Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(19): e2311685121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38683994

ABSTRACT

Neural crest cells exemplify cellular diversification from a multipotent progenitor population. However, the full sequence of early molecular choices orchestrating the emergence of neural crest heterogeneity from the embryonic ectoderm remains elusive. Gene-regulatory-networks (GRN) govern early development and cell specification toward definitive neural crest. Here, we combine ultradense single-cell transcriptomes with machine-learning and large-scale transcriptomic and epigenomic experimental validation of selected trajectories, to provide the general principles and highlight specific features of the GRN underlying neural crest fate diversification from induction to early migration stages using Xenopus frog embryos as a model. During gastrulation, a transient neural border zone state precedes the choice between neural crest and placodes which includes multiple converging gene programs. During neurulation, transcription factor connectome, and bifurcation analyses demonstrate the early emergence of neural crest fates at the neural plate stage, alongside an unbiased multipotent-like lineage persisting until epithelial-mesenchymal transition stage. We also decipher circuits driving cranial and vagal neural crest formation and provide a broadly applicable high-throughput validation strategy for investigating single-cell transcriptomes in vertebrate GRNs in development, evolution, and disease.


Subject(s)
Neural Crest , Single-Cell Analysis , Xenopus laevis , Animals , Neural Crest/cytology , Neural Crest/metabolism , Single-Cell Analysis/methods , Xenopus laevis/embryology , Gene Expression Regulation, Developmental , Cell Movement , Gene Regulatory Networks , Transcriptome , Gastrulation , Neural Plate/metabolism , Neural Plate/embryology , Neural Plate/cytology , Epithelial-Mesenchymal Transition/genetics , Embryo, Nonmammalian/metabolism , Embryo, Nonmammalian/cytology , Neurulation/genetics , Neurulation/physiology , Cell Differentiation
SELECTION OF CITATIONS
SEARCH DETAIL