Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 16(4): 354-65, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25729923

ABSTRACT

Interleukin 37 (IL-37) and IL-1R8 (SIGIRR or TIR8) are anti-inflammatory orphan members of the IL-1 ligand family and IL-1 receptor family, respectively. Here we demonstrate formation and function of the endogenous ligand-receptor complex IL-37-IL-1R8-IL-18Rα. The tripartite complex assembled rapidly on the surface of peripheral blood mononuclear cells upon stimulation with lipopolysaccharide. Silencing of IL-1R8 or IL-18Rα impaired the anti-inflammatory activity of IL-37. Whereas mice with transgenic expression of IL-37 (IL-37tg mice) with intact IL-1R8 were protected from endotoxemia, IL-1R8-deficient IL-37tg mice were not. Proteomic and transcriptomic investigations revealed that IL-37 used IL-1R8 to harness the anti-inflammatory properties of the signaling molecules Mer, PTEN, STAT3 and p62(dok) and to inhibit the kinases Fyn and TAK1 and the transcription factor NF-κB, as well as mitogen-activated protein kinases. Furthermore, IL-37-IL-1R8 exerted a pseudo-starvational effect on the metabolic checkpoint kinase mTOR. IL-37 thus bound to IL-18Rα and exploited IL-1R8 to activate a multifaceted intracellular anti-inflammatory program.


Subject(s)
Interleukin-18 Receptor alpha Subunit/immunology , Interleukin-1/immunology , Leukocytes, Mononuclear/immunology , Receptors, Interleukin-1/immunology , Signal Transduction/immunology , Animals , Cell Line , Gene Expression Regulation , Humans , Immunity, Innate , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Interleukin-1/genetics , Interleukin-18 Receptor alpha Subunit/antagonists & inhibitors , Interleukin-18 Receptor alpha Subunit/genetics , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/pathology , Lipopolysaccharides/pharmacology , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/immunology , Mice , Mice, Transgenic , NF-kappa B/genetics , NF-kappa B/immunology , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/immunology , Protein Binding , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/immunology , Proto-Oncogene Proteins c-fyn/genetics , Proto-Oncogene Proteins c-fyn/immunology , RNA, Small Interfering/genetics , RNA, Small Interfering/immunology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/immunology , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/immunology , Receptors, Interleukin-1/antagonists & inhibitors , Receptors, Interleukin-1/deficiency , Receptors, Interleukin-1/genetics , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/immunology , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/immunology , c-Mer Tyrosine Kinase
2.
J Cell Mol Med ; 21(6): 1128-1138, 2017 06.
Article in English | MEDLINE | ID: mdl-27957795

ABSTRACT

Bronchopulmonary dysplasia (BPD) is a severe lung disease of preterm infants, which is characterized by fewer, enlarged alveoli and increased inflammation. BPD has grave consequences for affected infants, but no effective and safe therapy exists. We previously showed that prophylactic treatment with interleukin-1 receptor antagonist (IL-1Ra) prevents murine BPD induced by perinatal inflammation and hyperoxia. Here, we used the same BPD model to assess whether an alternative anti-inflammatory agent, protein C (PC), is as effective as IL-1Ra against BPD. We also tested whether delayed administration or a higher dose of IL-1Ra affects its ability to ameliorate BPD and investigated aspects of drug safety. Pups were reared in room air (21% O2 ) or hyperoxia (65% or 85% O2 ) and received daily injections with vehicle, 1200 IU/kg PC, 10 mg/kg IL-1Ra (early or late onset) or 100 mg/kg IL-1Ra. After 3 or 28 days, lung and brain histology were assessed and pulmonary cytokines were analysed using ELISA and cytokine arrays. We found that PC only moderately reduced the severe impact of BPD on lung structure (e.g. 18% increased alveolar number by PC versus 34% by IL-1Ra); however, PC significantly reduced IL-1ß, IL-1Ra, IL-6 and macrophage inflammatory protein (MIP)-2 by up to 89%. IL-1Ra at 10 mg/kg prevented BPD more effectively than 100 mg/kg IL-1Ra, but only if treatment commenced at day 1 of life. We conclude that prophylactic low-dose IL-1Ra and PC ameliorate BPD and have potential as the first remedy for one of the most devastating diseases preterm babies face.


Subject(s)
Bronchopulmonary Dysplasia/drug therapy , Inflammation/drug therapy , Interleukin 1 Receptor Antagonist Protein/administration & dosage , Protein C/administration & dosage , Animals , Animals, Newborn , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/adverse effects , Bronchopulmonary Dysplasia/complications , Bronchopulmonary Dysplasia/pathology , Disease Models, Animal , Female , Humans , Infant , Infant, Newborn , Inflammation/complications , Inflammation/pathology , Interleukin 1 Receptor Antagonist Protein/adverse effects , Lung/drug effects , Lung/pathology , Mice , Pregnancy , Protein C/adverse effects , Pulmonary Alveoli/drug effects , Pulmonary Alveoli/pathology
3.
Am J Respir Cell Mol Biol ; 55(6): 858-868, 2016 12.
Article in English | MEDLINE | ID: mdl-27482635

ABSTRACT

Bronchopulmonary dysplasia (BPD) is a chronic disease of extreme prematurity that has serious long-term consequences including increased asthma risk. We earlier identified IL-1 receptor antagonist (IL-1Ra) as a potent inhibitor of murine BPD induced by combining perinatal inflammation (intraperitoneal LPS to pregnant dams) and exposure of pups to hyperoxia (fraction of inspired oxygen = 0.65). In this study, we determined whether airway remodeling and hyperresponsiveness similar to asthma are evident in this model, and whether IL-1Ra is protective. During 28-day exposure to air or hyperoxia, pups received vehicle or 10 mg/kg IL-1Ra by daily subcutaneous injection. Lungs were then prepared for histology and morphometry of alveoli and airways, or for real-time PCR, or inflated with agarose to prepare precision-cut lung slices to visualize ex vivo intrapulmonary airway contraction and relaxation by phase-contrast microscopy. In pups reared under normoxic conditions, IL-1Ra treatment did not affect alveolar or airway structure or airway responses. Pups reared in hyperoxia developed a severe BPD-like lung disease, with fewer, larger alveoli, increased subepithelial collagen, and increased expression of α-smooth muscle actin and cyclin D1. After hyperoxia, methacholine elicited contraction with similar potency but with an increased maximum reduction in lumen area (air, 44%; hyperoxia, 89%), whereas dilator responses to salbutamol were maintained. IL-1Ra treatment prevented hyperoxia-induced alveolar disruption and airway fibrosis but, surprisingly, not the increase in methacholine-induced airway contraction. The current study is the first to demonstrate ex vivo airway hyperreactivity caused by systemic maternal inflammation and postnatal hyperoxia, and it reveals further preclinical mechanistic insights into IL-1Ra as a treatment targeting key pathophysiological features of BPD.


Subject(s)
Airway Remodeling , Bronchial Hyperreactivity/complications , Bronchial Hyperreactivity/metabolism , Bronchopulmonary Dysplasia/complications , Bronchopulmonary Dysplasia/metabolism , Interleukin 1 Receptor Antagonist Protein/metabolism , Airway Remodeling/drug effects , Albuterol/pharmacology , Animals , Bronchial Hyperreactivity/pathology , Bronchial Hyperreactivity/physiopathology , Bronchopulmonary Dysplasia/pathology , Bronchopulmonary Dysplasia/physiopathology , Disease Models, Animal , Female , Hyperoxia/complications , Hyperoxia/metabolism , Hyperoxia/pathology , Hyperoxia/physiopathology , Lung/drug effects , Lung/metabolism , Lung/pathology , Lung/physiopathology , Mice, Inbred C57BL , Muscle Contraction/drug effects , Muscle Relaxation/drug effects , Pregnancy , Pulmonary Alveoli/pathology
4.
J Immunol ; 192(2): 589-602, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24337385

ABSTRACT

IL-32 is a multifaceted cytokine with a role in infections, autoimmune diseases, and cancer, and it exerts diverse functions, including aggravation of inflammation and inhibition of virus propagation. We previously identified IL-32 as a critical regulator of endothelial cell (EC) functions, and we now reveal that IL-32 also possesses angiogenic properties. The hyperproliferative ECs of human pulmonary arterial hypertension and glioblastoma multiforme exhibited a markedly increased abundance of IL-32, and, significantly, the cytokine colocalized with integrin αVß3. Vascular endothelial growth factor (VEGF) receptor blockade, which resulted in EC hyperproliferation, increased IL-32 three-fold. Small interfering RNA-mediated silencing of IL-32 negated the 58% proliferation of ECs that occurred within 24 h in scrambled-transfected controls. Reduction of IL-32 neither affected apoptosis (insignificant changes in Bak-1, Bcl-2, Bcl-xL, lactate dehydrogenase, annexin V, and propidium iodide) nor VEGF or TGF-ß levels, but siIL-32-transfected adult and neonatal ECs produced up to 61% less NO, IL-8, and matrix metalloproteinase-9, and up to 3-fold more activin A and endostatin. In coculture-based angiogenesis assays, IL-32γ dose-dependently increased tube formation up to 3-fold; an αVß3 inhibitor prevented this activity and reduced IL-32γ-induced IL-8 by 85%. In matrigel plugs loaded with IL-32γ, VEGF, or vehicle and injected into live mice, we observed the anticipated VEGF-induced increase in neocapillarization (8-fold versus vehicle), but unexpectedly, IL-32γ was equally angiogenic. A second signal such as IFN-γ was required to render cells responsive to exogenous IL-32γ; importantly, this was confirmed using a completely synthetic preparation of IL-32γ. In summary, we add angiogenic properties that are mediated by integrin αVß3 but VEGF-independent to the portfolio of IL-32, implicating a role for this versatile cytokine in pulmonary arterial hypertension and neoplastic diseases.


Subject(s)
Interleukins/metabolism , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Activins/metabolism , Animals , Apoptosis/physiology , Cells, Cultured , Endostatins/metabolism , Familial Primary Pulmonary Hypertension , Glioblastoma/embryology , Glioblastoma/pathology , Human Umbilical Vein Endothelial Cells , Humans , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Integrin alphaVbeta3/metabolism , Interferon-gamma/metabolism , Interleukin-8/metabolism , Matrix Metalloproteinase 9/metabolism , Mice , Nitrogen Oxides/metabolism , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , Receptors, Vascular Endothelial Growth Factor/metabolism , Transforming Growth Factor beta1/metabolism , Vascular Endothelial Growth Factor A/metabolism
5.
Proc Natl Acad Sci U S A ; 110(35): 14384-9, 2013 Aug 27.
Article in English | MEDLINE | ID: mdl-23946428

ABSTRACT

Bronchopulmonary dysplasia (BPD) is a common lung disease of premature infants, with devastating short- and long-term consequences. The pathogenesis of BPD is multifactorial, but all triggers cause pulmonary inflammation. No therapy exists; therefore, we investigated whether the anti-inflammatory interleukin-1 receptor antagonist (IL-1Ra) prevents murine BPD. We precipitated BPD by perinatal inflammation (lipopolysaccharide injection to pregnant dams) and rearing pups in hyperoxia (65% or 85% O2). Pups were treated daily with IL-1Ra or vehicle for up to 28 d. Vehicle-injected animals in both levels of hyperoxia developed a severe BPD-like lung disease (alveolar number and gas exchange area decreased by up to 60%, alveolar size increased up to fourfold). IL-1Ra prevented this structural disintegration at 65%, but not 85% O2. Hyperoxia depleted pulmonary immune cells by 67%; however, extant macrophages and dendritic cells were hyperactivated, with CD11b and GR1 (Ly6G/C) highly expressed. IL-1Ra partially rescued the immune cell population in hyperoxia (doubling the viable cells), reduced the percentage that were activated by up to 63%, and abolished the unexpected persistence of IL-1α and IL-1ß on day 28 in hyperoxia/vehicle-treated lungs. On day 3, perinatal inflammation and hyperoxia each triggered a distinct pulmonary immune response, with some proinflammatory mediators increasing up to 20-fold and some amenable to partial or complete reversal with IL-1Ra. In summary, our analysis reveals a pivotal role for IL-1α/ß in murine BPD and an involvement for MIP (macrophage inflammatory protein)-1α and TREM (triggering receptor expressed on myeloid cells)-1. Because it effectively shields newborn mice from BPD, IL-1Ra emerges as a promising treatment for a currently irremediable disease that may potentially brighten the prognosis of the tiny preterm patients.


Subject(s)
Bronchopulmonary Dysplasia/prevention & control , Hyperoxia/complications , Inflammation/complications , Interleukin 1 Receptor Antagonist Protein/physiology , Animals , Bronchopulmonary Dysplasia/etiology , Disease Models, Animal , Female , Humans , Infant, Newborn , Lipopolysaccharides/pharmacology , Lung/drug effects , Lung/immunology , Mice , Mice, Inbred C57BL , Pregnancy
6.
J Biol Chem ; 287(7): 4531-43, 2012 Feb 10.
Article in English | MEDLINE | ID: mdl-22170067

ABSTRACT

IL-22 is an immunoregulatory cytokine displaying pathological functions in models of autoimmunity like experimental psoriasis. Understanding molecular mechanisms driving IL-22, together with knowledge on the capacity of current immunosuppressive drugs to target this process, may open an avenue to novel therapeutic options. Here, we sought to characterize regulation of human IL22 gene expression with focus on the established model of Jurkat T cells. Moreover, effects of the prototypic immunosuppressant cyclosporin A (CsA) were investigated. We report that IL-22 induction by TPA/A23187 (T/A) or αCD3 is inhibited by CsA or related FK506. Similar data were obtained with peripheral blood mononuclear cells or purified CD3(+) T cells. IL22 promoter analysis (-1074 to +156 bp) revealed a role of an NF-AT (-95/-91 nt) and a CREB (-194/-190 nt) binding site for gene induction. Indeed, binding of CREB and NF-ATc2, but not c-Rel, under the influence of T/A to those elements could be proven by ChIP. Because CsA has the capability to impair IκB kinase (IKK) complex activation, the IKKα/ß inhibitor IKKVII was evaluated. IKKVII likewise reduced IL-22 induction in Jurkat cells and peripheral blood mononuclear cells. Interestingly, transfection of Jurkat cells with siRNA directed against IKKα impaired IL22 gene expression. Data presented suggest that NF-AT, CREB, and IKKα contribute to rapid IL22 gene induction. In particular the crucial role of NF-AT detected herein may form the basis of direct action of CsA on IL-22 expression by T cells, which may contribute to therapeutic efficacy of the drug in autoimmunity.


Subject(s)
Cyclosporine/pharmacology , Gene Expression Regulation/drug effects , Immunosuppressive Agents/pharmacology , Interleukins/biosynthesis , Lymphocyte Activation/drug effects , Response Elements/physiology , T-Lymphocytes/metabolism , Autoimmune Diseases/drug therapy , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Calcimycin/pharmacology , Calcium Ionophores/pharmacology , Carcinogens/pharmacology , Female , Gene Expression Regulation/genetics , Gene Expression Regulation/immunology , Humans , I-kappa B Kinase/antagonists & inhibitors , I-kappa B Kinase/genetics , I-kappa B Kinase/immunology , I-kappa B Kinase/metabolism , Interleukins/genetics , Interleukins/immunology , Jurkat Cells , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Male , T-Lymphocytes/immunology , Tetradecanoylphorbol Acetate/pharmacology , Transcription Factors , Interleukin-22
7.
BMC Gastroenterol ; 13: 69, 2013 Apr 22.
Article in English | MEDLINE | ID: mdl-23607370

ABSTRACT

BACKGROUND: Intestinal ischemia-reperfusion injury (IRI) can occur in clinical scenarios such as organ transplantation, trauma and cardio-pulmonary bypass, as well as in neonatal necrotizing enterocolitis or persistent ductus arteriosus. Pharmacological protection by pretreating ("preconditioning") with opioids attenuates IRI in a number of organs. Remifentanil appears particularly attractive for this purpose because of its ultra-short duration of action and favorable safety profile. To date, little is known about opioid preconditioning of the intestine. METHODS: Young adult C57BL/6J mice were randomly assigned to receive tail vein injections of 1 µg/kg of remifentanil or normal saline and underwent either ischemia-reperfusion of the intestine or a sham laparotomy. Under isoflurane anesthesia, the mice were subjected to intestinal ischemia-reperfusion by occlusion (clamping) of the superior mesenteric artery for 30 min, followed by unclamping and 60 min of reperfusion. After completion of this protocol, tissue injury and lipid peroxidation in jejunum and ileum were analyzed by histology and malondialdehyde (MDA), respectively. Systemic interleukin (IL)-6 was determined in the plasma by ELISA. RESULTS: Pretreatment with remifentanil markedly reduced intestinal IRI (P < 0.001): In the ileum, we observed a more than 8-fold decrease in injured villi (4% vs 34% in saline-pretreated animals). In fact, the mucosa in the remifentanil group was as healthy as that of sham-operated animals. This protective effect was not as pronounced in the jejunum, but the percentage of damaged villi was still reduced considerably (18% vs 42%). There was up to 3-fold more tissue MDA after intestinal ischemia-reperfusion than after sham laparotomy, but this increase in lipid peroxidation was prevented by preconditioning with remifentanil (P < 0.05). The systemic inflammatory response triggered by intestinal IRI was significantly attenuated in mice pretreated with remifentanil (159 vs 805 pg/ml of IL-6 after saline pretreatment, with 92 pg/ml in the sham groups). After sham operations, no difference was detected between the saline- and remifentanil-pretreatments in any of the parameters investigated. CONCLUSION: Preconditioning with remifentanil attenuates intestinal IRI and the subsequent systemic inflammatory response in mice. We therefore suggest that prophylaxis with this ultra-short-acting opioid may be advantageous in various clinical scenarios of human IRI.


Subject(s)
Analgesics, Opioid/therapeutic use , Ileum/blood supply , Ischemic Preconditioning/methods , Jejunum/blood supply , Piperidines/therapeutic use , Reperfusion Injury/prevention & control , Analgesics, Opioid/pharmacology , Animals , Ileum/metabolism , Ileum/pathology , Interleukin-6/blood , Jejunum/metabolism , Jejunum/pathology , Male , Malondialdehyde/metabolism , Mice , Mice, Inbred C57BL , Oxidative Stress/drug effects , Piperidines/pharmacology , Remifentanil , Reperfusion Injury/metabolism , Reperfusion Injury/pathology
8.
Sci Transl Med ; 15(678): eabq5126, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36630485

ABSTRACT

Interactions between the developing microbiome and maturing immune system in early life are critical for establishment of a homeostasis beneficial to both host and commensals. The lung harbors a diverse community of microbes associated with health and local or systemic disease. We discuss how early life colonization and community changes correlate with immune development and health and disease throughout infancy, childhood, and adult life. We highlight key advances in microbiology, immunology, and computational biology that allow investigation of the functional relevance of interactions between the respiratory microbiome and host immune system, which may unlock the potential for microbiome-based therapeutics.


Subject(s)
Microbiota , Lung/microbiology , Immune System
9.
BMC Med ; 10: 102, 2012 Sep 11.
Article in English | MEDLINE | ID: mdl-22967278

ABSTRACT

BACKGROUND: Interleukin-22 (IL-22), recently identified as a crucial parameter of pathology in experimental liver damage, may determine survival in clinical end-stage liver disease. Systematic analysis of serum IL-22 in relation to morbidity and mortality of patients with advanced liver cirrhosis has not been performed so far. METHODS: This is a prospective cohort study including 120 liver cirrhosis patients and 40 healthy donors to analyze systemic levels of IL-22 in relation to survival and hepatic complications. RESULTS: A total of 71% of patients displayed liver cirrhosis-related complications at study inclusion. A total of 23% of the patients died during a mean follow-up of 196 ± 165 days. Systemic IL-22 was detectable in 74% of patients but only in 10% of healthy donors (P < 0.001). Elevated levels of IL-22 were associated with ascites (P = 0.006), hepatorenal syndrome (P < 0.0001), and spontaneous bacterial peritonitis (P = 0.001). Patients with elevated IL-22 (>18 pg/ml, n = 57) showed significantly reduced survival compared to patients with regular (≤18 pg/ml) levels of IL-22 (321 days versus 526 days, P = 0.003). Other factors associated with reduced overall survival were high CRP (≥2.9 mg/dl, P = 0.005, hazard ratio (HR) 0.314, confidence interval (CI) (0.141 to 0.702)), elevated serum creatinine (P = 0.05, HR 0.453, CI (0.203 to 1.012)), presence of liver-related complications (P = 0.028, HR 0.258, CI (0.077 to 0.862)), model of end stage liver disease (MELD) score ≥20 (P = 0.017, HR 0.364, CI (0.159 to 0.835)) and age (P = 0.011, HR 0.955, CI (0.922 to 0.989)). Adjusted multivariate Cox proportional-hazards analysis identified elevated systemic IL-22 levels as independent predictors of reduced survival (P = 0.007, HR 0.218, CI (0.072 to 0.662)). CONCLUSIONS: In patients with liver cirrhosis, elevated systemic IL-22 levels are predictive for reduced survival independently from age, liver-related complications, CRP, creatinine and the MELD score. Thus, processes that lead to a rise in systemic interleukin-22 may be relevant for prognosis of advanced liver cirrhosis.


Subject(s)
Biomarkers/blood , Interleukins/blood , Liver Cirrhosis/diagnosis , Liver Cirrhosis/mortality , Adult , Aged , Cohort Studies , Female , Follow-Up Studies , Humans , Liver Cirrhosis/pathology , Male , Middle Aged , Prognosis , Prospective Studies , Serum/chemistry , Survival Analysis , Up-Regulation , Interleukin-22
10.
PLoS Pathog ; 6(10): e1001144, 2010 Oct 14.
Article in English | MEDLINE | ID: mdl-20976193

ABSTRACT

If insufficiently treated, Lyme borreliosis can evolve into an inflammatory disorder affecting skin, joints, and the CNS. Early innate immunity may determine host responses targeting infection. Thus, we sought to characterize the immediate cytokine storm associated with exposure of PBMC to moderate levels of live Borrelia burgdorferi. Since Th17 cytokines are connected to host defense against extracellular bacteria, we focused on interleukin (IL)-17 and IL-22. Here, we report that, despite induction of inflammatory cytokines including IL-23, IL-17 remained barely detectable in response to B. burgdorferi. In contrast, T cell-dependent expression of IL-22 became evident within 10 h of exposure to the spirochetes. This dichotomy was unrelated to interferon-γ but to a large part dependent on caspase-1 and IL-1 bioactivity derived from monocytes. In fact, IL-1ß as a single stimulus induced IL-22 but not IL-17. Neutrophils display antibacterial activity against B. burgdorferi, particularly when opsonized by antibodies. Since neutrophilic inflammation, indicative of IL-17 bioactivity, is scarcely observed in Erythema migrans, a manifestation of skin inflammation after infection, protective and antibacterial properties of IL-22 may close this gap and serve essential functions in the initial phase of spirochete infection.


Subject(s)
Borrelia burgdorferi/immunology , Interleukin-17/metabolism , Interleukin-1/physiology , Interleukins/metabolism , Leukocytes, Mononuclear/immunology , Monocytes/physiology , Biopsy , Cells, Cultured , Erythema Chronicum Migrans/immunology , Erythema Chronicum Migrans/metabolism , Erythema Chronicum Migrans/pathology , Humans , Immunity, Innate/drug effects , Immunity, Innate/physiology , Interleukin-1/metabolism , Interleukin-1/pharmacology , Jurkat Cells , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Monocytes/drug effects , Monocytes/immunology , Monocytes/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Time Factors , Interleukin-22
11.
Cell Chem Biol ; 29(4): 586-596.e4, 2022 04 21.
Article in English | MEDLINE | ID: mdl-34699747

ABSTRACT

Harnessing the immunomodulatory activity of cytokines is a focus of therapies targeting inflammatory disease. The interleukin (IL)-1 superfamily contains pro-inflammatory and anti-inflammatory members that help orchestrate the immune response in adaptive and innate immunity. Of these molecules, IL-37 has robust anti-inflammatory activity across a range of disease models through inhibition of pro-inflammatory signaling cascades downstream of tumor necrosis factor, IL-1, and toll-like receptor pathways. We find that IL-37 is unstable with a poor pharmacokinetic and manufacturing profile. Here, we present the engineering of IL-37 from an unstable cytokine into an anti-inflammatory molecule with an excellent therapeutic likeness. We overcame these shortcomings through site-directed mutagenesis, the addition of a non-native disulfide bond, and the engineering of IL-37 as an Fc-fusion protein. Our results provide a platform for preclinical testing of IL-37 Fc-fusion proteins. The engineering approaches undertaken herein will apply to the conversion of similar potent yet short-acting cytokines into therapeutics.


Subject(s)
Anti-Inflammatory Agents , Cytokines , Cytokines/metabolism , Immunity, Innate , Immunomodulation , Protein Engineering
12.
Sci Transl Med ; 14(639): eaaz8454, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35385341

ABSTRACT

Postnatal maturation of the immune system is poorly understood, as is its impact on illnesses afflicting term or preterm infants, such as bronchopulmonary dysplasia (BPD) and BPD-associated pulmonary hypertension. These are both cardiopulmonary inflammatory diseases that cause substantial mortality and morbidity with high treatment costs. Here, we characterized blood samples collected from 51 preterm infants longitudinally at five time points, 20 healthy term infants at birth and age 3 to 16 weeks, and 5 healthy adults. We observed strong associations between type 2 immune polarization in circulating CD3+CD4+ T cells and cardiopulmonary illness, with odds ratios up to 24. Maternal magnesium sulfate therapy, delayed hepatitis B vaccination, and increasing fetal, but not maternal, chorioamnionitis severity were associated with attenuated type 2 polarization. Blocking type 2 mediators such as interleukin-4 (IL-4), IL-5, IL-13, or signal transducer and activator of transcription 6 (STAT6) in murine neonatal cardiopulmonary disease in vivo prevented changes in cell type composition, increases in IL-1ß and IL-13, and losses of pulmonary capillaries, but not gains in larger vessels. Thereby, type 2 blockade ameliorated lung inflammation, protected alveolar and vascular integrity, and confirmed the pathological impact of type 2 cytokines and STAT6. In-depth flow cytometry and single-cell transcriptomics of mouse lungs further revealed complex associations between immune polarization and cardiopulmonary disease. Thus, this work advances knowledge on developmental immunology and its impact on early life disease and identifies multiple therapeutic approaches that may relieve inflammation-driven suffering in the youngest patients.


Subject(s)
Bronchopulmonary Dysplasia , Interleukin-13 , Animals , Bronchopulmonary Dysplasia/etiology , Bronchopulmonary Dysplasia/pathology , Bronchopulmonary Dysplasia/prevention & control , Female , Humans , Infant, Newborn , Infant, Premature , Inflammation/complications , Lung/pathology , Mice , Pregnancy
13.
Front Immunol ; 12: 708425, 2021.
Article in English | MEDLINE | ID: mdl-34367169

ABSTRACT

Interleukin (IL)-37 has an important function in limiting excessive inflammation. Its expression is increased in numerous inflammatory and autoimmune conditions and correlates with disease activity, suggesting it could have potential as a disease biomarker. Nevertheless, a reference range has yet to be determined. Our aim was to establish the first reference range of circulating IL-37 levels in healthy adult humans. PubMed was searched for studies reporting blood IL-37 concentrations in healthy adult subjects as measured by enzyme-linked immunosorbent assay. Nineteen studies were included in the analysis. Mean IL-37 levels were weighted by sample sizes, and weighted mean lower and upper levels ( ± 2SD of means) were calculated to provide a weighted mean and reference range. IL-37 levels were quantified in either serum or plasma from a total of 1035 (647 serum; 388 plasma) healthy subjects. The serum, plasma and combined matrix weighted means (reference ranges) were 72.9 (41.5 - 104.4) pg/mL, 83.9 (41.1 - 126.8) pg/mL, and 77.1 (41.4 - 112.8) pg/mL, respectively. There were no significant differences between serum and plasma means and upper and lower limits. Study means and upper IL-37 levels were significantly higher in Chinese population studies. From our analysis, a preliminary reference range for circulating IL-37 levels in healthy human adults has been established. In order to determine a reliable reference range for clinical application, large, prospective, multi-ethnic, healthy population studies are necessary. In addition, demographics, sample matrix, collection, processing and storage methods potentially affecting IL-37 detection levels should be thoroughly investigated.


Subject(s)
Interleukin-1/blood , Humans , Reference Values
14.
Methods Mol Biol ; 2080: 93-114, 2020.
Article in English | MEDLINE | ID: mdl-31745874

ABSTRACT

Fluorescence microscopy has become a powerful tool to investigate proteins in their natural environment. Well-established techniques like widefield and confocal fluorescence microscopy have commonly been used for decades to visualize biomolecules in single cells and tissue sections. Live cell microscopy allows for the investigation of biomolecular trafficking, and other specialized techniques, such as proximity ligation assays (PLA) and fluorescence lifetime imaging microscopy (FLIM), can be used to study interactions between biomolecules of interest. Finally, with the most recent rise of optical super-resolution microscopy, we can investigate target biomolecules in situ with unprecedented detail on the nanometer scale. Here, we discuss various optical microscopy techniques that have successfully been used to image MIF. We highlight applications, advantages, and limitations of each technique. The techniques described here can easily be adapted to investigate other target proteins, their localization, interaction partners, and mechanisms of action.


Subject(s)
Carrier Proteins/metabolism , Macrophage Migration-Inhibitory Factors/metabolism , Microscopy, Fluorescence , Molecular Imaging , Protein Interaction Mapping , Cells, Cultured , Image Processing, Computer-Assisted , Macrophage Migration-Inhibitory Factors/genetics , Macrophages/immunology , Macrophages/metabolism , Microscopy, Confocal , Molecular Imaging/methods , Protein Binding , Protein Interaction Mapping/methods
15.
Cells ; 9(1)2020 01 10.
Article in English | MEDLINE | ID: mdl-31936823

ABSTRACT

Interleukin (IL)-37 is a member of the IL-1 family of cytokines. Although its broad anti-inflammatory properties are well described, the effects of IL-37 on inflammasome function remain poorly understood. Performing gene expression analyses, ASC oligomerization/speck assays and caspase-1 assays in bone marrow-derived macrophages (BMDM), and employing an in vivo endotoxemia model, we studied how IL-37 affects the expression and maturation of IL-1ß and IL-18, inflammasome activation, and pyroptosis in detail. IL-37 inhibited IL-1ß production by NLRP3 and AIM2 inflammasomes, and IL-18 production by the NLRP3 inflammasome. This inhibition was partially attributable to effects on gene expression: whereas IL-37 did not affect lipopolysaccharide (LPS)-induced mRNA expression of Il18 or inflammasome components, IL-37-transgenic BMDM displayed an up to 83% inhibition of baseline and LPS-stimulated Il1b compared to their wild-type counterparts. Importantly, we observed that IL-37 suppresses nigericin- and silica-induced ASC oligomerization/speck formation (a step in inflammasome activation and subsequent caspase-1 activation), and pyroptosis (-50%). In mice subjected to endotoxemia, IL-37 inhibited plasma IL-1ß (-78% compared to wild-type animals) and IL-18 (-61%). Thus, our study adds suppression of inflammasome activity to the portfolio of anti-inflammatory pathways employed by IL-37, highlighting this cytokine as a potential tool for treating inflammasome-driven diseases.


Subject(s)
Inflammasomes/metabolism , Interleukin-1/metabolism , Interleukins/metabolism , Animals , Cells, Cultured , Interleukin-1/analysis , Interleukins/analysis , Mice , Mice, Inbred C57BL , Mice, Transgenic
16.
Transl Res ; 216: 1-22, 2020 02.
Article in English | MEDLINE | ID: mdl-31734267

ABSTRACT

Interleukin (IL)-22 activates STAT (signal transducer and activator of transcription) 3 and antiapoptotic and proproliferative pathways; but beyond this, the molecular mechanisms by which IL-22 promotes carcinogenesis are poorly understood. Characterizing the molecular signature of IL-22 in human DLD-1 colon carcinoma cells, we observed increased expression of 26 genes, including NNMT (nicotinamide N-methyltransferase, ≤10-fold) and CEA (carcinoembryonic antigen, ≤7-fold), both known to promote intestinal carcinogenesis. ERP27 (endoplasmic reticulum protein-27, function unknown, ≤5-fold) and the proinflammatory ICAM1 (intercellular adhesion molecule-1, ≤4-fold) were also increased. The effect on CEA was partly STAT3-mediated, as STAT3-silencing reduced IL-22-induced CEA by ≤56%. Silencing of CEA or NNMT inhibited IL-22-induced proliferation/migration of DLD-1, Caco-2, and SW480 colon carcinoma cells. To validate these results in primary tissues, we assessed IL-22-induced gene expression in organoids from human healthy colon and colon cancer patients, and from normal mouse small intestine and colon. Gene regulation by IL-22 was similar in DLD-1 cells and human and mouse healthy organoids. CEA was an exception with no induction by IL-22 in organoids, indicating the 3-dimensional organization of the tissue may produce signals absent in 2D cell culture. Importantly, augmentation of NNMT was 5-14-fold greater in human cancerous compared to normal organoids, supporting a role for NNMT in IL-22-mediated colon carcinogenesis. Thus, NNMT and CEA emerge as mediators of the tumor-promoting effects of IL-22 in the intestine. These data advance our understanding of the multifaceted role of IL-22 in the gut and suggest the IL-22 pathway may represent a therapeutic target in colon cancer.


Subject(s)
Colonic Neoplasms/genetics , Interleukins/metabolism , Organoids/pathology , Animals , Caco-2 Cells , Carcinoembryonic Antigen/genetics , Carcinoembryonic Antigen/metabolism , Colonic Neoplasms/pathology , Gene Knockdown Techniques , Humans , Mice , Nicotinamide N-Methyltransferase/genetics , STAT3 Transcription Factor/metabolism , Interleukin-22
17.
Nat Commun ; 11(1): 5794, 2020 11 13.
Article in English | MEDLINE | ID: mdl-33188181

ABSTRACT

Necrotizing enterocolitis (NEC) is a severe, currently untreatable intestinal disease that predominantly affects preterm infants and is driven by poorly characterized inflammatory pathways. Here, human and murine NEC intestines exhibit an unexpected predominance of type 3/TH17 polarization. In murine NEC, pro-inflammatory type 3 NKp46-RORγt+Tbet+ innate lymphoid cells (ILC3) are 5-fold increased, whereas ILC1 and protective NKp46+RORγt+ ILC3 are obliterated. Both species exhibit dysregulation of intestinal TLR repertoires, with TLR4 and TLR8 increased, but TLR5-7 and TLR9-12 reduced. Transgenic IL-37 effectively protects mice from intestinal injury and mortality, whilst exogenous IL-37 is only modestly efficacious. Mechanistically, IL-37 favorably modulates immune homeostasis, TLR repertoires and microbial diversity. Moreover, IL-37 and its receptor IL-1R8 are reduced in human NEC epithelia, and IL-37 is lower in blood monocytes from infants with NEC and/or lower birthweight. Our results on NEC pathomechanisms thus implicate type 3 cytokines, TLRs and IL-37 as potential targets for novel NEC therapies.


Subject(s)
Enterocolitis, Necrotizing/drug therapy , Enterocolitis, Necrotizing/immunology , Adaptive Immunity , Animals , Animals, Newborn , Biomarkers/metabolism , Enterocolitis, Necrotizing/blood , Enterocolitis, Necrotizing/pathology , Homeostasis , Humans , Immunity, Innate , Infant, Newborn , Inflammation Mediators/metabolism , Interleukin-1 , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Lymphocytes/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Toll-Like Receptors/metabolism
19.
Sci Rep ; 9(1): 15433, 2019 10 28.
Article in English | MEDLINE | ID: mdl-31659207

ABSTRACT

Personalized medicine approaches are increasingly sought for diseases with a heritable component. Systemic lupus erythematosus (SLE) is the prototypic autoimmune disease resulting from loss of immunologic tolerance, but the genetic basis of SLE remains incompletely understood. Genome wide association studies (GWAS) identify regions associated with disease, based on common single nucleotide polymorphisms (SNPs) within them, but these SNPs may simply be markers in linkage disequilibrium with other, causative mutations. Here we use an hierarchical screening approach for prediction and testing of true functional variants within regions identified in GWAS; this involved bioinformatic identification of putative regulatory elements within close proximity to SLE SNPs, screening those regions for potentially causative mutations by high resolution melt analysis, and functional validation using reporter assays. Using this approach, we screened 15 SLE associated loci in 143 SLE patients, identifying 7 new variants including 5 SNPs and 2 insertions. Reporter assays revealed that the 5 SNPs were functional, altering enhancer activity. One novel variant was linked to the relatively well characterized rs9888739 SNP at the ITGAM locus, and may explain some of the SLE heritability at this site. Our study demonstrates that non-coding regulatory elements can contain private sequence variants affecting gene expression, which may explain part of the heritability of SLE.


Subject(s)
Genetic Predisposition to Disease , Linkage Disequilibrium , Lupus Erythematosus, Systemic/genetics , Polymorphism, Single Nucleotide , Regulatory Sequences, Nucleic Acid , Female , Genome-Wide Association Study , Humans , Male
20.
Front Immunol ; 10: 1480, 2019.
Article in English | MEDLINE | ID: mdl-31354700

ABSTRACT

Pulmonary hypertension secondary to bronchopulmonary dysplasia (BPD-PH) represents a major complication of BPD in extremely preterm infants for which there are currently no safe and effective interventions. The abundance of interleukin-1 (IL-1) is strongly correlated with the severity and long-term outcome of BPD infants and we have previously shown that IL-1 receptor antagonist (IL-1Ra) protects against murine BPD; therefore, we hypothesized that IL-1Ra may also be effective against BPD-PH. We employed daily injections of IL-1Ra in a murine model in which BPD/BPD-PH was induced by antenatal LPS and postnatal hyperoxia of 65% O2. Pups reared in hyperoxia for 28 days exhibited a BPD-PH-like disease accompanied by significant changes in pulmonary vascular morphology: micro-CT revealed an 84% reduction in small vessels (4-5 µm diameter) compared to room air controls; this change was prevented by IL-1Ra. Pulmonary vascular resistance, assessed at day 28 of life by echocardiography using the inversely-related surrogate marker time-to-peak-velocity/right ventricular ejection time (TPV/RVET), increased in hyperoxic mice (0.27 compared to 0.32 in air controls), and fell significantly with daily IL-1Ra treatment (0.31). Importantly, in vivo cine-angiography revealed that this protection afforded by IL-1Ra treatment for 28 days is maintained at day 60 of life. Despite an increased abundance of mediators of pulmonary angiogenesis in day 5 lung lysates, namely vascular endothelial growth factor (VEGF) and endothelin-1 (ET-1), no difference was detected in ex vivo pulmonary vascular reactivity between air and hyperoxia mice as measured in precision cut lung slices, or by immunohistochemistry in alpha-smooth muscle actin (α-SMA) and endothelin receptor type-A (ETA) at day 28. Further, on day 28 of life we observed cardiac fibrosis by Sirius Red staining, which was accompanied by an increase in mRNA expression of galectin-3 and CCL2 (chemokine (C-C motif) ligand 2) in whole hearts of hyperoxic pups, which improved with IL-1Ra. In summary, our findings suggest that daily administration of the anti-inflammatory IL-1Ra prevents the increase in pulmonary vascular resistance and the pulmonary dysangiogenesis of murine BPD-PH, thus pointing to IL-1Ra as a promising candidate for the treatment of both BPD and BPD-PH.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Bronchopulmonary Dysplasia/prevention & control , Hypertension, Pulmonary/prevention & control , Interleukin 1 Receptor Antagonist Protein/pharmacology , Vascular Resistance/drug effects , Animals , Animals, Newborn , Bronchopulmonary Dysplasia/pathology , Disease Models, Animal , Endothelin-1/metabolism , Hyperoxia , Lipopolysaccharides/toxicity , Mice , Mice, Inbred C57BL , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL