Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Nat Methods ; 17(3): 343-351, 2020 03.
Article in English | MEDLINE | ID: mdl-32123394

ABSTRACT

Virtual realities are powerful tools to analyze and manipulate interactions between animals and their environment and to enable measurements of neuronal activity during behavior. In many species, however, optical access to the brain and/or the behavioral repertoire are limited. We developed a high-resolution virtual reality for head-restrained adult zebrafish, which exhibit cognitive behaviors not shown by larvae. We noninvasively measured activity throughout the dorsal telencephalon by multiphoton calcium imaging. Fish in the virtual reality showed regular swimming patterns and were attracted to animations of conspecifics. Manipulations of visuo-motor feedback revealed neurons that responded selectively to the mismatch between the expected and the actual visual consequences of motor output. Such error signals were prominent in multiple telencephalic areas, consistent with models of predictive processing. A virtual reality system for adult zebrafish therefore provides opportunities to analyze neuronal processing mechanisms underlying higher brain functions including decision making, associative learning, and social interactions.


Subject(s)
Behavior, Animal , Brain/diagnostic imaging , Neurons/physiology , User-Computer Interface , Virtual Reality , Animals , Brain Mapping , Cognition , Decision Making , Female , Male , Motor Skills , Probability , Social Behavior , Swimming , Zebrafish
2.
PLoS Comput Biol ; 14(5): e1006157, 2018 05.
Article in English | MEDLINE | ID: mdl-29782491

ABSTRACT

In recent years, two-photon calcium imaging has become a standard tool to probe the function of neural circuits and to study computations in neuronal populations. However, the acquired signal is only an indirect measurement of neural activity due to the comparatively slow dynamics of fluorescent calcium indicators. Different algorithms for estimating spike rates from noisy calcium measurements have been proposed in the past, but it is an open question how far performance can be improved. Here, we report the results of the spikefinder challenge, launched to catalyze the development of new spike rate inference algorithms through crowd-sourcing. We present ten of the submitted algorithms which show improved performance compared to previously evaluated methods. Interestingly, the top-performing algorithms are based on a wide range of principles from deep neural networks to generative models, yet provide highly correlated estimates of the neural activity. The competition shows that benchmark challenges can drive algorithmic developments in neuroscience.


Subject(s)
Action Potentials/physiology , Calcium/metabolism , Computational Biology/methods , Models, Neurological , Algorithms , Animals , Calcium/chemistry , Calcium/physiology , Databases, Factual , Mice , Molecular Imaging , Optical Imaging , Retina/cytology , Retinal Neurons/cytology , Retinal Neurons/metabolism
3.
Nat Neurosci ; 27(5): 927-939, 2024 May.
Article in English | MEDLINE | ID: mdl-38570661

ABSTRACT

An essential feature of neurons is their ability to centrally integrate information from their dendrites. The activity of astrocytes, in contrast, has been described as mostly uncoordinated across cellular compartments without clear central integration. Here we report conditional integration of calcium signals in astrocytic distal processes at their soma. In the hippocampus of adult mice of both sexes, we found that global astrocytic activity, as recorded with population calcium imaging, reflected past neuronal and behavioral events on a timescale of seconds. Salient past events, indicated by pupil dilations, facilitated the propagation of calcium signals from distal processes to the soma. Centripetal propagation to the soma was reproduced by optogenetic activation of the locus coeruleus, a key regulator of arousal, and reduced by pharmacological inhibition of α1-adrenergic receptors. Together, our results suggest that astrocytes are computational units of the brain that slowly and conditionally integrate calcium signals upon behaviorally relevant events.


Subject(s)
Astrocytes , Calcium Signaling , Hippocampus , Locus Coeruleus , Animals , Locus Coeruleus/physiology , Locus Coeruleus/cytology , Astrocytes/physiology , Mice , Hippocampus/physiology , Hippocampus/cytology , Male , Calcium Signaling/physiology , Female , Optogenetics , Mice, Transgenic , Neurons/physiology , Mice, Inbred C57BL , Calcium/metabolism
4.
bioRxiv ; 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37986838

ABSTRACT

Genetically encoded calcium indicators (GECIs) such as GCaMP are invaluable tools in neuroscience to monitor neuronal activity using optical imaging. The viral transduction of GECIs is commonly used to target expression to specific brain regions, can be conveniently used with any mouse strain of interest without the need for prior crossing with a GECI mouse line and avoids potential hazards due to the chronic expression of GECIs during development. A key requirement for monitoring neuronal activity with an indicator is that the indicator itself minimally affects activity. Here, using common adeno-associated viral (AAV) transduction procedures, we describe spatially confined aberrant Ca2+ micro-waves slowly travelling through the hippocampus following expression of GCaMP6, GCaMP7 or R-CaMP1.07 driven by the synapsin promoter with AAV-dependent gene transfer, in a titre-dependent fashion. Ca2+ micro-waves developed in hippocampal CA1 and CA3, but not dentate gyrus (DG) nor neocortex, were typically first observed at 4 weeks after viral transduction, and persisted up to at least 8 weeks. The phenomenon was robust, observed across laboratories with various experimenters and setups. Our results indicate that aberrant hippocampal Ca2+ micro-waves depend on the promoter and viral titre of the GECI, density of expression as well as the targeted brain region. We used an alternative viral transduction method of GCaMP which avoids this artifact. The results show that commonly used Ca2+-indicator AAV transduction procedures can produce artefactual Ca2+ responses. Our aim is to raise awareness in the field of these artefactual transduction-induced Ca2+ micro-waves and we provide a potential solution.

