Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Nature ; 509(7502): 600-3, 2014 May 29.
Article in English | MEDLINE | ID: mdl-24847888

ABSTRACT

The land and ocean act as a sink for fossil-fuel emissions, thereby slowing the rise of atmospheric carbon dioxide concentrations. Although the uptake of carbon by oceanic and terrestrial processes has kept pace with accelerating carbon dioxide emissions until now, atmospheric carbon dioxide concentrations exhibit a large variability on interannual timescales, considered to be driven primarily by terrestrial ecosystem processes dominated by tropical rainforests. We use a terrestrial biogeochemical model, atmospheric carbon dioxide inversion and global carbon budget accounting methods to investigate the evolution of the terrestrial carbon sink over the past 30 years, with a focus on the underlying mechanisms responsible for the exceptionally large land carbon sink reported in 2011 (ref. 2). Here we show that our three terrestrial carbon sink estimates are in good agreement and support the finding of a 2011 record land carbon sink. Surprisingly, we find that the global carbon sink anomaly was driven by growth of semi-arid vegetation in the Southern Hemisphere, with almost 60 per cent of carbon uptake attributed to Australian ecosystems, where prevalent La Niña conditions caused up to six consecutive seasons of increased precipitation. In addition, since 1981, a six per cent expansion of vegetation cover over Australia was associated with a fourfold increase in the sensitivity of continental net carbon uptake to precipitation. Our findings suggest that the higher turnover rates of carbon pools in semi-arid biomes are an increasingly important driver of global carbon cycle inter-annual variability and that tropical rainforests may become less relevant drivers in the future. More research is needed to identify to what extent the carbon stocks accumulated during wet years are vulnerable to rapid decomposition or loss through fire in subsequent years.


Subject(s)
Carbon Sequestration , Desert Climate , Ecosystem , Atmosphere/chemistry , Australia , Carbon Dioxide/analysis , El Nino-Southern Oscillation , Fires , Models, Theoretical , Rain , Seasons , Uncertainty
2.
Remote Sens Environ ; 247: 111901, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32943798

ABSTRACT

Remote sensing optical sensors onboard operational satellites cannot have high spectral, spatial and temporal resolutions simultaneously. In addition, clouds and aerosols can adversely affect the signal contaminating the land surface observations. We present a HIghly Scalable Temporal Adaptive Reflectance Fusion Model (HISTARFM) algorithm to combine multispectral images of different sensors to reduce noise and produce monthly gap free high resolution (30 m) observations over land. Our approach uses images from the Landsat (30 m spatial resolution and 16 day revisit cycle) and the MODIS missions, both from Terra and Aqua platforms (500 m spatial resolution and daily revisit cycle). We implement a bias-aware Kalman filter method in the Google Earth Engine (GEE) platform to obtain fused images at the Landsat spatial-resolution. The added bias correction in the Kalman filter estimates accounts for the fact that both model and observation errors are temporally auto-correlated and may have a non-zero mean. This approach also enables reliable estimation of the uncertainty associated with the final reflectance estimates, allowing for error propagation analyses in higher level remote sensing products. Quantitative and qualitative evaluations of the generated products through comparison with other state-of-the-art methods confirm the validity of the approach, and open the door to operational applications at enhanced spatio-temporal resolutions at broad continental scales.

3.
PLoS Biol ; 13(6): e1002167, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26061091

ABSTRACT

Ongoing climate change can alter conditions for plant growth, in turn affecting ecological and social systems. While there have been considerable advances in understanding the physical aspects of climate change, comprehensive analyses integrating climate, biological, and social sciences are less common. Here we use climate projections under alternative mitigation scenarios to show how changes in environmental variables that limit plant growth could impact ecosystems and people. We show that although the global mean number of days above freezing will increase by up to 7% by 2100 under "business as usual" (representative concentration pathway [RCP] 8.5), suitable growing days will actually decrease globally by up to 11% when other climatic variables that limit plant growth are considered (i.e., temperature, water availability, and solar radiation). Areas in Russia, China, and Canada are projected to gain suitable plant growing days, but the rest of the world will experience losses. Notably, tropical areas could lose up to 200 suitable plant growing days per year. These changes will impact most of the world's terrestrial ecosystems, potentially triggering climate feedbacks. Human populations will also be affected, with up to ~2,100 million of the poorest people in the world (~30% of the world's population) highly vulnerable to changes in the supply of plant-related goods and services. These impacts will be spatially variable, indicating regions where adaptations will be necessary. Changes in suitable plant growing days are projected to be less severe under strong and moderate mitigation scenarios (i.e., RCP 2.6 and RCP 4.5), underscoring the importance of reducing emissions to avoid such disproportionate impacts on ecosystems and people.


Subject(s)
Climate Change , Ecosystem , Plant Development , Agriculture , Humans
4.
Ecology ; 97(11): 3184-3194, 2016 11.
Article in English | MEDLINE | ID: mdl-27870038

ABSTRACT

Stability in population dynamics is an emergent property of the interaction between direct and delayed density dependence, the strengths of which vary with environmental covariates. Analysis of variation across populations in the strength of direct and delayed density dependence can reveal variation in stability properties of populations at the species level. We examined the stability properties of 22 elk/red deer populations in a two-stage analysis. First, we estimated direct and delayed density dependence applying an AR(2) model in a Bayesian hierarchical framework. Second, we plotted the coefficients of direct and delayed density dependence in the Royama parameter plane. We then used a hierarchical approach to test the significance of environmental covariates of direct and delayed density dependence. Three populations exhibited highly stable and convergent dynamics with strong direct, and weak delayed, density dependence. The remaining 19 populations exhibited more complex dynamics characterized by multi-annual fluctuations. Most (15 of 19) of these exhibited a combination of weak to moderate direct and delayed density dependence. Best-fit models included environmental covariates in 17 populations (77% of the total). Of these, interannual variation in growing-season primary productivity and interannual variation in winter temperature were the most common, performing as the best-fit covariate in six and five populations, respectively. Interannual variation in growing-season primary productivity was associated with the weakest combination of direct and delayed density dependence, while interannual variation in winter temperature was associated with the strongest combination of direct and delayed density dependence. These results accord with a classic theoretical prediction that environmental variability should weaken population stability. They furthermore suggest that two forms of environmental variability, one related to forage resources and the other related to abiotic conditions, both reduce stability, but in opposing fashion: one through weakened direct density dependence and the other through strengthened delayed density dependence. Importantly, however, no single abiotic or biotic environmental factor emerged as generally predictive of the strengths of direct or delayed density dependence, nor of the stability properties emerging from their interaction. Our results emphasize the challenges inherent to ascribing primacy to drivers of such parameters at the species level and distribution scale.


Subject(s)
Animal Distribution/physiology , Deer/physiology , Ecosystem , Animals , Bayes Theorem , Deer/classification , Models, Biological , Population Dynamics , Species Specificity
5.
Proc Natl Acad Sci U S A ; 110(18): 7360-5, 2013 Apr 30.
Article in English | MEDLINE | ID: mdl-23589881

ABSTRACT

Most examples of seasonal mismatches in phenology span multiple trophic levels, with timing of animal reproduction, hibernation, or migration becoming detached from peak food supply. The consequences of such mismatches are difficult to link to specific future climate change scenarios because the responses across trophic levels have complex underlying climate drivers often confounded by other stressors. In contrast, seasonal coat color polyphenism creating camouflage against snow is a direct and potentially severe type of seasonal mismatch if crypsis becomes compromised by the animal being white when snow is absent. It is unknown whether plasticity in the initiation or rate of coat color change will be able to reduce mismatch between the seasonal coat color and an increasingly snow-free background. We find that natural populations of snowshoe hares exposed to 3 y of widely varying snowpack have plasticity in the rate of the spring white-to-brown molt, but not in either the initiation dates of color change or the rate of the fall brown-to-white molt. Using an ensemble of locally downscaled climate projections, we also show that annual average duration of snowpack is forecast to decrease by 29-35 d by midcentury and 40-69 d by the end of the century. Without evolution in coat color phenology, the reduced snow duration will increase the number of days that white hares will be mismatched on a snowless background by four- to eightfold by the end of the century. This novel and visually compelling climate change-induced stressor likely applies to >9 widely distributed mammals with seasonal coat color.


Subject(s)
Adaptation, Physiological , Hares/physiology , Seasons , Skin Pigmentation/physiology , Snow , Animals , Models, Biological , Montana
6.
Proc Natl Acad Sci U S A ; 110(31): 12733-7, 2013 Jul 30.
Article in English | MEDLINE | ID: mdl-23861492

ABSTRACT

Nitrogen (N) and phosphorus (P) availability regulate plant productivity throughout the terrestrial biosphere, influencing the patterns and magnitude of net primary production (NPP) by land plants both now and into the future. These nutrients enter ecosystems via geologic and atmospheric pathways and are recycled to varying degrees through the plant-soil-microbe system via organic matter decay processes. However, the proportion of global NPP that can be attributed to new nutrient inputs versus recycled nutrients is unresolved, as are the large-scale patterns of variation across terrestrial ecosystems. Here, we combined satellite imagery, biogeochemical modeling, and empirical observations to identify previously unrecognized patterns of new versus recycled nutrient (N and P) productivity on land. Our analysis points to tropical forests as a hotspot of new NPP fueled by new N (accounting for 45% of total new NPP globally), much higher than previous estimates from temperate and high-latitude regions. The large fraction of tropical forest NPP resulting from new N is driven by the high capacity for N fixation, although this varies considerably within this diverse biome; N deposition explains a much smaller proportion of new NPP. By contrast, the contribution of new N to primary productivity is lower outside the tropics, and worldwide, new P inputs are uniformly low relative to plant demands. These results imply that new N inputs have the greatest capacity to fuel additional NPP by terrestrial plants, whereas low P availability may ultimately constrain NPP across much of the terrestrial biosphere.


Subject(s)
Ecosystem , Models, Biological , Nitrogen/metabolism , Phosphorus/metabolism , Trees/physiology , Tropical Climate , Soil , Soil Microbiology
7.
Ecol Appl ; 24(3): 484-502, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24834735

ABSTRACT

Many protected areas may not be adequately safeguarding biodiversity from human activities on surrounding lands and global change. The magnitude of such change agents and the sensitivity of ecosystems to these agents vary among protected areas. Thus, there is a need to assess vulnerability across networks of protected areas to determine those most at risk and to lay the basis for developing effective adaptation strategies. We conducted an assessment of exposure of U.S. National Parks to climate and land use change and consequences for vegetation communities. We first defined park protected-area centered ecosystems (PACEs) based on ecological principles. We then drew on existing land use, invasive species, climate, and biome data sets and models to quantify exposure of PACEs from 1900 through 2100. Most PACEs experienced substantial change over the 20th century (> 740% average increase in housing density since 1940, 13% of vascular plants are presently nonnative, temperature increase of 1 degree C/100 yr since 1895 in 80% of PACEs), and projections suggest that many of these trends will continue at similar or increasingly greater rates (255% increase in housing density by 2100, temperature increase of 2.5 degrees-4.5 degrees C/100 yr, 30% of PACE areas may lose their current biomes by 2030). In the coming century, housing densities are projected to increase in PACEs at about 82% of the rate of since 1940. The rate of climate warming in the coming century is projected to be 2.5-5.8 times higher than that measured in the past century. Underlying these averages, exposure of individual park PACEs to change agents differ in important ways. For example, parks such as Great Smoky Mountains exhibit high land use and low climate exposure, others such as Great Sand Dunes exhibit low land use and high climate exposure, and a few such as Point Reyes exhibit high exposure on both axes. The cumulative and synergistic effects of such changes in land use, invasives, and climate are expected to dramatically impact ecosystem function and biodiversity in national parks. These results are foundational to developing effective adaptation strategies and suggest policies to better safeguard parks under broad-scale environmental change.


Subject(s)
Climate Change , Conservation of Natural Resources/methods , Ecosystem , Adaptation, Physiological , Animals , Human Activities , Humans , Introduced Species , Models, Theoretical , Time Factors , United States
8.
Environ Sci Technol ; 46(6): 3536-44, 2012 Mar 20.
Article in English | MEDLINE | ID: mdl-22321165

ABSTRACT

United States (U.S.) energy policy includes an expectation that bioenergy will be a substantial future energy source. In particular, the Energy Independence and Security Act of 2007 (EISA) aims to increase annual U.S. biofuel (secondary bioenergy) production by more than 3-fold, from 40 to 136 billion liters ethanol, which implies an even larger increase in biomass demand (primary energy), from roughly 2.9 to 7.4 EJ yr(-1). However, our understanding of many of the factors used to establish such energy targets is far from complete, introducing significgant uncertainty into the feasibility of current estimates of bioenergy potential. Here, we utilized satellite-derived net primary productivity (NPP) data-measured for every 1 km(2) of the 7.2 million km(2) of vegetated land in the conterminous U.S.-to estimate primary bioenergy potential (PBP). Our results indicate that PBP of the conterminous U.S. ranges from roughly 5.9 to 22.2 EJ yr(-1), depending on land use. The low end of this range represents the potential when harvesting residues only, while the high end would require an annual biomass harvest over an area more than three times current U.S. agricultural extent. While EISA energy targets are theoretically achievable, we show that meeting these targets utilizing current technology would require either an 80% displacement of current crop harvest or the conversion of 60% of rangeland productivity. Accordingly, realistically constrained estimates of bioenergy potential are critical for effective incorporation of bioenergy into the national energy portfolio.


Subject(s)
Biofuels/supply & distribution , Agriculture , Satellite Communications , Trees , United States
9.
Sci Adv ; 7(9)2021 02.
Article in English | MEDLINE | ID: mdl-33637524

ABSTRACT

Empirical vegetation indices derived from spectral reflectance data are widely used in remote sensing of the biosphere, as they represent robust proxies for canopy structure, leaf pigment content, and, subsequently, plant photosynthetic potential. Here, we generalize the broad family of commonly used vegetation indices by exploiting all higher-order relations between the spectral channels involved. This results in a higher sensitivity to vegetation biophysical and physiological parameters. The presented nonlinear generalization of the celebrated normalized difference vegetation index (NDVI) consistently improves accuracy in monitoring key parameters, such as leaf area index, gross primary productivity, and sun-induced chlorophyll fluorescence. Results suggest that the statistical approach maximally exploits the spectral information and addresses long-standing problems in satellite Earth Observation of the terrestrial biosphere. The nonlinear NDVI will allow more accurate measures of terrestrial carbon source/sink dynamics and potentials for stabilizing atmospheric CO2 and mitigating global climate change.

10.
Ecol Appl ; 20(5): 1302-19, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20666251

ABSTRACT

Climate change has altered the environment in which forests grow, and climate change models predict more severe alterations to come. Forests have already responded to these changes, and the future temperature and precipitation scenarios are of foremost concern, especially in the mountainous western United States, where forests occur in the dry environments that interface with grasslands. The objective of this study was to understand the trade-offs between temperature and water controls on these forested sites in the context of available climate projections. Three temperature and precipitation scenarios from IPCC AR4 AOGCMs ranging in precipitation levels were input to the process model Biome-BGC for key forested sites in the northern U.S. Rocky Mountains. Despite the omission of natural and human-caused disturbances in our simulations, our results show consequential effects from these conservative future temperature and precipitation scenarios. According to these projections, if future precipitation and temperatures are similar to or drier than the dry scenario depicted here, high-elevation forests on both the drier and wetter sites, which have in the absence of disturbance accumulated carbon, will reduce their carbon accumulation. Under the marginally drier climate projections, most forests became carbon sources by the end of the simulation horizon (2089). Under all three scenarios, growing season lengthened, the number of days with snow on the ground decreased, peak snow occurred earlier, and water stress increased through the projection horizon (1950-2089) for all sites, which represent the temperature and precipitation spectrum of forests in this region. The quantity, form, and timing of precipitation ultimately drive the carbon accumulation trajectory of forests in this region.


Subject(s)
Carbon , Trees , Climate
11.
Environ Manage ; 46(3): 404-10, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20703877

ABSTRACT

Net primary productivity (NPP) is one of the major ecosystem products on which human societies rely heavily. However, rapid urban sprawl and its associated dense population and economic conditions have generated great pressure on natural resources, food security, and environments. It is valuable to understand how urban expansion and associated demographic and economic conditions affect ecosystem functions. This research conducted a case study in Southeastern China to examine the impacts of urban expansion and demographic and economic conditions on NPP. The data sources used in research include human settlement developed through a combination of MODIS, DMSP-OLS and Landsat ETM+ images, the annual NPP from MODIS, and the population and gross domestic product (GDP) from the 2000 census data. Multiple regression analysis and nonlinear regression analysis were used to examine the relationships of NPP with settlement, population and GDP. This research indicates that settlement, population and GDP have strongly negative correlation with NPP in Southeastern China, but the outcomes were nonlinear when population or GDP reached certain thresholds.


Subject(s)
Ecosystem , Urbanization , China , Humans , Population Growth
12.
Sci Rep ; 8(1): 2870, 2018 02 12.
Article in English | MEDLINE | ID: mdl-29434266

ABSTRACT

Plant traits are both responsive to local climate and strong predictors of primary productivity. We hypothesized that future climate change might promote a shift in global plant traits resulting in changes in Gross Primary Productivity (GPP). We characterized the relationship between key plant traits, namely Specific Leaf Area (SLA), height, and seed mass, and local climate and primary productivity. We found that by 2070, tropical and arid ecosystems will be more suitable for plants with relatively lower canopy height, SLA and seed mass, while far northern latitudes will favor woody and taller plants than at present. Using a network of tower eddy covariance CO2 flux measurements and the extrapolated plant trait maps, we estimated the global distribution of annual GPP under current and projected future plant community distribution. We predict that annual GPP in northern biomes (≥45 °N) will increase by 31% (+8.1 ± 0.5 Pg C), but this will be offset by a 17.9% GPP decline in the tropics (-11.8 ± 0.84 Pg C). These findings suggest that regional climate changes will affect plant trait distributions, which may in turn affect global productivity patterns.


Subject(s)
Plant Leaves/physiology , Algorithms , Climate Change , Ecosystem , Plant Physiological Phenomena
13.
Ecol Appl ; 17(1): 235-50, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17479848

ABSTRACT

The timing, location, and magnitude of major disturbance events are currently major uncertainties in the global carbon cycle. Accurate information on the location, spatial extent, and duration of disturbance at the continental scale is needed to evaluate the ecosystem impacts of land cover changes due to wildfire, insect epidemics, flooding, climate change, and human-triggered land use. This paper describes an algorithm developed to serve as an automated, economical, systematic disturbance detection index for global application using Moderate Resolution Imaging Spectroradiometer (MODIS)/Aqua Land Surface Temperature (LST) and Terra/MODIS Enhanced Vegetation Index (EVI) data from 2003 to 2004. The algorithm is based on the consistent radiometric relationship between LST and EVI computed on a pixel-by-pixel basis. We used annual maximum composite LST data to detect fundamental changes in land-surface energy partitioning, while avoiding the high natural variability associated with tracking LST at daily, weekly, or seasonal time frames. Verification of potential disturbance events from our algorithm was carried out by demonstration of close association with independently confirmed, well-documented historical wildfire events throughout the study domain. We also examined the response of the disturbance index to irrigation by comparing a heavily irrigated poplar tree farm to the adjacent semiarid vegetation. Anomalous disturbance results were further examined by association with precipitation variability across areas of the study domain known for large interannual vegetation variability. The results illustrate that our algorithm is capable of detecting the location and spatial extent of wildfire with precision, is sensitive to the incremental process of recovery of disturbed landscapes, and shows strong sensitivity to irrigation. Disturbance detection in areas with high interannual variability of precipitation will benefit from a multiyear data set to better separate natural variability from true disturbance.


Subject(s)
Climate , Conservation of Natural Resources , Algorithms , Ecosystem , Uncertainty , United States
14.
Sci Total Environ ; 362(1-3): 85-102, 2006 Jun 01.
Article in English | MEDLINE | ID: mdl-16364407

ABSTRACT

We used a terrestrial ecosystem process model, BIOME-BGC, to investigate historical climate change and fire disturbance effects on regional carbon and water budgets within a 357,500 km(2) portion of the Canadian boreal forest. Historical patterns of increasing atmospheric CO2, climate change, and regional fire activity were used as model drivers to evaluate the relative effects of these impacts to spatial patterns and temporal trends in forest net primary production (NPP) and evapotranspiration (ET). Historical trends of increasing atmospheric CO2 resulted in overall 13% and 5% increases in annual NPP and ET from 1994 to 1996, respectively. NPP was found to be relatively sensitive to changes in air temperature (T(a)), while ET was more sensitive to precipitation (P) change within the ranges of observed climate variability (e.g., +/-2 degrees C for T(a) and +/-20% for P). In addition, the potential effect of climate change related warming on NPP is exacerbated or offset depending on whether these changes are accompanied by respective decreases or increases in precipitation. Historical fire activity generally resulted in reductions of both NPP and ET, which consumed an average of approximately 6% of annual NPP from 1959 to 1996. Areas currently occupied by dry conifer forests were found to be subject to more frequent fire activity, which consumed approximately 8% of annual NPP. The results of this study show that the North American boreal ecosystem is sensitive to historical patterns of increasing atmospheric CO2, climate change and regional fire activity. The relative impacts of these disturbances on NPP and ET interact in complex ways and are spatially variable depending on regional land cover and climate gradients.


Subject(s)
Carbon Dioxide , Fires , Greenhouse Effect , Models, Theoretical , Trees/growth & development , Canada , Carbon , Climate , Reproducibility of Results , Trees/metabolism , Water , Weather
15.
Nat Commun ; 7: 10315, 2016 Jan 18.
Article in English | MEDLINE | ID: mdl-26777730

ABSTRACT

Large-scale climate patterns control variability in the global carbon sink. In Europe, the North-Atlantic Oscillation (NAO) influences vegetation activity, however the East-Atlantic (EA) pattern is known to modulate NAO strength and location. Using observation-driven and modelled data sets, we show that multi-annual variability patterns of European Net Biome Productivity (NBP) are linked to anomalies in heat and water transport controlled by the NAO-EA interplay. Enhanced NBP occurs when NAO and EA are both in negative phase, associated with cool summers with wet soils which enhance photosynthesis. During anti-phase periods, NBP is reduced through distinct impacts of climate anomalies in photosynthesis and respiration. The predominance of anti-phase years in the early 2000s may explain the European-wide reduction of carbon uptake during this period, reported in previous studies. Results show that improving the capability of simulating atmospheric circulation patterns may better constrain regional carbon sink variability in coupled carbon-climate models.

16.
Tree Physiol ; 25(6): 689-99, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15805089

ABSTRACT

The relationship between photosynthesis and accumulated cold degree days (CDD) over the late growing season was examined at the shoot, ecosystem and landscape scales in a boreal cutover in eastern Canada predominated by black spruce (Picea mariana Mill. BSP), lowbush blueberry (Vaccinium angustifolium Ait.) and sheep laurel (Kalmia angustifolia L.). We calculated CDD as the sum of minimum daily temperatures below a 5 degrees C threshold. Light-saturated photosynthesis at the shoot level (A(max)) of black spruce and V. angustifolium decreased steadily with increasing CDD once temperatures below the CDD threshold value became frequent in mid-September, whereas K. angustifolia showed a more irregular pattern. Tissue acclimation played an important role in the decrease in A(max) as the season progressed, but only V. angustifolium showed decreasing foliar nitrogen concentrations. Based on eddy covariance flux tower data, maximum daily gross primary productivity (GPP(max)-tower) at the ecosystem level was more strongly related to CDD (r(2) = 0.59) than was maximum daily net ecosystem exchange (r(2) = 0.32). The GPP(max) was likely influenced by both tissue acclimation and the direct effects of changing temperatures and irradiances on physiological rates. Mean daily GPP, calculated for consecutive 8-day periods for a 25 km(2) area around the tower by the MODIS MOD17A2 Collection 4 satellite algorithm (GPP- MODIS), decreased more rapidly with increasing CDD than did GPP(max)-tower. Although GPP-MODIS was closely correlated with mean daily GPP from the tower (GPP(daily)-tower, r(2) = 0.95) over the late growing season, the former was about twice as high. Although MODIS estimates of air temperature closely tracked the ground data, the maximum light-use efficiency parameter used by the MODIS algorithm was much higher than that indicated by the tower measurements. There was a 3% decline in GPP(max)-tower with an increase of 10 CDD, corresponding to the percent decline in branch-level A(max) of black spruce and V. angustifolium.


Subject(s)
Ericaceae/physiology , Photosynthesis , Picea/physiology , Seasons , Vaccinium/physiology , Algorithms , Canada , Cold Temperature , Ecosystem , Ericaceae/growth & development , Ericaceae/metabolism , Light , Models, Biological , Nitrogen/metabolism , Picea/growth & development , Picea/metabolism , Plant Shoots/growth & development , Plant Shoots/metabolism , Plant Shoots/physiology , Vaccinium/growth & development , Vaccinium/metabolism
17.
Sci Rep ; 5: 15956, 2015 Oct 30.
Article in English | MEDLINE | ID: mdl-26514110

ABSTRACT

Recent studies showed that anomalous dry conditions and limited moisture supply roughly between 1998 and 2008, especially in the Southern Hemisphere, led to reduced vegetation productivity and ceased growth in land evapotranspiration (ET). However, natural variability of Earth's climate system can degrade capabilities for identifying climate trends. Here we produced a long-term (1982-2013) remote sensing based land ET record and investigated multidecadal changes in global ET and underlying causes. The ET record shows a significant upward global trend of 0.88 mm yr(-2) (P < 0.001) over the 32-year period, mainly driven by vegetation greening (0.018% per year; P < 0.001) and rising atmosphere moisture demand (0.75 mm yr(-2); P = 0.016). Our results indicate that reduced ET growth between 1998 and 2008 was an episodic phenomenon, with subsequent recovery of the ET growth rate after 2008. Terrestrial precipitation also shows a positive trend of 0.66 mm yr(-2) (P = 0.08) over the same period consistent with expected water cycle intensification, but this trend is lower than coincident increases in evaporative demand and ET, implying a possibility of cumulative water supply constraint to ET. Continuation of these trends will likely exacerbate regional drought-induced disturbances, especially during regional dry climate phases associated with strong El Niño events.


Subject(s)
Climate Change , Algorithms , Atmosphere , Carbon Dioxide/metabolism , Crops, Agricultural/growth & development , Droughts , El Nino-Southern Oscillation , Water/chemistry , Water/metabolism
18.
Oecologia ; 101(2): 133-140, 1995 Feb.
Article in English | MEDLINE | ID: mdl-28306783

ABSTRACT

We estimate maintenance respiration for boles of four temperate conifers (ponderosa pine, western hemlock, red pine, and slash pine) from CO2 efflux measurements in autumn, when construction respiration is low or negligible. Maintenance respiration of stems was linearly related to sapwood volume for all species; at 10°C, respiration per unit sapwood volume ranged from 4.8 to 8.3 µmol CO2 m-3 s-1. For all sites combined, respiration increased exponentially with temperature (Q 10 =1.7, r 2=0.78). We estimate that maintenance respiration of aboveground woody tissues of these conifers consumes 52-162 g C m-2 y-1, or 5-13% of net daytime carbon assimilation annually. The fraction of annual net daytime carbon fixation used for stem maintenance respiration increased linearly with the average annual temperature of the site.

19.
Oecologia ; 114(3): 389-404, 1998 Apr.
Article in English | MEDLINE | ID: mdl-28307783

ABSTRACT

Although there is a great deal of information concerning responses to increases in atmospheric CO2 at the tissue and plant levels, there are substantially fewer studies that have investigated ecosystem-level responses in the context of integrated carbon, water, and nutrient cycles. Because our understanding of ecosystem responses to elevated CO2 is incomplete, modeling is a tool that can be used to investigate the role of plant and soil interactions in the response of terrestrial ecosystems to elevated CO2. In this study, we analyze the responses of net primary production (NPP) to doubled CO2 from 355 to 710 ppmv among three biogeochemistry models in the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP): BIOME-BGC (BioGeochemical Cycles), Century, and the Terrestrial Ecosystem Model (TEM). For the conterminous United States, doubled atmospheric CO2 causes NPP to increase by 5% in Century, 8% in TEM, and 11% in BIOME-BGC. Multiple regression analyses between the NPP response to doubled CO2 and the mean annual temperature and annual precipitation of biomes or grid cells indicate that there are negative relationships between precipitation and the response of NPP to doubled CO2 for all three models. In contrast, there are different relationships between temperature and the response of NPP to doubled CO2 for the three models: there is a negative relationship in the responses of BIOME-BGC, no relationship in the responses of Century, and a positive relationship in the responses of TEM. In BIOME-BGC, the NPP response to doubled CO2 is controlled by the change in transpiration associated with reduced leaf conductance to water vapor. This change affects soil water, then leaf area development and, finally, NPP. In Century, the response of NPP to doubled CO2 is controlled by changes in decomposition rates associated with increased soil moisture that results from reduced evapotranspiration. This change affects nitrogen availability for plants, which influences NPP. In TEM, the NPP response to doubled CO2 is controlled by increased carboxylation which is modified by canopy conductance and the degree to which nitrogen constraints cause down-regulation of photosynthesis. The implementation of these different mechanisms has consequences for the spatial pattern of NPP responses, and represents, in part, conceptual uncertainty about controls over NPP responses. Progress in reducing these uncertainties requires research focused at the ecosystem level to understand how interactions between the carbon, nitrogen, and water cycles influence the response of NPP to elevated atmospheric CO2.

20.
Tree Physiol ; 24(9): 1069-71, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15234905

ABSTRACT

Some saplings and shrubs growing in the understory of temperate deciduous forests extend their periods of leaf display beyond that of the overstory, resulting in periods when understory radiation, and hence productivity, are not limited by the overstory canopy. To assess the importance of the duration of leaf display on the productivity of understory and overstory trees of deciduous forests in the north eastern United States, we applied the simulation model, BIOME-BGC with climate data for Hubbard Brook Experimental Forest, New Hampshire, USA and mean ecophysiological data for species of deciduous, temperate forests. Extension of the overstory leaf display period increased overstory leaf area index (LAI) by only 3 to 4% and productivity by only 2 to 4%. In contrast, extending the growing season of the understory relative to the overstory by one week in both spring and fall, increased understory LAI by 35% and productivity by 32%. A 2-week extension of the growing period in both spring and fall increased understory LAI by 53% and productivity by 55%.


Subject(s)
Ecosystem , Trees/physiology , Models, Biological , Plant Leaves/physiology , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL