ABSTRACT
Recurrent infections are a hallmark of STAT3 dominant-negative hyper-IgE syndrome (STAT3 HIES), a rare immunodeficiency syndrome previously known as Jobs syndrome, along with elevated IgE levels and impaired neutrophil function. We have been developing nanoparticles with neutrophil trophism that home to the sites of infection via these first-responder leukocytes, named neutrophil-avid nanocarriers (NANs). Here, we demonstrate that human neutrophils can phagocytose nanogels (NGs), a type of NAN, with enhanced uptake after particle serum opsonization, comparing neutrophils from healthy individuals to those with STAT3 HIES, where both groups exhibit NG uptake; however, the patient group showed reduced phagocytosis efficiency with serum-opsonized NANs. Proteomic analysis of NG protein corona revealed complement components, particularly C3, as predominant in both groups. Difference between groups includes STAT3 HIES samples with higher neutrophil protein and lower acute-phase protein expression. The study suggests that despite neutrophil dysfunction in STAT3 HIES, NANs have potential for directed delivery of cargo therapeutics to improve neutrophil infection clearance.
Subject(s)
Job Syndrome , Nanoparticles , Neutrophils , Phagocytosis , STAT3 Transcription Factor , Humans , Neutrophils/metabolism , Neutrophils/immunology , Job Syndrome/metabolism , STAT3 Transcription Factor/metabolism , Female , Male , Adult , Proteomics/methods , Immunoglobulin E/immunology , Immunoglobulin E/metabolism , Complement C3/metabolismABSTRACT
Despite the power of antibiotics, bacterial infections remain a major killer, due to antibiotic resistance and hosts with dysregulated immune systems. We and others have been developing drug-loaded nanoparticles that home to the sites of infection and inflammation via engineered tropism for neutrophils, the first-responder leukocytes in bacterial infections. Here, we examined how a member of a broad class of neutrophil-tropic nanoparticles affects neutrophil behavior, specifically questioning whether the nanoparticles attenuate an important function, bacterial phagocytosis. We found these nanoparticles actually augment phagocytosis of non-opsonized bacteria, increasing it by â¼50%. We showed this augmentation of phagocytosis is likely co-opting an evolved response, as opsonized bacteria also augment phagocytosis of non-opsonized bacteria. Enhancing phagocytosis of non-opsonized bacteria may prove particularly beneficial in two clinical situations: in hypocomplementemic patients (meaning low levels of the main bacterial opsonins, complement proteins, seen in conditions such as neonatal sepsis and liver failure) or for bacteria that are largely resistant to complement opsonization (e.g., Neisseria). Additionally, we observe that; 1) prior treatment with bacteria augments neutrophil uptake of neutrophil-tropic nanoparticles; 2) neutrophil-tropic nanoparticles colocalize with bacteria inside of neutrophils. The observation that neutrophil-tropic nanoparticles enhance neutrophil phagocytosis and localize with bacteria inside neutrophils suggests that these nanoparticles will serve as useful carriers for drugs to ameliorate bacterial diseases.
ABSTRACT
Complement opsonization is among the biggest challenges facing nanomedicine. Nearly instantly after injection into blood, nanoparticles are opsonized by the complement protein C3, leading to clearance by phagocytes, fouling of targeting moieties, and release of anaphylatoxins. While surface polymers such as poly(ethylene glycol) (PEG) partially decrease complement opsonization, most nanoparticles still suffer from extensive complement opsonization, especially when linked to targeting moieties. To ameliorate the deleterious effects of complement, two of mammals' natural regulators of complement activation (RCAs), Factors H and I, are here conjugated to the surface of nanoparticles. In vitro, Factor H or I conjugation to PEG-coated nanoparticles decrease their C3 opsonization, and markedly reduce nanoparticle uptake by phagocytes. In an in vivo mouse model of sepsis-induced lung injury, Factor I conjugation abrogates nanoparticle uptake by intravascular phagocytes in the lungs, allowing the blood concentration of the nanoparticle to remain elevated much longer. For nanoparticles targeted to the lung's endothelium by conjugation to anti-ICAM antibodies, Factor I conjugation shifts the cell-type distribution away from phagocytes and toward endothelial cells. Finally, Factor I conjugation abrogates the severe anaphylactoid responses common to many nanoparticles, preventing systemic capillary leak and preserving blood flow to visceral organs and the brain. Thus, conjugation of RCAs, like Factor I, to nanoparticles is likely to help in nanomedicine's long battle against complement, improving several key parameters critical for clinical success.
Subject(s)
Complement C3 , Nanomedicine , Nanoparticles , Animals , Complement Activation , Complement C3/metabolism , Complement C3/pharmacology , Complement Factor H/therapeutic use , Endothelial Cells/metabolism , Fibrinogen/therapeutic use , Mammals/metabolism , Mice , Nanomedicine/methods , Nanoparticles/adverse effects , Nanoparticles/therapeutic use , OpsonizationABSTRACT
This study shows that the supramolecular arrangement of proteins in nanoparticle structures predicts nanoparticle accumulation in neutrophils in acute lung inflammation (ALI). We observed homing to inflamed lungs for a variety of nanoparticles with agglutinated protein (NAPs), defined by arrangement of protein in or on the nanoparticles via hydrophobic interactions, crosslinking and electrostatic interactions. Nanoparticles with symmetric protein arrangement (for example, viral capsids) had no selectivity for inflamed lungs. Flow cytometry and immunohistochemistry showed NAPs have tropism for pulmonary neutrophils. Protein-conjugated liposomes were engineered to recapitulate NAP tropism for pulmonary neutrophils. NAP uptake in neutrophils was shown to depend on complement opsonization. We demonstrate diagnostic imaging of ALI with NAPs; show NAP tropism for inflamed human donor lungs; and show that NAPs can remediate pulmonary oedema in ALI. This work demonstrates that structure-dependent tropism for neutrophils drives NAPs to inflamed lungs and shows NAPs can detect and treat ALI.
Subject(s)
Inflammation/pathology , Lung/pathology , Nanoparticles/chemistry , Neutrophils/pathology , Proteins/chemistry , Acute Disease , Agglutination/drug effects , Animals , Antibodies/pharmacology , Cross-Linking Reagents/chemistry , Dextrans/chemistry , Humans , Lipopolysaccharides , Liposomes , Lung/diagnostic imaging , Male , Mice, Inbred C57BL , Muramidase/metabolism , Neutrophils/drug effects , Opsonin Proteins/metabolism , Static Electricity , Tissue Distribution/drug effects , Tomography, Emission-Computed, Single-Photon , Tomography, X-Ray ComputedABSTRACT
The ubiquity and potency of antibiotics may give the false impression that infection is a solved problem. Unfortunately, even bacterial infections, the target of antibiotics, remain a major cause of illness and death. Several major unmet needs persist: biofilms, such as those on implanted hardware, largely resist antibiotics; the inflammatory host response to infection often produces more damage than the infection itself; and systemic antibiotics often decimate the gut microbiome, which can predispose to additional infections and even predispose to non-infectious diseases. Additionally, there is an increasing threat from multi-drug resistant microorganisms, though market forces may continue to inhibit innovation in this realm. These numerous unmet infection-related needs provide attractive goals for innovation of targeted drug delivery technologies, especially those of nanomedicine. Here we review several of those innovations in pre-clinical development, the two such therapies which have made it to clinical use, and the opportunities for further technology development for treating infections.
Subject(s)
Anti-Bacterial Agents/therapeutic use , Bacterial Infections/drug therapy , Nanoparticle Drug Delivery System/chemistry , Anti-Bacterial Agents/administration & dosage , Antiviral Agents/therapeutic use , Biofilms/drug effects , Chronic Disease , Drug Carriers/chemistry , Drug Evaluation, Preclinical , Drug Resistance, Multiple, Bacterial/physiology , Humans , Inflammation Mediators/physiology , Microbiota/drug effects , Virus Diseases/drug therapyABSTRACT
BACKGROUND: Extreme thrombocytosis (EXT, platelet count > 1000 × 103 /µL) is an uncommon but potentially clinically significant finding. Primary EXT in the setting of myeloproliferative disorders is linked to thrombotic and/or bleeding complications more frequently than secondary EXT, which typically occurs in reaction to infection, inflammation, or iron deficiency. However, comorbidities have been reported in adults with secondary EXT. Clinical implications of EXT in children are not well defined, as prior studies targeted small and/or specialized pediatric populations. OBJECTIVES: Our objectives were to determine etiologies and sequelae of EXT in a hospitalized general pediatric patient population. PATIENTS AND METHODS: We retrospectively analyzed EXT cases from a single-center pediatric cohort of ~80 000 patients over 8 years. RESULTS: Virtually all cases (99.8%) were secondary in nature, and most were multifactorial. Many cases of EXT occurred in children under 2 years old (47%) and/or during critical illness (55%). No thrombotic or bleeding events directly resulted from EXT, confirming a paucity of clinical complications associated with EXT in pediatric patients. There were indications that neonatal hematopoiesis and individual genetic variation influenced some cases, in addition to certain diagnoses (eg, sickle cell anemia) and clinical contexts (eg, asplenia). CONCLUSION: Our findings confirm that thrombotic events related to EXT are rare in pediatric patients, which can inform the use of empiric anti-platelet therapy.