5.
eNeuro ; 8(4)2021.
Article in English | MEDLINE | ID: mdl-34330817

ABSTRACT

Neuronal population activity in the hippocampal CA3 subfield is implicated in cognitive brain functions such as memory processing and spatial navigation. However, because of its deep location in the brain, the CA3 area has been difficult to target with modern calcium imaging approaches. Here, we achieved chronic two-photon calcium imaging of CA3 pyramidal neurons with the red fluorescent calcium indicator R-CaMP1.07 in anesthetized and awake mice. We characterize CA3 neuronal activity at both the single-cell and population level and assess its stability across multiple imaging days. During both anesthesia and wakefulness, nearly all CA3 pyramidal neurons displayed calcium transients. Most of the calcium transients were consistent with a high incidence of bursts of action potentials (APs), based on calibration measurements using simultaneous juxtacellular recordings and calcium imaging. In awake mice, we found state-dependent differences with striking large and prolonged calcium transients during locomotion. We estimate that trains of >30 APs over 3 s underlie these salient events. Their abundance in particular subsets of neurons was relatively stable across days. At the population level, we found that co-activity within the CA3 network was above chance level and that co-active neuron pairs maintained their correlated activity over days. Our results corroborate the notion of state-dependent spatiotemporal activity patterns in the recurrent network of CA3 and demonstrate that at least some features of population activity, namely co-activity of cell pairs and likelihood to engage in prolonged high activity, are maintained over days.


Subject(s)
Calcium , Pyramidal Cells , Action Potentials , Animals , Hippocampus , Humans , Mice , Neurons
6.
Nat Neurosci ; 24(9): 1324-1337, 2021 09.
Article in English | MEDLINE | ID: mdl-34341584

ABSTRACT

Inference of action potentials ('spikes') from neuronal calcium signals is complicated by the scarcity of simultaneous measurements of action potentials and calcium signals ('ground truth'). In this study, we compiled a large, diverse ground truth database from publicly available and newly performed recordings in zebrafish and mice covering a broad range of calcium indicators, cell types and signal-to-noise ratios, comprising a total of more than 35 recording hours from 298 neurons. We developed an algorithm for spike inference (termed CASCADE) that is based on supervised deep networks, takes advantage of the ground truth database, infers absolute spike rates and outperforms existing model-based algorithms. To optimize performance for unseen imaging data, CASCADE retrains itself by resampling ground truth data to match the respective sampling rate and noise level; therefore, no parameters need to be adjusted by the user. In addition, we developed systematic performance assessments for unseen data, openly released a resource toolbox and provide a user-friendly cloud-based implementation.


Subject(s)
Artifacts , Brain/physiology , Deep Learning , Neuroimaging/methods , Neurons/physiology , Action Potentials/physiology , Animals , Calcium/metabolism , Databases, Factual , Mice , Models, Neurological , Zebrafish
7.
Neuron ; 100(3): 669-683.e5, 2018 11 07.
Article in English | MEDLINE | ID: mdl-30318416

ABSTRACT

Neuronal computations critically depend on the connectivity rules that govern the convergence of excitatory and inhibitory synaptic signals onto individual neurons. To examine the functional synaptic organization of a distributed memory network, we performed voltage clamp recordings in telencephalic area Dp of adult zebrafish, the homolog of olfactory cortex. In neurons of posterior Dp, odor stimulation evoked large, recurrent excitatory and inhibitory inputs that established a transient state of high conductance and synaptic balance. Excitation and inhibition in individual neurons were co-tuned to different odors and correlated on slow and fast timescales. This precise synaptic balance implies specific connectivity among Dp neurons, despite the absence of an obvious topography. Precise synaptic balance stabilizes activity patterns in different directions of coding space and in time while preserving high bandwidth. The coordinated connectivity of excitatory and inhibitory subnetworks in Dp therefore supports fast recurrent memory operations.


Subject(s)
Olfactory Cortex/physiology , Olfactory Pathways/physiology , Synapses/physiology , Synaptic Transmission/physiology , Animals , Animals, Genetically Modified , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Female , Male , Muscimol/administration & dosage , Olfactory Cortex/drug effects , Olfactory Pathways/drug effects , Synapses/drug effects , Synaptic Transmission/drug effects , Zebrafish
8.
Curr Biol ; 28(1): 1-14.e3, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29249662

ABSTRACT

Sensory systems balance stability and plasticity to optimize stimulus representations in dynamic environments. We studied these processes in the olfactory system of adult zebrafish. Activity patterns evoked by repeated odor stimulation were measured by multiphoton calcium imaging in the olfactory bulb (OB) and in telencephalic area Dp, the homolog of olfactory cortex. Whereas odor responses in the OB were highly reproducible, responses of Dp neurons adapted over trials and exhibited substantial variability that could be attributed to ongoing activity and to systematic changes in neuronal representations following each stimulus. An NMDA receptor antagonist did not affect the magnitude of odor responses but strongly reduced the variability and experience-dependent modification of odor responses in Dp. As a consequence, odor representations became stable over trials. These results demonstrate that odor representations in higher brain areas are continuously modified by experience, supporting the view that olfactory processing is inseparable from memory, even in the absence of reinforcement.


Subject(s)
Neuronal Plasticity , Odorants , Olfactory Perception/physiology , Telencephalon/physiology , Zebrafish/physiology , Action Potentials , Animals , Female , Male , Neurons/physiology , Olfactory Bulb/physiology , Recognition, Psychology
9.
Biomed Opt Express ; 7(5): 1656-71, 2016 May 01.
Article in English | MEDLINE | ID: mdl-27231612

ABSTRACT

There is a high demand for 3D multiphoton imaging in neuroscience and other fields but scanning in axial direction presents technical challenges. We developed a focusing technique based on a remote movable mirror that is conjugate to the specimen plane and translated by a voice coil motor. We constructed cost-effective z-scanning modules from off-the-shelf components that can be mounted onto standard multiphoton laser scanning microscopes to extend scan patterns from 2D to 3D. Systems were designed for large objectives and provide high resolution, high speed and a large z-scan range (>300 µm). We used these systems for 3D multiphoton calcium imaging in the adult zebrafish brain and measured odor-evoked activity patterns across >1500 neurons with single-neuron resolution and high signal-to-noise ratio.

10.
Biomed Opt Express ; 6(2): 353-68, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25780729

ABSTRACT

A number of questions in system biology such as understanding how dynamics of neuronal networks are related to brain function require the ability to capture the functional dynamics of large cellular populations at high speed. Recently, this has driven the development of a number of parallel and high speed imaging techniques such as light-sculpting microscopy, which has been used to capture neuronal dynamics at the whole brain and single cell level in small model organisms. However, the broader applicability of light-sculpting microcopy is limited by the size of volumes for which high speed imaging can be obtained and scattering in brain tissue. Here, we present strategies for optimizing the present tradeoffs in light-sculpting microscopy. Various scanning modalities in light-sculpting microscopy are theoretically and experimentally evaluated, and strategies to maximize the obtainable volume speeds, and depth penetration in brain tissue using different laser systems are provided. Design-choices, important parameters and their trade-offs are experimentally demonstrated by performing calcium-imaging in acute mouse-brain slices. We further show that synchronization of line-scanning techniques with rolling-shutter read-out of the camera can reduce scattering effects and enhance image contrast at depth.

11.
Biomicrofluidics ; 6(1): 14107-1410712, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22355300

ABSTRACT

We have developed a method for studying cellular adhesion by using a custom-designed microfluidic device with parallel non-connected tapered channels. The design enables investigation of cellular responses to a large range of shear stress (ratio of 25) with a single input flow-rate. For each shear stress, a large number of cells are analyzed (500-1500 cells), providing statistically relevant data within a single experiment. Besides adhesion strength measurements, the microsystem presented in this paper enables in-depth analysis of cell detachment kinetics by real-time videomicroscopy. It offers the possibility to analyze adhesion-associated processes, such as migration or cell shape change, within the same experiment. To show the versatility of our device, we examined quantitatively cell adhesion by analyzing kinetics, adhesive strength and migration behaviour or cell shape modifications of the unicellular model cell organism Dictyostelium discoideum at 21 °C and of the human breast cancer cell line MDA-MB-231 at 37 °C. For both cell types, we found that the threshold stresses, which are necessary to detach the cells, follow lognormal distributions, and that the detachment process follows first order kinetics. In addition, for particular conditions' cells are found to exhibit similar adhesion threshold stresses, but very different detachment kinetics, revealing the importance of dynamics analysis to fully describe cell adhesion. With its rapid implementation and potential for parallel sample processing, such microsystem offers a highly controllable platform for exploring cell adhesion characteristics in a large set of environmental conditions and cell types, and could have wide applications across cell biology, tissue engineering, and cell screening.

SELECTION OF CITATIONS
SEARCH DETAIL