruit, could provide additional population-wide insights, particularly with SARS-CoV-2 co-circulating with other respiratory viruses. METHODS: We estimated the positivity and incidence of SARS-CoV-2, influenza A/B, and RSV, and trends in self-reported symptoms including influenza-like illness (ILI), over the 2022/23 winter season in a broadly representative UK community cohort (COVID-19 Infection Survey), using negative-binomial generalised additive models. We estimated associations between test positivity and each of the symptoms and influenza vaccination, using adjusted logistic and multinomial models. RESULTS: Swabs taken at 32,937/1,352,979 (2.4%) assessments tested positive for SARS-CoV-2, 181/14,939 (1.2%) for RSV and 130/14,939 (0.9%) for influenza A/B, varying by age over time. Positivity and incidence peaks were earliest for RSV, then influenza A/B, then SARS-CoV-2, and were highest for RSV in the youngest and for SARS-CoV-2 in the oldest age groups. Many test positives did not report key symptoms: middle-aged participants were generally more symptomatic than older or younger participants, but still, only ~ 25% reported ILI-WHO and ~ 60% ILI-ECDC. Most symptomatic participants did not test positive for any of the three viruses. Influenza A/B-positivity was lower in participants reporting influenza vaccination in the current and previous seasons (odds ratio = 0.55 (95% CI 0.32, 0.95)) versus neither season. CONCLUSIONS: Symptom profiles varied little by aetiology, making distinguishing SARS-CoV-2, influenza and RSV using symptoms challenging. Most symptoms were not explained by these viruses, indicating the importance of other pathogens in syndromic surveillance. Influenza vaccination was associated with lower rates of community influenza test positivity.


Subject(s)
COVID-19 , Influenza, Human , Respiratory Syncytial Virus Infections , Virus Diseases , Middle Aged , Humans , Influenza, Human/epidemiology , SARS-CoV-2 , Seasons , Self Report , Respiratory Syncytial Viruses , United Kingdom , Respiratory Syncytial Virus Infections/epidemiology
4.
Proc Biol Sci ; 290(2009): 20231284, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37848057

ABSTRACT

The Office for National Statistics Coronavirus (COVID-19) Infection Survey (ONS-CIS) is the largest surveillance study of SARS-CoV-2 positivity in the community, and collected data on the United Kingdom (UK) epidemic from April 2020 until March 2023 before being paused. Here, we report on the epidemiological and evolutionary dynamics of SARS-CoV-2 determined by analysing the sequenced samples collected by the ONS-CIS during this period. We observed a series of sweeps or partial sweeps, with each sweeping lineage having a distinct growth advantage compared to their predecessors, although this was also accompanied by a gradual fall in average viral burdens from June 2021 to March 2023. The sweeps also generated an alternating pattern in which most samples had either S-gene target failure (SGTF) or non-SGTF over time. Evolution was characterized by steadily increasing divergence and diversity within lineages, but with step increases in divergence associated with each sweeping major lineage. This led to a faster overall rate of evolution when measured at the between-lineage level compared to within lineages, and fluctuating levels of diversity. These observations highlight the value of viral sequencing integrated into community surveillance studies to monitor the viral epidemiology and evolution of SARS-CoV-2, and potentially other pathogens.


Subject(s)
COVID-19 , Epidemics , Humans , COVID-19/epidemiology , SARS-CoV-2 , United Kingdom/epidemiology , Surveys and Questionnaires
5.
Clin Infect Dis ; 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35917440

ABSTRACT

BACKGROUND: The SARS-CoV-2 Delta variant has been replaced by the highly transmissible Omicron BA.1 variant, and subsequently by Omicron BA.2. It is important to understand how these changes in dominant variants affect reported symptoms, while also accounting for symptoms arising from other co-circulating respiratory viruses. METHODS: In a nationally representative UK community study, the COVID-19 Infection Survey, we investigated symptoms in PCR-positive infection episodes vs. PCR-negative study visits over calendar time, by age and vaccination status, comparing periods when the Delta, Omicron BA.1 and BA.2 variants were dominant. RESULTS: Between October-2020 and April-2022, 120,995 SARS-CoV-2 PCR-positive episodes occurred in 115,886 participants, with 70,683 (58%) reporting symptoms. The comparator comprised 4,766,366 PCR-negative study visits (483,894 participants); 203,422 (4%) reporting symptoms. Symptom reporting in PCR-positives varied over time, with a marked reduction in loss of taste/smell as Omicron BA.1 dominated, maintained with BA.2 (44%/45% 17 October 2021, 16%/13% 2 January 2022, 15%/12% 27 March 2022). Cough, fever, shortness of breath, myalgia, fatigue/weakness and headache also decreased after Omicron BA.1 dominated, but sore throat increased, the latter to a greater degree than concurrent increases in PCR-negatives. Fatigue/weakness increased again after BA.2 dominated, although to a similar degree to concurrent increases in PCR-negatives. Symptoms were consistently more common in adults aged 18-65 years than in children or older adults. CONCLUSIONS: Increases in sore throat (also common in the general community), and a marked reduction in loss of taste/smell, make Omicron harder to detect with symptom-based testing algorithms, with implications for institutional and national testing policies.

6.
Clin Infect Dis ; 75(1): e329-e337, 2022 08 24.
Article in English | MEDLINE | ID: mdl-34748629

ABSTRACT

BACKGROUND: "Classic" symptoms (cough, fever, loss of taste/smell) prompt severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) polymerase chain reaction (PCR) testing in the United Kingdom. Studies have assessed the ability of different symptoms to identify infection, but few have compared symptoms over time (reflecting variants) and by vaccination status. METHODS: Using the COVID-19 Infection Survey, sampling households across the United Kingdom, we compared symptoms in PCR-positives vs PCR-negatives, evaluating sensitivity of combinations of 12 symptoms (percentage symptomatic PCR-positives reporting specific symptoms) and tests per case (TPC) (PCR-positives or PCR-negatives reporting specific symptoms/ PCR-positives reporting specific symptoms). RESULTS: Between April 2020 and August 2021, 27 869 SARS-CoV-2 PCR-positive episodes occurred in 27 692 participants (median 42 years), of whom 13 427 (48%) self-reported symptoms ("symptomatic PCR-positives"). The comparator comprised 3 806 692 test-negative visits (457 215 participants); 130 612 (3%) self-reported symptoms ("symptomatic PCR-negatives"). Symptom reporting in PCR-positives varied by age, sex, and ethnicity, and over time, reflecting changes in prevalence of viral variants, incidental changes (eg, seasonal pathogens (with sore throat increasing in PCR-positives and PCR-negatives from April 2021), schools reopening) and vaccination rollout. After May 2021 when Delta emerged, headache and fever substantially increased in PCR-positives, but not PCR-negatives. Sensitivity of symptom-based detection increased from 74% using "classic" symptoms, to 81% adding fatigue/weakness, and 90% including all 8 additional symptoms. However, this increased TPC from 4.6 to 5.3 to 8.7. CONCLUSIONS: Expanded symptom combinations may provide modest benefits for sensitivity of PCR-based case detection, but this will vary between settings and over time, and increases tests/case. Large-scale changes to targeted PCR-testing approaches require careful evaluation given substantial resource and infrastructure implications.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Fever/etiology , Humans , SARS-CoV-2/genetics , United Kingdom/epidemiology
7.
Lancet ; 398(10307): 1217-1229, 2021 10 02.
Article in English | MEDLINE | ID: mdl-34534517

ABSTRACT

BACKGROUND: School-based COVID-19 contacts in England have been asked to self-isolate at home, missing key educational opportunities. We trialled daily testing of contacts as an alternative to assess whether this resulted in similar control of transmission, while allowing more school attendance. METHODS: We did an open-label, cluster-randomised, controlled trial in secondary schools and further education colleges in England. Schools were randomly assigned (1:1) to self-isolation of school-based COVID-19 contacts for 10 days (control) or to voluntary daily lateral flow device (LFD) testing for 7 days with LFD-negative contacts remaining at school (intervention). Randomisation was stratified according to school type and size, presence of a sixth form, presence of residential students, and proportion of students eligible for free school meals. Group assignment was not masked during procedures or analysis. Coprimary outcomes in all students and staff were COVID-19-related school absence and symptomatic PCR-confirmed COVID-19, adjusted for community case rates, to estimate within-school transmission (non-inferiority margin <50% relative increase). Analyses were done on an intention-to-treat basis using quasi-Poisson regression, also estimating complier average causal effects (CACE). This trial is registered with the ISRCTN registry, ISRCTN18100261. FINDINGS: Between March 18 and May 4, 2021, 204 schools were taken through the consent process, during which three decided not to participate further. 201 schools were randomly assigned (control group n=99, intervention group n=102) in the 10-week study (April 19-May 10, 2021), which continued until the pre-appointed stop date (June 27, 2021). 76 control group schools and 86 intervention group schools actively participated; additional national data allowed most non-participating schools to be included in analysis of coprimary outcomes. 2432 (42·4%) of 5763 intervention group contacts participated in daily contact testing. There were 657 symptomatic PCR-confirmed infections during 7 782 537 days-at-risk (59·1 per 100 000 per week) in the control group and 740 during 8 379 749 days-at-risk (61·8 per 100 000 per week) in the intervention group (intention-to-treat adjusted incidence rate ratio [aIRR] 0·96 [95% CI 0·75-1·22]; p=0·72; CACE aIRR 0·86 [0·55-1·34]). Among students and staff, there were 59 422 (1·62%) COVID-19-related absences during 3 659 017 person-school-days in the control group and 51 541 (1·34%) during 3 845 208 person-school-days in the intervention group (intention-to-treat aIRR 0·80 [95% CI 0·54-1·19]; p=0·27; CACE aIRR 0·61 [0·30-1·23]). INTERPRETATION: Daily contact testing of school-based contacts was non-inferior to self-isolation for control of COVID-19 transmission, with similar rates of symptomatic infections among students and staff with both approaches. Infection rates in school-based contacts were low, with very few school contacts testing positive. Daily contact testing should be considered for implementation as a safe alternative to home isolation following school-based exposures. FUNDING: UK Government Department of Health and Social Care.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , Communicable Disease Control/methods , Quarantine/methods , Schools , Adolescent , Adult , Aged , COVID-19/prevention & control , COVID-19/transmission , COVID-19 Nucleic Acid Testing , COVID-19 Testing/methods , Child , Educational Personnel , England , Female , Humans , Male , Middle Aged , SARS-CoV-2 , Young Adult
9.
J Infect ; 88(6): 106164, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692359

ABSTRACT

OBJECTIVES: We evaluated Nanopore sequencing for influenza surveillance. METHODS: Influenza A and B PCR-positive samples from hospital patients in Oxfordshire, UK, and a UK-wide population survey from winter 2022-23 underwent Nanopore sequencing following targeted rt-PCR amplification. RESULTS: From 941 infections, successful sequencing was achieved in 292/388 (75 %) available Oxfordshire samples: 231 (79 %) A/H3N2, 53 (18 %) A/H1N1, and 8 (3 %) B/Victoria and in 53/113 (47 %) UK-wide samples. Sequencing was more successful at lower Ct values. Most same-sample replicate sequences had identical haemagglutinin segments (124/141, 88 %); 36/39 (92 %) Illumina vs. Nanopore comparisons were identical, and 3 (8 %) differed by 1 variant. Comparison of Oxfordshire and UK-wide sequences showed frequent inter-regional transmission. Infections were closely-related to 2022-23 vaccine strains. Only one sample had a neuraminidase inhibitor resistance mutation. 849/941 (90 %) Oxfordshire infections were community-acquired. 63/88 (72 %) potentially healthcare-associated cases shared a hospital ward with ≥ 1 known infectious case. 33 epidemiologically-plausible transmission links had sequencing data for both source and recipient: 8 were within ≤ 5 SNPs, of these, 5 (63 %) involved potential sources that were also hospital-acquired. CONCLUSIONS: Nanopore influenza sequencing was reproducible and antiviral resistance rare. Inter-regional transmission was common; most infections were genomically similar. Hospital-acquired infections are likely an important source of nosocomial transmission and should be prioritised for infection prevention and control.


Subject(s)
Influenza B virus , Influenza, Human , Nanopore Sequencing , Humans , Influenza, Human/epidemiology , Influenza, Human/virology , United Kingdom/epidemiology , Nanopore Sequencing/methods , Influenza B virus/genetics , Influenza B virus/isolation & purification , Influenza B virus/classification , Female , Male , Influenza A virus/genetics , Influenza A virus/classification , Influenza A virus/isolation & purification , Adult , Middle Aged , Adolescent , Aged , Young Adult , Child , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/classification
10.
Sci Rep ; 13(1): 8441, 2023 05 25.
Article in English | MEDLINE | ID: mdl-37231004

ABSTRACT

The physiological effects of vaccination against SARS-CoV-2 (COVID-19) are well documented, yet the behavioural effects not well known. Risk compensation suggests that gains in personal safety, as a result of vaccination, are offset by increases in risky behaviour, such as socialising, commuting and working outside the home. This is potentially important because transmission of SARS-CoV-2 is driven by contacts, which could be amplified by vaccine-related risk compensation. Here, we show that behaviours were overall unrelated to personal vaccination, but-adjusting for variation in mitigation policies-were responsive to the level of vaccination in the wider population: individuals in the UK were risk compensating when rates of vaccination were rising. This effect was observed across four nations of the UK, each of which varied policies autonomously.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19 Vaccines/adverse effects , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , United Kingdom/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL