Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters

Publication year range
1.
J Infect Dis ; 227(2): 179-182, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36416015

ABSTRACT

The endothelial protein C receptor (EPCR)-rs867186 G allele has been linked to high plasma levels of soluble EPCR (sEPCR) and controversially associated with either susceptibility or resistance to severe and cerebral malaria. In this study, quantitative enzyme-linked immunosorbent assay and sequencing were used to assess sEPCR levels and EPCR-rs867186 polymorphism in blood samples from Beninese children with different clinical presentations of malaria. Our findings show that sEPCR levels were higher at hospital admission than during convalescence and that EPCR-rs867186 G allele was associated with increased sEPCR plasma levels, malaria severity, and mortality rate (P < .001, P = .03, and P = .04, respectively), suggesting a role of sEPCR in the pathogenesis of severe malaria.


Subject(s)
Malaria, Cerebral , Receptors, Cell Surface , Humans , Child , Endothelial Protein C Receptor/genetics , Polymorphism, Genetic
2.
Malar J ; 15: 337, 2016 06 29.
Article in English | MEDLINE | ID: mdl-27357958

ABSTRACT

BACKGROUND: Plasmodium falciparum infection can lead to several clinical manifestations ranging from asymptomatic infections (AM) and uncomplicated malaria (UM) to potentially fatal severe malaria (SM), including cerebral malaria (CM). Factors implicated in the progression towards severe disease are not fully understood. METHODS: In the present study, an enzyme-linked immunosorbent assay (ELISA) method was used to investigate the plasma content of several biomarkers of the immune response, namely Neopterin, sCD163, suPAR, Pentraxin 3 (PTX3), sCD14, Fractalkine (CX3CL1), sTREM-1 and MIG (CXCL9), in patients with distinct clinical manifestations of malaria. The goal of this study was to determine the relative involvement of these inflammatory mediators in the pathogenesis of malaria and test their relevance as biomarkers of disease severity. RESULTS: ROC curve analysis show that children with AM were characterized by high levels of Fractalkine and sCD163 whereas children with UM were distinguishable by the presence of PTX3 in their plasma. Furthermore, principal component analysis indicated that the combination of Fractalkine, MIG, and Neopterin was the best predictor of AM condition, while suPAR, PTX3 and sTREM-1 combination was the best indicator of UM when compared to AM. The association of Neopterin, suPAR and Fractalkine was strongly predictive of SM or CM compared to UM. CONCLUSIONS: The results indicate that the simultaneous evaluation of these bioactive molecules as quantifiable blood parameters may be helpful to get a better insight into the clinical syndromes in children with malaria.


Subject(s)
Biological Factors/blood , Biomarkers/blood , Malaria/diagnosis , Malaria/pathology , Plasma/chemistry , Child , Child, Preschool , Enzyme-Linked Immunosorbent Assay , Female , Humans , Infant , Male
3.
BMC Immunol ; 16: 14, 2015 Mar 26.
Article in English | MEDLINE | ID: mdl-25887595

ABSTRACT

BACKGROUND: Malaria remains a major worldwide public health problem with ~207 million cases and ~627,000 deaths per year, mainly affecting children under five years of age in Africa. Recent efforts at elaborating a genetic architecture of malaria have focused on severe malaria, leading to the identification of two new genes and confirmation of previously known variants in HBB, ABO and G6PD, by exploring the whole human genome in genome-wide association (GWA) studies. Molecular pathways controlling phenotypes representing effectiveness of host immunity, notably parasitemia and IgG levels, are of particular interest given the current lack of an efficacious vaccine and the need for new treatment options. RESULTS: We propose a global causal framework of malaria phenotypes implicating progression from the initial infection with Plasmodium spp. to the development of the infection through liver and blood-stage multiplication cycles (parasitemia as a quantitative trait), to clinical malaria attack, and finally to severe malaria. Genetic polymorphism may control any of these stages, such that preceding stages act as mediators of subsequent stages. A biomarker of humoral immunity, IgG levels, can also be integrated into the framework, potentially mediating the impact of polymorphism by limiting parasitemia levels. Current knowledge of the genetic basis of parasitemia levels and IgG levels is reviewed through key examples including the hemoglobinopathies, showing that the protective effect of HBB variants on malaria clinical phenotypes may partially be mediated through parasitemia and cytophilic IgG levels. Another example is the IgG receptor FcγRIIa, encoded by FCGR2A, such that H131 homozygotes displayed higher IgG2 levels and were protective against high parasitemia and onset of malaria symptoms as shown in a causal diagram. CONCLUSIONS: We thus underline the value of parasitemia and IgG levels as phenotypes in the understanding of the human genetic architecture of malaria, and the need for applying GWA approaches to these phenotypes.


Subject(s)
Malaria Vaccines , Malaria, Falciparum/immunology , Malaria/immunology , ABO Blood-Group System/genetics , Animals , Child, Preschool , Genome-Wide Association Study , Glucosephosphate Dehydrogenase/genetics , Humans , Immunity, Humoral/genetics , Malaria/genetics , Parasitemia/genetics
4.
EClinicalMedicine ; 67: 102379, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38188691

ABSTRACT

Background: Despite significant progress in malaria control over the past twenty years, malaria remains a leading cause of child morbidity and mortality in Tropical Africa. As most patients do not consult any health facility much uncertainty persists about the true burden of the disease and the range of individual differences in susceptibility to malaria. Methods: Over a 25-years period, from 1990 to 2015, the inhabitants of Dielmo village, Senegal, an area of intense malaria transmission, have been monitored daily for their presence in the village and the occurrence of diseases. In case of fever thick blood films were systematically examined through microscopy for malaria parasites and patients received prompt diagnosis and treatment. Findings: We analysed data collected in 111 children and young adults monitored for at least 10 years (mean 17.3 years, maximum 25 years) enrolled either at birth (95 persons) or during the two first years of life. A total of 11,599 episodes of fever were documented, including 5268 malaria attacks. The maximum number of malaria attacks in a single person was 112. Three other persons suffered one hundred or more malaria attacks during follow-up. The minimum number of malaria attacks in a single person was 11. The mean numbers of malaria attacks in children reaching their 4th, 7th, and 10th birthdays were 23.0, 37.7, and 43.6 attacks since birth, respectively. Sixteen children (14.4%) suffered ten or more malaria attacks each year at ages 1-3 years, and six children (5.4%) each year at age 4-6 years. Interpretation: Long-term close monitoring shows that in highly endemic areas the malaria burden is higher than expected. Susceptibility to the disease may vary up to 10-fold, and for most children childhood is an endless history of malaria fever episodes. No other parasitic, bacterial or viral infection in human populations has such an impact on health. Funding: The Pasteur Institutes of Dakar and Paris, the Institut de Recherche pour le Développement, and the French Ministry of Cooperation provided funding.

5.
Diagnostics (Basel) ; 13(3)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36766633

ABSTRACT

Among the barriers to accessing adequate treatment and high-level monitoring for malaria febrile patients is the lack of effective prognostic markers. Neopterin, which is a marker of monocyte/macrophage activation, was found have increased during severe malaria. In this study, we used quantitative ELISA in order to assess the levels of plasma soluble neopterin in 151 patients from a cohort of Beninese children with severe malaria. We evaluated the prognostic accuracy of this molecule in order to predict the outcome of the disease. Our results show that neopterin levels were not significantly different between patients with different forms of severe malaria, including severe non-cerebral malaria (SNCM) and cerebral malaria (CM). However, the levels of this molecule were found to be higher in patients with severe malarial anemia (SMA) among both CM and SNCM cases (p-value = 0.02). Additionally, the levels of this molecule were found to be higher in patients who died from these pathologies compared to those who survived among the two clinical groups (p-value < 0.0001) and within the same group (p-value < 0.0001 for the CM group, p-value = 0.0046 for the SNCM group). The AUC-ROC for fatality among all the severe cases was 0.77 with a 95%CI of (0.69-0.85). These results suggest that plasma neopterin levels constitute a potential biomarker for predicting fatality among severe falciparum malaria patients.

6.
Diagnostics (Basel) ; 12(2)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35204613

ABSTRACT

Malaria-related deaths could be prevented if powerful diagnostic and reliable prognostic biomarkers were available to allow rapid prediction of the clinical severity allowing adequate treatment. Using quantitative ELISA, we assessed the plasma concentrations of Procalcitonin, Pentraxine-3, Ang-2, sTie-2, suPAR, sEPCR and sICAM-1 in a cohort of Beninese children with malaria to investigate their potential association with clinical manifestations of malaria. We found that all molecules showed higher levels in children with severe or cerebral malaria compared to those with uncomplicated malaria (p-value < 0.005). Plasma concentrations of Pentraxine-3, Procalcitonin, Ang-2 and the soluble receptors were significantly higher in children with coma as defined by a Blantyre Coma Score < 3 (p < 0.001 for Pentraxine-3, suPAR, and sTie-2, p = 0.004 for PCT, p = 0.005 for sICAM-1, p = 0.04 for Ang-2). Moreover, except for the PCT level, the concentrations of Pentraxine-3, suPAR, sEPCR, sICAM-1, sTie-2 and Ang-2 were higher among children who died from severe malaria compared to those who survived (p = 0.037, p = 0.035, p < 0.0001, p= 0.0008, p = 0.01 and p = 0.02, respectively). These findings indicate the ability of these molecules to accurately discriminate among clinical manifestations of malaria, thus, they might be potentially useful for the early prognostic of severe and fatal malaria, and to improve management of severe cases.

7.
PLoS Pathog ; 5(10): e1000631, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19851453

ABSTRACT

Monocyte (MO) subpopulations display distinct phenotypes and functions which can drastically change during inflammatory states. We hypothesized that discrete MO subpopulations are induced during malaria infection and associated with anti-parasitic activity. We characterized the phenotype of blood MO from healthy malaria-exposed individuals and that of patients with acute uncomplicated malaria by flow cytometry. In addition, MO defense function was evaluated by an in vitro antibody dependent cellular inhibition (ADCI) assay. At the time of admission, the percentages and absolute numbers of CD16+ MO, and CCR2+CX3CR1+ MO, were high in a majority of patients. Remarkably, expression of CCR2 and CX3CR1 on the CD14(high (hi)) MO subset defined two subgroups of patients that also differed significantly in their functional ability to limit the parasite growth, through the ADCI mechanism. In the group of patients with the highest percentages and absolute numbers of CD14(hi)CCR2+CX3CR1+ MO and the highest mean levels of ADCI activity, blood parasitemias were lower (0.14+/-0.34%) than in the second group (1.30+/-3.34%; p = 0.0053). Data showed that, during a malaria attack, some patients' MO can exert a strong ADCI activity. These results bring new insight into the complex relationships between the phenotype and the functional activity of blood MO from patients and healthy malaria-exposed individuals and suggest discrete MO subpopulations are induced during malaria infection and are associated with anti-parasitic activity.


Subject(s)
Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Monocytes/immunology , Plasmodium falciparum/immunology , Acute Disease , Adolescent , Adult , Animals , CX3C Chemokine Receptor 1 , Case-Control Studies , Cells, Cultured , Cytokines/blood , Cytokines/metabolism , Humans , Inflammation/blood , Inflammation/immunology , Inflammation/parasitology , Interferon-gamma/metabolism , Lipopolysaccharide Receptors/metabolism , Malaria, Falciparum/blood , Malaria, Falciparum/complications , Membrane Proteins/metabolism , Monocytes/metabolism , Monocytes/parasitology , Phenotype , Receptors, CCR2/metabolism , Receptors, Chemokine/metabolism , Tumor Necrosis Factor-alpha/metabolism , Young Adult
8.
Sci Adv ; 7(13)2021 03.
Article in English | MEDLINE | ID: mdl-33762334

ABSTRACT

Circulating levels of the adipokine leptin are linked to neuropathology in experimental cerebral malaria (ECM), but its source and regulation mechanism remain unknown. Here, we show that sequestration of infected red blood cells (iRBCs) in white adipose tissue (WAT) microvasculature increased local vascular permeability and leptin production. Mice infected with parasite strains that fail to sequester in WAT displayed reduced leptin production and protection from ECM. WAT sequestration and leptin induction were lost in CD36KO mice; however, ECM susceptibility revealed sexual dimorphism. Adipocyte leptin was regulated by the mechanistic target of rapamycin complex 1 (mTORC1) and blocked by rapamycin. In humans, although Plasmodium falciparum infection did not increase circulating leptin levels, iRBC sequestration, tissue leptin production, and mTORC1 activity were positively correlated with CM in pediatric postmortem WAT. These data identify WAT sequestration as a trigger for leptin production with potential implications for pathogenesis of malaria infection, prognosis, and treatment.


Subject(s)
Malaria, Cerebral , Parasites , Adipose Tissue/pathology , Animals , Child , Humans , Leptin , Malaria, Cerebral/parasitology , Malaria, Cerebral/pathology , Mechanistic Target of Rapamycin Complex 1 , Mice
9.
Infect Immun ; 77(3): 1189-96, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19139199

ABSTRACT

Liver-stage antigen 3 (LSA-3) is a new vaccine candidate that can induce protection against Plasmodium falciparum sporozoite challenge. Using a series of long synthetic peptides (LSP) encompassing most of the 210-kDa LSA-3 protein, a study of the antigenicity of this protein was carried out in 203 inhabitants from the villages of Dielmo (n = 143) and Ndiop (n = 60) in Senegal (the level of malaria transmission differs in these two villages). Lymphocyte responses to each individual LSA-3 peptide were recorded, some at high prevalences (up to 43%). Antibodies were also detected to each of the 20 peptides, many at high prevalence (up to 84% of responders), and were directed to both nonrepeat and repeat regions. Immune responses to LSA-3 were detectable even in individuals of less than 5 years of age and increased with age and hence exposure to malaria, although they were not directly related to the level of malaria transmission. Thus, several valuable T- and B-cell epitopes were characterized all along the LSA-3 protein, supporting the antigenicity of this P. falciparum vaccine candidate. Finally, antibodies specific for peptide LSP10 located in a nonrepeat region of LSA-3 were found significantly associated with a lower risk of malaria attack over 1 year of daily clinical follow-up in children between the ages of 7 and 15 years, but not in older individuals.


Subject(s)
Antigens, Protozoan/immunology , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/immunology , Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Child , Child, Preschool , Humans , Middle Aged , Peptides/immunology , Plasmodium falciparum/immunology , Senegal
10.
Vaccine ; 37(36): 5332-5340, 2019 08 23.
Article in English | MEDLINE | ID: mdl-31358409

ABSTRACT

To overcome the extensive polymorphism found in human Plasmodium antigens and to avoid the lengthy characterization of their 3 dimensional structure and subsequent production of the native proteins we have been concentrated in large unstructured, non-or low-polymorphic fragments present in the blood stage of P. falciparum. Three fragments derived from the 2 family-specific and constant regions of merozoite surface protein (MSP2) and PFF0165c protein were previously selected for evaluation as potential single vaccine candidates. In order to increase and optimize their potential efficacy against P. falciparum infection the 3 antigens were combined in a single DNA recombinant product (FusN) and compared its antigenicity with that of single antigens in sera of volunteers living in endemic countries. Immunogenicity of the FusN was then compared with that of the mixture of 3 antigens in 3 strains of mice. Antigen specific, affinity purified human antibodies were then tested in antibody dependent cellular inhibition and merozoite opsonization assays. In addition, the antigen specific antibody response and its association with protection from malaria infection were determined. The data collected indicate that the recombinant product is an equal or better antigen /immunogen than fragments used either alone or as a mixture for vaccination in combination with adjuvant. In addition, antibody response to FusN shows a stronger association with protection than single fragments. The use of a single construct as vaccine would drastically reduce the cost of manufacturing and development of the GMP product.


Subject(s)
Antigens, Protozoan/metabolism , Merozoites/metabolism , Protozoan Proteins/immunology , Protozoan Proteins/metabolism , Adolescent , Adult , Antibodies, Protozoan/immunology , Antibodies, Protozoan/metabolism , Antigens, Protozoan/immunology , Child , Child, Preschool , Female , Humans , Infant , Malaria Vaccines/immunology , Male , Merozoites/immunology , Young Adult
11.
PLoS Med ; 4(11): e320, 2007 Nov 13.
Article in English | MEDLINE | ID: mdl-18001147

ABSTRACT

BACKGROUND: Surrogate markers of protective immunity to malaria in humans are needed to rationalize malaria vaccine discovery and development. In an effort to identify such markers, and thereby provide a clue to the complex equation malaria vaccine development is facing, we investigated the relationship between protection acquired through exposure in the field with naturally occurring immune responses (i.e., induced by the parasite) to molecules that are considered as valuable vaccine candidates. METHODS AND FINDINGS: We analyzed, under comparative conditions, the antibody responses of each of six isotypes to five leading malaria vaccine candidates in relation to protection acquired by exposure to natural challenges in 217 of the 247 inhabitants of the African village of Dielmo, Senegal (96 children and 121 older adolescents and adults). The status of susceptibility or resistance to malaria was determined by active case detection performed daily by medical doctors over 6 y from a unique follow-up study of this village. Of the 30 immune responses measured, only one, antibodies of the IgG3 isotype directed to merozoite surface protein 3 (MSP3), was strongly associated with clinical protection against malaria in all age groups, i.e., independently of age. This immunological parameter had a higher statistical significance than the sickle cell trait, the strongest factor of protection known against Plasmodium falciparum. A single determination of antibody was significantly associated with the clinical outcome over six consecutive years in children submitted to massive natural parasite challenges by mosquitoes (over three parasite inoculations per week). Finally, the target epitopes of these antibodies were found to be fully conserved. CONCLUSIONS: Since anti-MSP3 IgG3 antibodies can naturally develop along with protection against P. falciparum infection in young children, our results provide the encouraging indication that these antibodies should be possible to elicit by vaccination early in life. Since these antibodies have been found to achieve parasite killing under in vitro and in vivo conditions, and since they can be readily elicited by immunisation in naïve volunteers, our immunoepidemiological findings support the further development of MSP3-based vaccine formulations.


Subject(s)
Antigens, Protozoan/immunology , Immunoglobulin G/blood , Malaria, Falciparum/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Adolescent , Adult , Animals , Antigens, Protozoan/genetics , Child , Child, Preschool , Epitopes/genetics , Epitopes/immunology , Female , Humans , Immunity, Innate/immunology , Immunoglobulin G/immunology , Infant , Infant, Newborn , Malaria Vaccines/genetics , Malaria Vaccines/immunology , Malaria, Falciparum/epidemiology , Male , Merozoites/immunology , Molecular Sequence Data , Plasmodium falciparum/genetics , Plasmodium falciparum/growth & development , Protozoan Proteins/genetics , Senegal/epidemiology , Sequence Analysis, DNA , Seroepidemiologic Studies
12.
Sci Rep ; 7: 42243, 2017 02 09.
Article in English | MEDLINE | ID: mdl-28181563

ABSTRACT

According to the WHO, and despite reduction in mortality rates, there were an estimated 438 000 malaria deaths in 2015. Therefore new antimalarials capable of limiting organ damage are still required. We show that systemic and lung adenovirus (Ad)-mediated over-expression of trappin-2 (T-2) an antibacterial molecule with anti-inflammatory activity, increased mice survival following infection with the cerebral malaria-inducing Plasmodium berghei ANKA (PbANKA) strain. Systemically, T-2 reduced PbANKA sequestration in spleen, lung, liver and brain, associated with a decrease in pro-inflammatory cytokines (eg TNF-α in spleen and lung) and an increase in IL-10 production in the lung. Similarly, local lung instillation of Ad-T-2 resulted in a reduced organ parasite sequestration and a shift towards an anti-inflammatory/repair response, potentially implicating monocytes in the protective phenotype. Relatedly, we demonstrated in vitro that human monocytes incubated with Plasmodium falciparum-infected red blood cells (Pf-iRBCs) and IgGs from hyper-immune African human sera produced T-2 and that the latter colocalized with merozoites and inhibited Pf multiplication. This array of data argues for the first time for the potential therapeutic usefulness of this host defense peptide in human malaria patients, with the aim to limit acute lung injury and respiratory distress syndrom often observed during malaria episodes.


Subject(s)
Anti-Infective Agents/therapeutic use , Antiparasitic Agents/therapeutic use , Elafin/therapeutic use , Malaria, Cerebral/drug therapy , Malaria, Cerebral/parasitology , Plasmodium berghei/drug effects , Administration, Intranasal , Animals , Anti-Infective Agents/pharmacology , Antiparasitic Agents/pharmacology , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Elafin/pharmacology , Erythrocytes/parasitology , Female , Humans , Malaria, Cerebral/blood , Merozoites/metabolism , Mice, Inbred C57BL , Monocytes/metabolism , Parasitemia/drug therapy , Parasitemia/parasitology , Parasitemia/pathology , Plasmodium falciparum/growth & development , RNA, Messenger/genetics , RNA, Messenger/metabolism , STAT3 Transcription Factor/metabolism
13.
Article in English | MEDLINE | ID: mdl-26816498

ABSTRACT

The authors report a series of events including the scientific interest for poisonous dendrobates of French Guiana, the human confrontation with the immensity of the evergreen rainforest, the fragility of the best-prepared individuals to a rough life, and the unique and very special manifestation of a solid friendship between two experts and enthusiasts of outdoor life. In the evergreen forest of South America, as in many other scientific field expeditions, everything may suddenly go wrong, and nothing can prepare researchers to accidents that may occur in a succession of uncontrollable errors once the first mistake is done. This is what happened during an expedition in search for dendrobates by an experienced forest guide and naturalist. The authors decided to report the story, considering that it deserved to be brought to the attention of those interested in venomous animals and toxins, in order to illustrate the potential danger of dealing with these organisms.

14.
PLoS Med ; 2(11): e344, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16262450

ABSTRACT

BACKGROUND: Plasmodium falciparum merozoite surface protein 3 is a malaria vaccine candidate that was identified, characterised, and developed based on a unique immuno-clinical approach. The vaccine construct was derived from regions fully conserved among various strains and containing B cell epitopes targeted by human antibodies (from malaria-immune adults) that are able to mediate a monocyte-dependent parasite killing effect. The corresponding long synthetic peptide was administered to 36 volunteers, with either alum or Montanide ISA720 as adjuvant. METHODS AND FINDINGS: Both formulations induced cellular and humoral immune responses. With alum, the responses lasted up to 12 mo. The vaccine-induced antibodies were predominantly of cytophilic classes, i.e., able to cooperate with effector cells. In vitro, the antibodies induced an inhibition of the P. falciparum erythrocytic growth in a monocyte-dependent manner, which was in most instances as high as or greater than that induced by natural antibodies from immune African adults. In vivo transfer of the volunteers' sera into P. falciparum-infected humanized SCID mice profoundly reduced or abrogated parasitaemia. These inhibitory effects were related to the antibody reactivity with the parasite native protein, which was seen in 60% of the volunteers, and remained in samples taken 12 mo postimmunisation. CONCLUSION: This is the first malaria vaccine clinical trial to clearly demonstrate antiparasitic activity by vaccine-induced antibodies by both in vitro and in vivo methods. The results, showing the induction of long-lasting antibodies directed to a fully conserved polypeptide, also challenge current concepts about malaria vaccines, such as unavoidable polymorphism, low antigenicity, and poor induction of immune memory.


Subject(s)
Antibody Formation , Malaria Vaccines/immunology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/immunology , Adjuvants, Immunologic/administration & dosage , Alum Compounds/administration & dosage , Animals , B-Lymphocytes/immunology , Cell Proliferation , Humans , Immunologic Memory , Malaria, Falciparum/immunology , Mannitol/administration & dosage , Mannitol/analogs & derivatives , Oleic Acids/administration & dosage , T-Lymphocytes/immunology
15.
Acta Trop ; 130: 80-7, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24200839

ABSTRACT

Acquisition of antibodies against blood stage antigens is crucial in malaria immunity and the Plasmodium falciparum antigen Pf332, which is present in close association with the infected red blood cell membrane, is one such antigen. In this study, the antibody response to a Duffy binding like fragment of Pf332, termed Pf332-DBL was investigated in sera from naturally exposed individuals living in Dielmo village, Senegal, with regard to immunoglobulin classes (IgG, IgM, IgE) and IgG subclasses (IgG1-4). While the levels of IgM, IgG, IgG1 and IgG2 only displayed a moderate trend to increase with age, Pf332-DBL specific IgG3 levels increased significantly in the older villagers. In multivariate analysis, when controlling for confounding factors, and in a linear model with a Poisson distribution, anti-Pf332-DBL IgG3 as well as the ratio of cytophilic to non cytophilic anti-Pf332-DBL antibodies were found significantly associated with a reduced risk of malaria attack. This association was also present when the IgG3:IgG1 ratio was tested. Finally, two subgroups of villagers with the same mean age, were delineated by IgG3 concentrations either lower or higher than the median value. A total of 45.2% of the individuals with low anti-Pf332-DBL-IgG3 levels but only 21.4% of the villagers in the group with high levels of such antibodies had a clinical malaria attack during a period of 3 years of continuous follow-up after the blood sampling. In conclusion, Pf332-DBL induces naturally the acquisition of antibodies, and Pf332-DBL-specific IgG3 appears to be associated with protection against malaria in this endemic setting.


Subject(s)
Antibodies, Protozoan/blood , Antigens, Protozoan/immunology , Immunoglobulin G/blood , Malaria, Falciparum/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Receptors, Cell Surface/immunology , Adolescent , Adult , Aged , Child , Child, Preschool , Enzyme-Linked Immunosorbent Assay , Female , Humans , Malaria, Falciparum/prevention & control , Male , Middle Aged , Senegal , Young Adult
16.
Lancet Infect Dis ; 14(6): 476-88, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24813159

ABSTRACT

BACKGROUND: A better understanding of the effect of malaria control interventions on vector and parasite populations, acquired immunity, and burden of the disease is needed to guide strategies to eliminate malaria from highly endemic areas. We monitored and analysed the changes in malaria epidemiology in a village community in Senegal, west Africa, over 22 years. METHODS: Between 1990 and 2012, we did a prospective longitudinal study of the inhabitants of Dielmo, Senegal, to identify all episodes of fever and investigate the relation between malaria host, vector, and parasite. Our study included daily medical surveillance with systematic parasite detection in individuals with fever. We measured parasite prevalence four times a year with cross-sectional surveys. We monitored malaria transmission monthly with night collection of mosquitoes. Malaria treatment changed over the years, from quinine (1990-94), to chloroquine (1995-2003), amodiaquine plus sulfadoxine-pyrimethamine (2003-06), and finally artesunate plus amodiaquine (2006-12). Insecticide-treated nets (ITNs) were introduced in 2008. FINDINGS: We monitored 776 villagers aged 0-101 years for 2 378 150 person-days of follow-up. Entomological inoculation rate ranged from 142·5 infected bites per person per year in 1990 to 482·6 in 2000, and 7·6 in 2012. Parasite prevalence in children declined from 87% in 1990 to 0·3 % in 2012. In adults, it declined from 58% to 0·3%. We recorded 23 546 fever episodes during the study, including 8243 clinical attacks caused by Plasmodium falciparum, 290 by Plasmodium malariae, and 219 by Plasmodium ovale. Three deaths were directly attributable to malaria, and two to severe adverse events of antimalarial drugs. The incidence of malaria attacks ranged from 1·50 attacks per person-year in 1990 to 2·63 in 2000, and to only 0·046 in 2012. The greatest changes were associated with the replacement of chloroquine and the introduction of ITNs. INTERPRETATION: Malaria control policies combining prompt treatment of clinical attacks and deployment of ITNs can nearly eliminate parasite carriage and greatly reduce the burden of malaria in populations exposed to intense perennial malaria transmission. The choice of drugs seems crucial. Rapid decline of clinical immunity allows rapid detection and treatment of novel infections and thus has a key role in sustaining effectiveness of combining artemisinin-based combination therapy and ITNs despite increasing pyrethroid resistance. FUNDING: Pasteur Institutes of Dakar and Paris, Institut de Recherche pour le Développement, and French Ministry of Cooperation.


Subject(s)
Anopheles/parasitology , Insect Vectors/parasitology , Malaria/epidemiology , Plasmodium falciparum/drug effects , Plasmodium malariae/drug effects , Plasmodium ovale/drug effects , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Antimalarials/administration & dosage , Artemisinins/administration & dosage , Child , Child, Preschool , Cross-Sectional Studies , Drug Therapy, Combination , Humans , Infant , Infant, Newborn , Longitudinal Studies , Malaria/drug therapy , Malaria/prevention & control , Middle Aged , Prevalence , Prospective Studies , Rural Population , Senegal/epidemiology , Young Adult
17.
PLoS One ; 8(2): e55666, 2013.
Article in English | MEDLINE | ID: mdl-23405191

ABSTRACT

There exists great disparity in the number of clinical P. falciparum episodes among children of the same age and living in similar conditions. The epidemiological determinants of such disparity are unclear. We used a data-mining approach to explore a nineteen-year longitudinal malaria cohort study dataset from Senegal and identify variables associated with increased risk of malaria episodes. These were then verified using classical statistics and replicated in a second cohort. In addition to age, we identified a novel high-risk group of children in whom the history of P. falciparum clinical episodes greatly increased risk of further episodes. Age and a high number of previous falciparum clinical episodes not only play major roles in explaining the risk of P. falciparum episodes but also are risk factors for different groups of people. Combined, they explain the majority of falciparum clinical attacks. Contrary to what is widely believed, clinical immunity to P. falciparum does not de facto occur following many P. falciparum clinical episodes. There exist a sub-group of children who suffer repeated clinical episodes. In addition to posing an important challenge for population stratification during clinical trials, this sub-group disproportionally contributes to the disease burden and may necessitate specific prevention and control measures.


Subject(s)
Malaria, Falciparum/etiology , Plasmodium falciparum/pathogenicity , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Child , Child, Preschool , Environment , Female , Humans , Infant , Infant, Newborn , Longitudinal Studies , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Male , Middle Aged , Plasmodium falciparum/isolation & purification , Risk Factors , Senegal/epidemiology , Young Adult
18.
J. venom. anim. toxins incl. trop. dis ; J. venom. anim. toxins incl. trop. dis;22: 3, 2016. graf
Article in English | LILACS | ID: lil-773439

ABSTRACT

Abstract The authors report a series of events including the scientific interest for poisonous dendrobates of French Guiana, the human confrontation with the immensity of the evergreen rainforest, the fragility of the best-prepared individuals to a rough life, and the unique and very special manifestation of a solid friendship between two experts and enthusiasts of outdoor life. In the evergreen forest of South America, as in many other scientific field expeditions, everything may suddenly go wrong, and nothing can prepare researchers to accidents that may occur in a succession of uncontrollable errors once the first mistake is done. This is what happened during an expedition in search for dendrobates by an experienced forest guide and naturalist. The authors decided to report the story, considering that it deserved to be brought to the attention of those interested in venomous animals and toxins, in order to illustrate the potential danger of dealing with these organisms.


Subject(s)
Animals , Amphibian Venoms/toxicity , Friends , Anura , Environmental Exposure , Forests , French Guiana
19.
J. venom. anim. toxins incl. trop. dis ; J. venom. anim. toxins incl. trop. dis;22: [1-5], 2016. ilus
Article in English | LILACS, VETINDEX | ID: biblio-1484665

ABSTRACT

The authors report a series of events including the scientific interest for poisonous dendrobates of French Guiana, the human confrontation with the immensity of the evergreen rainforest, the fragility of the best-prepared individuals to a rough life, and the unique and very special manifestation of a solid friendship between two experts and enthusiasts of outdoor life. In the evergreen forest of South America, as in many other scientific field expeditions, everything may suddenly go wrong, and nothing can prepare researchers to accidents that may occur in a succession of uncontrollable errors once the first mistake is done. This is what happened during an expedition in search for dendrobates by an experienced forest guide and naturalist. The authors decided to report the story, considering that it deserved to be brought to the attention of those interested in venomous animals and toxins, in order to illustrate the potential danger of dealing with these organisms.


Subject(s)
Animals , Anura/abnormalities , Anura/growth & development , Toxicity/analysis
20.
PLoS One ; 6(12): e28165, 2011.
Article in English | MEDLINE | ID: mdl-22145028

ABSTRACT

BACKGROUND: MSP3 has been shown to induce protection against malaria in African children. The characterization of a family of Plasmodium falciparum merozoite surface protein 3 (MSP3) antigens sharing a similar structural organization, simultaneously expressed on the merozoite surface and targeted by a cross-reactive network of protective antibodies, is intriguing and offers new perspectives for the development of subunit vaccines against malaria. METHODS: Eight recombinant polyproteins containing carefully selected regions of this family covalently linked in different combinations were all efficiently produced in Escherichia coli. The polyproteins consisted of one monovalent, one bivalent, one trivalent, two tetravalents, one hexavalent construct, and two tetravalents incorporating coiled-coil repeats regions from LSA3 and p27 vaccine candidates. RESULTS: All eight polyproteins induced a strong and homogeneous antibody response in mice of three distinct genotypes, with a dominance of cytophilic IgG subclasses, lasting up to six months after the last immunization. Vaccine-induced antibodies exerted a strong monocyte-mediated in vitro inhibition of P. falciparum growth. Naturally acquired antibodies from individuals living in an endemic area of Senegal recognized the polyproteins with a reactivity mainly constituted of cytophilic IgG subclasses. CONCLUSIONS: Combination of genetically conserved and antigenically related MSP3 proteins provides promising subunit vaccine constructs, with improved features as compared to the first generation construct employed in clinical trials (MSP3-LSP). These multivalent MSP3 vaccine constructs expand the epitope display of MSP3 family proteins, and lead to the efficient induction of a wider range of antibody subclasses, even in genetically different mice. These findings are promising for future immunization of genetically diverse human populations.


Subject(s)
Antibodies, Protozoan/immunology , Antibody Formation/immunology , Antigens, Protozoan/immunology , Immunoglobulin G/immunology , Malaria Vaccines/immunology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Adolescent , Animals , Antibodies, Protozoan/metabolism , Antigens, Protozoan/genetics , Blotting, Western , Child , Child, Preschool , Cross Reactions , Drug Evaluation, Preclinical , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Fluorescent Antibody Technique , Humans , Immunization , Infant , Malaria Vaccines/genetics , Malaria Vaccines/therapeutic use , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Plasmodium falciparum/genetics , Protozoan Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL