Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Gastroenterology ; 165(1): 162-172.e5, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36907526

ABSTRACT

BACKGROUND & AIMS: Colorectal cancer (CRC) is one of the most prevalent tumors worldwide, with incidence quickly increasing (particularly in the context of early-onset cases), despite important prevention efforts, mainly in the form of population-wide screening programs. Although many cases present a clear familial component, the current list of hereditary CRC genes leaves a considerable proportion of the cases unexplained. METHODS: In this work, we used whole-exome sequencing approaches on 19 unrelated patients with unexplained colonic polyposis to identify candidate CRC predisposition genes. The candidate genes were then validated in an additional series of 365 patients. CRISPR-Cas9 models were used to validate BMPR2 as a potential candidate for CRC risk. RESULTS: We found 8 individuals carrying 6 different variants in the BMPR2 gene (approximately 2% of our cohort of patients with unexplained colonic polyposis). CRISPR-Cas9 models of 3 of these variants showed that the p.(Asn442Thrfs∗32) truncating variant completely abrogated BMP pathway function in a similar way to the BMPR2 knockout. Missense variants p.(Asn565Ser), p.(Ser967Pro) had varying effects on cell proliferation levels, with the former impairing cell control inhibition via noncanonical pathways. CONCLUSIONS: Collectively, these results support loss-of-function BMPR2 variants as candidates to be involved in CRC germline predisposition.


Subject(s)
Colorectal Neoplasms , Intestinal Polyposis , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Genotype , Mutation, Missense , Genetic Predisposition to Disease , Germ-Line Mutation , Bone Morphogenetic Protein Receptors, Type II/genetics
2.
J Med Genet ; 60(6): 557-567, 2023 06.
Article in English | MEDLINE | ID: mdl-36270769

ABSTRACT

BACKGROUND: Patients with serrated polyposis syndrome (SPS) have multiple and/or large serrated colonic polyps and higher risk for colorectal cancer. SPS inherited genetic basis is mostly unknown. We aimed to identify new germline predisposition factors for SPS by functionally evaluating a candidate gene and replicating it in additional SPS cohorts. METHODS: After a previous whole-exome sequencing in 39 SPS patients from 16 families (discovery cohort), we sequenced specific genes in an independent validation cohort of 211 unrelated SPS cases. Additional external replication was also available in 297 SPS cases. The WNK2 gene was disrupted in HT-29 cells by gene editing, and WNK2 variants were transfected using a lentiviral delivery system. Cells were analysed by immunoblots, real-time PCR and functional assays monitoring the mitogen-activated protein kinase (MAPK) pathway, cell cycle progression, survival and adhesion. RESULTS: We identified 2 rare germline variants in the WNK2 gene in the discovery cohort, 3 additional variants in the validation cohort and 10 other variants in the external cohorts. Variants c.2105C>T (p.Pro702Leu), c.4820C>T (p.Ala1607Val) and c.6157G>A (p.Val2053Ile) were functionally characterised, displaying higher levels of phospho-PAK1/2, phospho-ERK1/2, CCND1, clonogenic capacity and MMP2. CONCLUSION: After whole-exome sequencing in SPS cases with familial aggregation and replication of results in additional cohorts, we identified rare germline variants in the WNK2 gene. Functional studies suggested germline WNK2 variants affect protein function in the context of the MAPK pathway, a molecular hallmark in this disease.


Subject(s)
Adenomatous Polyposis Coli , Colonic Polyps , Colorectal Neoplasms , Humans , Germ-Line Mutation/genetics , Adenomatous Polyposis Coli/genetics , Colonic Polyps/genetics , Genotype , Colorectal Neoplasms/genetics , Protein Serine-Threonine Kinases/genetics
3.
Gastroenterol Hepatol ; 47(3): 293-318, 2024 Mar.
Article in English, Spanish | MEDLINE | ID: mdl-37315767

ABSTRACT

This position statement, sponsored by the Asociación Española de Gastroenterología, the Sociedad Española de Oncología Médica, the Asociación Española de Genética Humana and the IMPaCT-Genómica Consortium aims to establish recommendations for use of multi-gene panel testing in patients at high risk of hereditary gastrointestinal and pancreatic cancer. To rate the quality of the evidence and the levels of recommendation, we used the methodology based on the GRADE system (Grading of Recommendations Assessment, Development and Evaluation). We reached a consensus among experts using a Delphi method. The document includes recommendations on clinical scenarios where multi-gene panel testing is recommended in colorectal cancer, polyposis syndromes, gastric and pancreatic cancer, as well as the genes to be considered in each clinical scenario. Recommendations on the evaluation of mosaicisms, counseling strategies in the absence of an index subject and, finally, constitutional analysis after identification of pathogenic tumor variants are also made.


Subject(s)
Colorectal Neoplasms , Gastrointestinal Neoplasms , Pancreatic Neoplasms , Humans , Gastrointestinal Neoplasms/genetics , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/genetics , Patients , Consensus
4.
Clin Chem ; 67(3): 518-533, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33280026

ABSTRACT

BACKGROUND: Gene panel testing by massive parallel sequencing has increased the diagnostic yield but also the number of variants of uncertain significance. Clinical interpretation of genomic data requires expertise for each gene and disease. Heterozygous ATM pathogenic variants increase the risk of cancer, particularly breast cancer. For this reason, ATM is included in most hereditary cancer panels. It is a large gene, showing a high number of variants, most of them of uncertain significance. Hence, we initiated a collaborative effort to improve and standardize variant classification for the ATM gene. METHODS: Six independent laboratories collected information from 766 ATM variant carriers harboring 283 different variants. Data were submitted in a consensus template form, variant nomenclature and clinical information were curated, and monthly team conferences were established to review and adapt American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) criteria to ATM, which were used to classify 50 representative variants. RESULTS: Amid 283 different variants, 99 appeared more than once, 35 had differences in classification among laboratories. Refinement of ACMG/AMP criteria to ATM involved specification for twenty-one criteria and adjustment of strength for fourteen others. Afterwards, 50 variants carried by 254 index cases were classified with the established framework resulting in a consensus classification for all of them and a reduction in the number of variants of uncertain significance from 58% to 42%. CONCLUSIONS: Our results highlight the relevance of data sharing and data curation by multidisciplinary experts to achieve improved variant classification that will eventually improve clinical management.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/genetics , Genetic Predisposition to Disease , Neoplasms/genetics , Female , Genetic Variation , High-Throughput Nucleotide Sequencing/methods , Humans , Male
5.
J Med Genet ; 57(10): 677-682, 2020 10.
Article in English | MEDLINE | ID: mdl-32170005

ABSTRACT

BACKGROUND: Serrated polyposis syndrome (SPS) is a clinical entity characterised by large and/ormultiple serrated polyps throughout the colon and increased risk for colorectal cancer (CRC). The basis for SPS genetic predisposition is largely unknown. Common, low-penetrance genetic variants have been consistently associated with CRC susceptibility, however, their role in SPS genetic predisposition has not been yet explored. OBJECTIVE: The aim of this study was to evaluate if common, low-penetrance genetic variants for CRC risk are also implicated in SPS genetic susceptibility. METHODS: A case-control study was performed in 219 SPS patients and 548 asymptomatic controls analysing 65 CRC susceptibility variants. A risk prediction model for SPS predisposition was developed. RESULTS: Statistically significant associations with SPS were found for seven genetic variants (rs4779584-GREM1, rs16892766-EIF3H, rs3217810-CCND2, rs992157-PNKD1/TMBIM1, rs704017-ZMIZ1, rs11196172-TCF7L2, rs6061231-LAMA5). The GREM1 risk allele was remarkably over-represented in SPS cases compared with controls (OR=1.573, 1.21-2.04, p value=0.0006). A fourfold increase in SPS risk was observed when comparing subjects within the highest decile of variants (≥65) with those in the first decile (≤50). CONCLUSIONS: Genetic variants for CRC risk are also involved in SPS susceptibility, being the most relevant ones rs4779584-GREM1, rs16892766-EIF3H and rs3217810-CCND2.


Subject(s)
Adenomatous Polyposis Coli/genetics , Colorectal Neoplasms/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Adenomatous Polyposis Coli/complications , Adenomatous Polyposis Coli/pathology , Aged , Colon/pathology , Colorectal Neoplasms/complications , Colorectal Neoplasms/pathology , Cyclin D2/genetics , Eukaryotic Initiation Factor-3/genetics , Female , Humans , Intercellular Signaling Peptides and Proteins/genetics , Male , Middle Aged , Polyps/genetics , Polyps/pathology , Transcription Factor 7-Like 2 Protein/genetics , Transcription Factors/genetics
6.
Gut ; 69(8): 1460-1471, 2020 08.
Article in English | MEDLINE | ID: mdl-31818908

ABSTRACT

OBJECTIVE: To provide an understanding of the role of common genetic variations in colorectal cancer (CRC) risk, we report an updated field synopsis and comprehensive assessment of evidence to catalogue all genetic markers for CRC (CRCgene2). DESIGN: We included 869 publications after parallel literature review and extracted data for 1063 polymorphisms in 303 different genes. Meta-analyses were performed for 308 single nucleotide polymorphisms (SNPs) in 158 different genes with at least three independent studies available for analysis. Scottish, Canadian and Spanish data from genome-wide association studies (GWASs) were incorporated for the meta-analyses of 132 SNPs. To assess and classify the credibility of the associations, we applied the Venice criteria and Bayesian False-Discovery Probability (BFDP). Genetic associations classified as 'positive' and 'less-credible positive' were further validated in three large GWAS consortia conducted in populations of European origin. RESULTS: We initially identified 18 independent variants at 16 loci that were classified as 'positive' polymorphisms for their highly credible associations with CRC risk and 59 variants at 49 loci that were classified as 'less-credible positive' SNPs; 72.2% of the 'positive' SNPs were successfully replicated in three large GWASs and the ones that were not replicated were downgraded to 'less-credible' positive (reducing the 'positive' variants to 14 at 11 loci). For the remaining 231 variants, which were previously reported, our meta-analyses found no evidence to support their associations with CRC risk. CONCLUSION: The CRCgene2 database provides an updated list of genetic variants related to CRC risk by using harmonised methods to assess their credibility.


Subject(s)
Colorectal Neoplasms/genetics , Polymorphism, Single Nucleotide , Adaptor Proteins, Signal Transducing/genetics , Antigens, CD/genetics , Bone Morphogenetic Protein 2/genetics , Cadherins/genetics , DNA Glycosylases/genetics , Genetic Association Studies , Genetic Loci , Humans , Smad7 Protein/genetics , Telomerase/genetics , Transforming Growth Factor beta1/genetics
7.
Gastroenterology ; 165(6): 1577-1578, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37741422
8.
Gastroenterology ; 152(5): 983-986.e6, 2017 04.
Article in English | MEDLINE | ID: mdl-28024868

ABSTRACT

Up to 10% of cases of gastric cancer are familial, but so far, only mutations in CDH1 have been associated with gastric cancer risk. To identify genetic variants that affect risk for gastric cancer, we collected blood samples from 28 patients with hereditary diffuse gastric cancer (HDGC) not associated with mutations in CDH1 and performed whole-exome sequence analysis. We then analyzed sequences of candidate genes in 333 independent HDGC and non-HDGC cases. We identified 11 cases with mutations in PALB2, BRCA1, or RAD51C genes, which regulate homologous DNA recombination. We found these mutations in 2 of 31 patients with HDGC (6.5%) and 9 of 331 patients with sporadic gastric cancer (2.8%). Most of these mutations had been previously associated with other types of tumors and partially co-segregated with gastric cancer in our study. Tumors that developed in patients with these mutations had a mutation signature associated with somatic homologous recombination deficiency. Our findings indicate that defects in homologous recombination increase risk for gastric cancer.


Subject(s)
BRCA1 Protein/genetics , DNA-Binding Proteins/genetics , Nuclear Proteins/genetics , Stomach Neoplasms/genetics , Tumor Suppressor Proteins/genetics , Aged , Aged, 80 and over , Fanconi Anemia Complementation Group N Protein , Female , Genetic Predisposition to Disease , Germ-Line Mutation , Humans , Male , Middle Aged , Mutation , Recombinational DNA Repair/genetics
9.
Br J Cancer ; 117(6): 1215-1223, 2017 Sep 05.
Article in English | MEDLINE | ID: mdl-28742792

ABSTRACT

BACKGROUND: A substantial fraction of familial colorectal cancer (CRC) and polyposis heritability remains unexplained. This study aimed to identify predisposing loci in patients with these disorders. METHODS: Homozygosity mapping was performed using 222 563 SNPs in 302 index patients with various colorectal neoplasms and 3367 controls. Linkage analysis, exome and whole-genome sequencing were performed in a family affected by microsatellite stable CRCs. Candidate variants were genotyped in 10 554 cases and 21 480 controls. Gene expression was assessed at the mRNA and protein level. RESULTS: Homozygosity mapping revealed a disease-associated region at 1q32.3 which was part of the linkage region 1q32.2-42.2 identified in the CRC family. This includes a region previously associated with risk of CRC. Sequencing identified the p.Asp1432Glu variant in the MIA3 gene (known as TANGO1 or TANGO) and 472 additional rare, shared variants within the linkage region. In both cases and controls the population frequency was 0.02% for this MIA3 variant. The MIA3 mutant allele showed predominant mRNA expression in normal, cancer and precancerous tissues. Furthermore, immunohistochemistry revealed increased expression of MIA3 in adenomatous tissues. CONCLUSIONS: Taken together, our two independent strategies associate genetic variations in chromosome 1q loci and predisposition to familial CRC and polyps, which warrants further investigation.


Subject(s)
Adenomatous Polyposis Coli/genetics , Aryl Hydrocarbon Receptor Nuclear Translocator/genetics , Chromosomes, Human, Pair 1/genetics , Colorectal Neoplasms/genetics , Genetic Predisposition to Disease , Neoplasm Proteins/genetics , Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism , Chromosome Mapping , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Genetic Linkage , Genotype , Homozygote , Humans , Microsatellite Repeats , Neoplasm Proteins/metabolism , Polymorphism, Single Nucleotide , Precancerous Conditions/genetics , Precancerous Conditions/metabolism , RNA, Messenger/metabolism
10.
Carcinogenesis ; 37(8): 751-8, 2016 08.
Article in English | MEDLINE | ID: mdl-27234654

ABSTRACT

The purpose of this study was to identify novel colorectal cancer (CRC)-causing alleles in unexplained familial CRC cases. In order to do so, coding regions in five candidate genes (MGMT, AXIN2, CTNNB1, TGFBR1 and TGFBR2) were sequenced in 11 unrelated microsatellite-stable hereditary non-polyposis CRC (MSS HNPCC) cases. Selected genetic variants were genotyped in a discovery set of 27 MSS HNPCC cases and 85 controls. One genetic variant, rs67687202, in TGFBR1 emerged as significant (P = 0.002), and it was genotyped in a replication set of 87 additional MSS HNPCC-like cases and 338 controls where it was also significantly associated with MSS HNPCC cases (P = 0.041). In the combined genotype data, rs67687202 was associated with a moderate increase in CRC risk (OR = 1.68; 95% CI = 1.13-2.50; P = 0.010). We tested a highly correlated SNP rs868 in 723 non-familial CRC cases compared with 629 controls, and it was not significantly associated with CRC risk (P = 0.370). rs868 is contained in a let-7 miRNA binding site in the 3'UTR of TGFBR1, which might provide a functional basis for the association in MSS HNPCC. In luciferase assays, the risk-associated allele for rs868 was associated with half the luciferase expression in the presence of miRNA let-7b-5p compared with protective allele, suggesting more binding of let-7b-5p and less TGFBR1 expression. Thus, rs868 potentially is a CRC risk-causing allele. Our results support the concept that rs868 is associated with lower TGFBR1 expression thereby increasing CRC risk.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , DNA Mismatch Repair/genetics , Protein Serine-Threonine Kinases/genetics , Receptors, Transforming Growth Factor beta/genetics , Adult , Aged , Alleles , Axin Protein/genetics , Binding Sites , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Female , Gene Expression Regulation, Neoplastic , Genotype , Humans , Male , Microsatellite Instability , Middle Aged , Protein Serine-Threonine Kinases/biosynthesis , Receptor, Transforming Growth Factor-beta Type I , Receptor, Transforming Growth Factor-beta Type II , Receptors, Transforming Growth Factor beta/biosynthesis , Tumor Suppressor Proteins/genetics , beta Catenin/genetics
11.
Gastroenterology ; 149(4): 1017-29.e3, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26116798

ABSTRACT

BACKGROUND & AIMS: Patients with bi-allelic germline mutations in mismatch repair (MMR) genes (MLH1, MSH2, MSH6, or PMS2) develop a rare but severe variant of Lynch syndrome called constitutional MMR deficiency (CMMRD). This syndrome is characterized by early-onset colorectal cancers, lymphomas or leukemias, and brain tumors. There is no satisfactory method for diagnosis of CMMRD because screens for mutations in MMR genes are noninformative for 30% of patients. MMR-deficient cancer cells are resistant to genotoxic agents and have microsatellite instability (MSI), due to accumulation of errors in repetitive DNA sequences. We investigated whether these features could be used to identify patients with CMMRD. METHODS: We examined MSI by PCR analysis and tolerance to methylating or thiopurine agents (functional characteristics of MMR-deficient tumor cells) in lymphoblastoid cells (LCs) from 3 patients with CMMRD and 5 individuals with MMR-proficient LCs (controls). Using these assays, we defined experimental parameters that allowed discrimination of a series of 14 patients with CMMRD from 52 controls (training set). We then used the same parameters to assess 23 patients with clinical but not genetic features of CMMRD. RESULTS: In the training set, we identified parameters, based on MSI and LC tolerance to methylation, that detected patients with CMMRD vs controls with 100% sensitivity and 100% specificity. Among 23 patients suspected of having CMMRD, 6 had MSI and LC tolerance to methylation (CMMRD highly probable), 15 had neither MSI nor LC tolerance to methylation (unlikely to have CMMRD), and 2 were considered doubtful for CMMRD based on having only 1 of the 2 features. CONCLUSION: The presence of MSI and tolerance to methylation in LCs identified patients with CMMRD with 100% sensitivity and specificity. These features could be used in diagnosis of patients.


Subject(s)
Antineoplastic Agents, Alkylating/therapeutic use , Biomarkers, Tumor/genetics , Brain Neoplasms/diagnosis , Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , Colorectal Neoplasms/diagnosis , Drug Resistance, Neoplasm , Genetic Testing , Germ-Line Mutation , Lymphocytes/drug effects , Microsatellite Instability , Neoplastic Syndromes, Hereditary/diagnosis , Adaptor Proteins, Signal Transducing/genetics , Adenosine Triphosphatases/genetics , Adult , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Caco-2 Cells , Case-Control Studies , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms, Hereditary Nonpolyposis/drug therapy , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/metabolism , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , DNA Mutational Analysis , DNA Repair Enzymes/genetics , DNA-Binding Proteins/genetics , Female , Genetic Predisposition to Disease , Genetic Testing/methods , HCT116 Cells , Heredity , Humans , Lymphocytes/metabolism , Male , Methylation , Mismatch Repair Endonuclease PMS2 , Multiplex Polymerase Chain Reaction , MutL Protein Homolog 1 , MutS Homolog 2 Protein/genetics , Neoplastic Syndromes, Hereditary/drug therapy , Neoplastic Syndromes, Hereditary/genetics , Neoplastic Syndromes, Hereditary/metabolism , Neoplastic Syndromes, Hereditary/pathology , Nuclear Proteins/genetics , Phenotype , Predictive Value of Tests , Reproducibility of Results , Transfection , Young Adult
12.
J Med Genet ; 52(7): 498-502, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25908759

ABSTRACT

BACKGROUND: The prevalence of MLH1 constitutional epimutations in the general population is unknown. We sought to analyse the prevalence of MLH1 constitutional epimutations in unselected and selected series of patients with colorectal cancer (CRC). METHODS: Patients with diagnoses of CRC (n=2123) were included in the unselected group. For comparison, a group of 847 selected patients with CRC who fulfilled the revised Bethesda guidelines (rBG) were also included. Somatic and constitutional MLH1 methylation was assayed via methylation-specific multiplex ligation-dependent probe amplification of cases lacking MLH1 expression. Germline alterations in mismatch-repair (MMR) genes were assessed via Sanger sequencing and methylation-specific multiplex ligation-dependent probe amplification. RESULTS: Loss of MLH1 expression occurred in 5.5% of the unselected series and 12.5% of the selected series (p<0.0001). No constitutional epimutations in MLH1 were detected in the unselected population (0/62); five cases from the selected series were positive for MLH1 epimutations (15.6%, 5/32; p=0.004). CONCLUSIONS: Our results suggest a negligible prevalence of MLH1 constitutional epimutations in unselected cases of CRC. Therefore, MLH1 constitutional epimutation analysis should be conducted only for patients who fulfil the rBG and who lack MLH1 expression with methylated MLH1.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/epidemiology , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Mutation/genetics , Nuclear Proteins/genetics , Base Sequence , DNA Mismatch Repair/genetics , Genetic Testing/standards , Humans , Microsatellite Repeats/genetics , Molecular Sequence Data , MutL Protein Homolog 1 , Prevalence , Promoter Regions, Genetic/genetics , Sequence Analysis, DNA , Statistics, Nonparametric
13.
Gut ; 64(1): 111-20, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24647007

ABSTRACT

OBJECTIVE: Capecitabine is an oral 5-fluorouracil (5-FU) pro-drug commonly used to treat colorectal carcinoma and other tumours. About 35% of patients experience dose-limiting toxicity. The few proven genetic biomarkers of 5-FU toxicity are rare variants and polymorphisms, respectively, at candidate loci dihydropyrimidine dehydrogenase (DPYD) and thymidylate synthase (TYMS). DESIGN: We investigated 1456 polymorphisms and rare coding variants near 25 candidate 5-FU pathway genes in 968 UK patients from the QUASAR2 clinical trial. RESULTS: We identified the first common DPYD polymorphisms to be consistently associated with capecitabine toxicity, rs12132152 (toxicity allele frequency (TAF)=0.031, OR=3.83, p=4.31×10(-6)) and rs12022243 (TAF=0.196, OR=1.69, p=2.55×10(-5)). rs12132152 was particularly strongly associated with hand-foot syndrome (OR=6.1, p=3.6×10(-8)). The rs12132152 and rs12022243 associations were independent of each other and of previously reported DPYD toxicity variants. Next-generation sequencing additionally identified rare DPYD variant p.Ala551Thr in one patient with severe toxicity. Using functional predictions and published data, we assigned p.Ala551Thr as causal for toxicity. We found that polymorphism rs2612091, which lies within an intron of ENOSF1, was also associated with capecitabine toxicity (TAF=0.532, OR=1.59, p=5.28×10(-6)). ENSOF1 is adjacent to TYMS and there is a poorly characterised regulatory interaction between the two genes/proteins. Unexpectedly, rs2612091 fully explained the previously reported associations between capecitabine toxicity and the supposedly functional TYMS variants, 5'VNTR 2R/3R and 3'UTR 6 bp ins-del. rs2612091 genotypes were, moreover, consistently associated with ENOSF1 mRNA levels, but not with TYMS expression. CONCLUSIONS: DPYD harbours rare and common capecitabine toxicity variants. The toxicity polymorphism in the TYMS region may actually act through ENOSF1.


Subject(s)
Antimetabolites, Antineoplastic/adverse effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Deoxycytidine/analogs & derivatives , Dihydrouracil Dehydrogenase (NADP)/genetics , Fluorouracil/analogs & derivatives , Genetic Association Studies , Polymorphism, Genetic , Proteins/genetics , Thymidylate Synthase/genetics , Adult , Aged , Aged, 80 and over , Capecitabine , Deoxycytidine/adverse effects , Female , Fluorouracil/adverse effects , Humans , Hydro-Lyases , Male , Middle Aged , Young Adult
14.
Int J Cancer ; 137(8): 1870-8, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-25855579

ABSTRACT

Thyroid cancer is the most heritable cancer of all those not displaying typical Mendelian inheritance. However, most of the genetic factors that would explain the high heritability remain unknown. Our aim was to identify additional common genetic variants associated with susceptibility to this disease. In order to do so, we performed a genome-wide association study in a series of 398 cases and 502 controls from Spain, followed by a replication in four well-defined Southern European case-control collections contributing a total of 1,422 cases and 1,908 controls. The association between the variation at the 9q22 locus near FOXE1 and thyroid cancer risk was consistent across all series, with several SNPs identified (rs7028661: OR = 1.64, p = 1.0 × 10(-22) , rs7037324: OR = 1.54, p = 1.2 × 10(-17) ). Moreover, the rare alleles of three SNPs (rs2997312, rs10788123 and rs1254167) at 10q26.12 showed suggestive evidence of association with higher risk of the disease (OR = 1.35, p = 1.2 × 10(-04) , OR = 1.26, p = 5.2 × 10(-04) and OR = 1.38, p = 5.9 × 10(-05) , respectively). Finally, the rare allele of rs4075570 at 6q14.1 conferred protection in the series studied (OR = 0.82, p = 2.0 × 10(-04) ). This study suggests that heterogeneity in genetic susceptibility between populations is a key feature to take into account when exploring genetic risk factors related to this disease.


Subject(s)
Chromosomes, Human, Pair 10/genetics , Chromosomes, Human, Pair 6/genetics , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Thyroid Neoplasms/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Case-Control Studies , Child , Female , Genetic Heterogeneity , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Spain , Young Adult
15.
Genet Med ; 17(2): 131-42, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25058500

ABSTRACT

PURPOSE: Colorectal cancer is an important cause of mortality in the developed world. Hereditary forms are due to germ-line mutations in APC, MUTYH, and the mismatch repair genes, but many cases present familial aggregation but an unknown inherited cause. The hypothesis of rare high-penetrance mutations in new genes is a likely explanation for the underlying predisposition in some of these familial cases. METHODS: Exome sequencing was performed in 43 patients with colorectal cancer from 29 families with strong disease aggregation without mutations in known hereditary colorectal cancer genes. Data analysis selected only very rare variants (0-0.1%), producing a putative loss of function and located in genes with a role compatible with cancer. Variants in genes previously involved in hereditary colorectal cancer or nearby previous colorectal cancer genome-wide association study hits were also chosen. RESULTS: Twenty-eight final candidate variants were selected and validated by Sanger sequencing. Correct family segregation and somatic studies were used to categorize the most interesting variants in CDKN1B, XRCC4, EPHX1, NFKBIZ, SMARCA4, and BARD1. CONCLUSION: We identified new potential colorectal cancer predisposition variants in genes that have a role in cancer predisposition and are involved in DNA repair and the cell cycle, which supports their putative involvement in germ-line predisposition to this neoplasm.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms/genetics , Exome , Genetic Predisposition to Disease , Genetic Variation , High-Throughput Nucleotide Sequencing , Genetic Counseling , Germ-Line Mutation , Humans , Loss of Heterozygosity , Male , Pedigree , Reproducibility of Results
16.
J Med Genet ; 51(6): 355-65, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24737826

ABSTRACT

Constitutional mismatch repair deficiency (CMMRD) syndrome is a distinct childhood cancer predisposition syndrome that results from biallelic germline mutations in one of the four MMR genes, MLH1, MSH2, MSH6 or PMS2. The tumour spectrum is very broad, including mainly haematological, brain and intestinal tract tumours. Patients show a variety of non-malignant features that are indicative of CMMRD. However, currently no criteria that should entail diagnostic evaluation of CMMRD exist. We present a three-point scoring system for the suspected diagnosis CMMRD in a paediatric/young adult cancer patient. Tumours highly specific for CMMRD syndrome are assigned three points, malignancies overrepresented in CMMRD two points and all other malignancies one point. According to their specificity for CMMRD and their frequency in the general population, additional features are weighted with 1-2 points. They include multiple hyperpigmented and hypopigmented skin areas, brain malformations, pilomatricomas, a second childhood malignancy, a Lynch syndrome (LS)-associated tumour in a relative and parental consanguinity. According to the scoring system, CMMRD should be suspected in any cancer patient who reaches a minimum of three points by adding the points of the malignancy and the additional features. The diagnostic steps to confirm or refute the suspected diagnosis are outlined. We expect that application of the suggested strategy for CMMRD diagnosis will increase the number of patients being identified at the time when they develop their first tumour. This will allow adjustment of the treatment modalities, offering surveillance strategies for second malignancies and appropriate counselling of the entire family.


Subject(s)
Neoplastic Syndromes, Hereditary , Brain Neoplasms , Colorectal Neoplasms , Colorectal Neoplasms, Hereditary Nonpolyposis , Europe , Humans , Neoplastic Syndromes, Hereditary/diagnosis , Neoplastic Syndromes, Hereditary/genetics , Neoplastic Syndromes, Hereditary/physiopathology , Pigmentation Disorders
17.
Hum Mol Genet ; 21(4): 934-46, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22076443

ABSTRACT

In genome-wide association studies (GWASs) of colorectal cancer, we have identified two genomic regions in which pairs of tagging-single nucleotide polymorphisms (tagSNPs) are associated with disease; these comprise chromosomes 1q41 (rs6691170, rs6687758) and 12q13.13 (rs7163702, rs11169552). We investigated these regions further, aiming to determine whether they contain more than one independent association signal and/or to identify the SNPs most strongly associated with disease. Genotyping of additional sample sets at the original tagSNPs showed that, for both regions, the two tagSNPs were unlikely to identify a single haplotype on which the functional variation lay. Conversely, one of the pair of SNPs did not fully capture the association signal in each region. We therefore undertook more detailed analyses, using imputation, logistic regression, genealogical analysis using the GENECLUSTER program and haplotype analysis. In the 1q41 region, the SNP rs11118883 emerged as a strong candidate based on all these analyses, sufficient to account for the signals at both rs6691170 and rs6687758. rs11118883 lies within a region with strong evidence of transcriptional regulatory activity and has been associated with expression of PDGFRB mRNA. For 12q13.13, a complex situation was found: SNP rs7972465 showed stronger association than either rs11169552 or rs7136702, and GENECLUSTER found no good evidence for a two-SNP model. However, logistic regression and haplotype analyses supported a two-SNP model, in which a signal at the SNP rs706793 was added to that at rs11169552. Post-GWAS fine-mapping studies are challenging, but the use of multiple tools can assist in identifying candidate functional variants in at least some cases.


Subject(s)
Chromosomes, Human, Pair 12/genetics , Chromosomes, Human, Pair 1/genetics , Colorectal Neoplasms/genetics , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide/genetics , Chromosome Mapping , Computational Biology , Genome-Wide Association Study , Genotyping Techniques , Haplotypes , Humans , Logistic Models , Software
18.
Gastroenterology ; 144(5): 926-932.e1; quiz e13-4, 2013 May.
Article in English | MEDLINE | ID: mdl-23354017

ABSTRACT

BACKGROUND & AIMS: Colorectal cancers (CRCs) with microsatellite instability (MSI) and a mismatch repair (MMR) immunohistochemical deficit without hypermethylation of the MLH1 promoter are likely to be caused by Lynch syndrome. Some patients with these cancers have not been found to have pathogenic germline mutations and are considered to have Lynch-like syndrome (LLS). The aim of this study was to determine the risk of cancer in families of patients with LLS. METHODS: We studied a population-based cohort of 1705 consecutive patients, performing MSI tests and immunohistochemical analyses of MMR proteins. Patients were diagnosed with Lynch syndrome when they were found to have pathogenic germline mutations. Patients with MSI and loss of MSH2 and/or MSH6 expression, isolated loss of PMS2 or loss of MLH1 without MLH1 promoter hypermethylation, and no pathogenic mutation were considered to have LLS. The clinical characteristics of patients and the age- and sex-adjusted standardized incidence ratios (SIRs) of cancer in families were compared between groups. RESULTS: The incidence of CRC was significantly lower in families of patients with LLS than in families with confirmed cases of Lynch syndrome (SIR for Lynch syndrome, 6.04; 95% confidence interval [CI], 3.58-9.54; SIR for LLS, 2.12; 95% CI, 1.16-3.56; P < .001). However, the incidence of CRC was higher in families of patients with LLS than in families with sporadic CRC (SIR for sporadic CRC, 0.48; 95% CI, 0.27-0.79; P < .001). CONCLUSIONS: The risk of cancer in families with LLS is lower that of families with Lynch syndrome but higher than that of families with sporadic CRC. These results confirm the need for special screening and surveillance strategies for these patients and their relatives.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/epidemiology , DNA, Neoplasm/genetics , Nuclear Proteins/genetics , Population Surveillance , Adaptor Proteins, Signal Transducing/metabolism , Adult , Aged , Aged, 80 and over , Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , DNA Mismatch Repair , DNA Repair , Female , Germ-Line Mutation , Humans , Immunohistochemistry , Incidence , Male , Microsatellite Instability , Middle Aged , MutL Protein Homolog 1 , Nuclear Proteins/metabolism , Risk Factors , Spain/epidemiology
19.
PLoS Genet ; 7(6): e1002105, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21655089

ABSTRACT

Genome-wide association studies (GWAS) have identified 14 tagging single nucleotide polymorphisms (tagSNPs) that are associated with the risk of colorectal cancer (CRC), and several of these tagSNPs are near bone morphogenetic protein (BMP) pathway loci. The penalty of multiple testing implicit in GWAS increases the attraction of complementary approaches for disease gene discovery, including candidate gene- or pathway-based analyses. The strongest candidate loci for additional predisposition SNPs are arguably those already known both to have functional relevance and to be involved in disease risk. To investigate this proposition, we searched for novel CRC susceptibility variants close to the BMP pathway genes GREM1 (15q13.3), BMP4 (14q22.2), and BMP2 (20p12.3) using sample sets totalling 24,910 CRC cases and 26,275 controls. We identified new, independent CRC predisposition SNPs close to BMP4 (rs1957636, P = 3.93×10(-10)) and BMP2 (rs4813802, P = 4.65×10(-11)). Near GREM1, we found using fine-mapping that the previously-identified association between tagSNP rs4779584 and CRC actually resulted from two independent signals represented by rs16969681 (P = 5.33×10(-8)) and rs11632715 (P = 2.30×10(-10)). As low-penetrance predisposition variants become harder to identify-owing to small effect sizes and/or low risk allele frequencies-approaches based on informed candidate gene selection may become increasingly attractive. Our data emphasise that genetic fine-mapping studies can deconvolute associations that have arisen owing to independent correlation of a tagSNP with more than one functional SNP, thus explaining some of the apparently missing heritability of common diseases.


Subject(s)
Bone Morphogenetic Protein 2/genetics , Bone Morphogenetic Protein 4/genetics , Colorectal Neoplasms/genetics , Genetic Predisposition to Disease , Intercellular Signaling Peptides and Proteins/genetics , Aged , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 4/metabolism , Case-Control Studies , Colorectal Neoplasms/metabolism , Gene Frequency , Genetic Variation , Genome-Wide Association Study , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Quantitative Trait, Heritable , Signal Transduction
20.
Gut ; 62(6): 871-81, 2013 Jun.
Article in English | MEDLINE | ID: mdl-22490517

ABSTRACT

OBJECTIVE: Colorectal cancer (CRC) has a substantial heritable component. Common genetic variation has been shown to contribute to CRC risk. A study was conducted in a large multi-population study to assess the feasibility of CRC risk prediction using common genetic variant data combined with other risk factors. A risk prediction model was built and applied to the Scottish population using available data. DESIGN: Nine populations of European descent were studied to develop and validate CRC risk prediction models. Binary logistic regression was used to assess the combined effect of age, gender, family history (FH) and genotypes at 10 susceptibility loci that individually only modestly influence CRC risk. Risk models were generated from case-control data incorporating genotypes alone (n=39,266) and in combination with gender, age and FH (n=11,324). Model discriminatory performance was assessed using 10-fold internal cross-validation and externally using 4187 independent samples. The 10-year absolute risk was estimated by modelling genotype and FH with age- and gender-specific population risks. RESULTS: The median number of risk alleles was greater in cases than controls (10 vs 9, p<2.2 × 10(-16)), confirmed in external validation sets (Sweden p=1.2 × 10(-6), Finland p=2 × 10(-5)). The mean per-allele increase in risk was 9% (OR 1.09; 95% CI 1.05 to 1.13). Discriminative performance was poor across the risk spectrum (area under curve for genotypes alone 0.57; area under curve for genotype/age/gender/FH 0.59). However, modelling genotype data, FH, age and gender with Scottish population data shows the practicalities of identifying a subgroup with >5% predicted 10-year absolute risk. CONCLUSION: Genotype data provide additional information that complements age, gender and FH as risk factors, but individualised genetic risk prediction is not currently feasible. Nonetheless, the modelling exercise suggests public health potential since it is possible to stratify the population into CRC risk categories, thereby informing targeted prevention and surveillance.


Subject(s)
Colorectal Neoplasms/genetics , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Alleles , Case-Control Studies , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/ethnology , Feasibility Studies , Female , Genotype , Humans , Logistic Models , Male , Risk Assessment , Risk Factors , Scotland/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL