Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Cell ; 138(1): 78-89, 2009 07 10.
Article in English | MEDLINE | ID: mdl-19596236

ABSTRACT

Structure-specific endonucleases resolve DNA secondary structures generated during DNA repair and recombination. The yeast 5' flap endonuclease Slx1-Slx4 has received particular attention with the finding that Slx4 has Slx1-independent key functions in genome maintenance. Although Slx1 is a highly conserved protein in eukaryotes, no orthologs of Slx4 were reported other than in fungi. Here we report the identification of Slx4 orthologs in metazoa, including fly MUS312, essential for meiotic recombination, and human BTBD12, an ATM/ATR checkpoint kinase substrate. Human SLX1-SLX4 displays robust Holliday junction resolvase activity in addition to 5' flap endonuclease activity. Depletion of SLX1 and SLX4 results in 53BP1 foci accumulation and H2AX phosphorylation as well as cellular hypersensitivity to MMS. Furthermore, we show that SLX4 binds the XPF(ERCC4) and MUS81 subunits of the XPF-ERCC1 and MUS81-EME1 endonucleases and is required for DNA interstrand crosslink repair. We propose that SLX4 acts as a docking platform for multiple structure-specific endonucleases.


Subject(s)
DNA Repair , Recombinases/metabolism , Amino Acid Sequence , DNA-Binding Proteins/metabolism , Endodeoxyribonucleases , Endonucleases/metabolism , Genomic Instability , Humans , Molecular Sequence Data , Recombinases/chemistry , Recombinases/genetics , Recombination, Genetic , Sequence Alignment
2.
Anal Chem ; 94(2): 1060-1069, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34962767

ABSTRACT

Characterization of mucin-type O-glycans linked to serine/threonine of glycoproteins is technically challenging, in part, due to a lack of effective enzymatic tools that enable their analysis. Recently, several O-glycan-specific endoproteases that can cleave the protein adjacent to the appended glycan have been described. Despite significant progress in understanding the biochemistry of these enzymes, known O-glycoproteases have specificity constraints, such as inefficient cleavage of glycoproteins bearing sialylated O-glycans, high selectivity for certain types of glycoproteins, or protein sequence bias. These factors limit their analytical application. In this study, we examined the capabilities of an immunomodulating metalloprotease (IMPa) from Pseudomonas aeruginosa. Peptide sequence selectivity and its impact on IMPa activity were interrogated using an array of synthetic peptides and their glycoforms. We show that IMPa has no specific P1 residue preference and can tolerate most amino acids at the P1 position, except aspartic acid. The enzyme does not cleave between two adjacent O-glycosites, indicating that O-glycosylated serine/threonine is not allowed at position P1. Glycopeptides with as few as two amino acids on either side of an O-glycosite were cleaved by IMPa. Finally, IMPa efficiently cleaved peptides and proteins carrying sialylated and asialylated O-glycans of varying complexity. We present the use of IMPa in a one-step O-glycoproteomic workflow for glycoprofiling of the purified glycoproteins granulocyte colony-stimulating factor and receptor-type tyrosine-protein phosphatase C without the need for glycopeptide enrichment. In these examples, IMPa enabled both the identification of O-glycosites and the range of complex O-glycan structures at each site.


Subject(s)
Glycopeptides , Tandem Mass Spectrometry , Glycopeptides/chemistry , Glycoproteins/chemistry , Glycosylation , Polysaccharides
3.
Amino Acids ; 54(4): 529-542, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35357568

ABSTRACT

Polyglutamylation is a posttranslational modification (PTM) that adds several glutamates on glutamate residues in the form of conjugated peptide chains by a family of enzymes known as polyglutamylases. Polyglutamylation is well documented in microtubules. Polyglutamylated microtubules consist of different α- and ß-tubulin subunits with varied number of added glutamate residues. Kinetic control and catalytic rates of tubulin modification by polyglutamylases influence the polyglutamylation pattern of functional microtubules. The recent studies uncovered catalytic mechanisms of the glutamylation enzymes family, particularly tubulin tyrosine ligase-like (TTLL). Variable length polyglutamylation of primary sequence glutamyl residues have been mapped with a multitude of protein chemistry and proteomics approaches. Although polyglutamylation was initially considered a tubulin-specific modification, the recent studies have uncovered a calmodulin-dependent glutamylase, SidJ. Nano-electrospray ionization (ESI) proteomic approaches have identified quantifiable polyglutamylated sites in specific substrates. Indeed, conjugated glutamylated peptides were used in nano-liquid chromatography gradient delivery due to their relative hydrophobicity for their tandem mass spectrometry (MS/MS) characterization. The recent polyglutamylation characterization has revealed three major sites: E445 in α-tubulin, E435 in ß-tubulin, and E860 in SdeA. In this review, we have summarized the progress made using proteomic approaches for large-scale detection of polyglutamylated peptides, including biology and analysis.


Subject(s)
Tandem Mass Spectrometry , Tubulin , Glutamic Acid/metabolism , Microtubules/chemistry , Microtubules/metabolism , Protein Processing, Post-Translational , Proteomics , Tubulin/chemistry
4.
Protein Expr Purif ; 190: 105987, 2022 02.
Article in English | MEDLINE | ID: mdl-34637916

ABSTRACT

Combinations of ribonucleases (RNases) are commonly used to digest RNA into oligoribonucleotide fragments prior to liquid chromatography-mass spectrometry (LC-MS) analysis. The distribution of the RNase target sequences or nucleobase sites within an RNA molecule is critical for achieving a high mapping coverage. Cusativin and MC1 are nucleotide-specific endoribonucleases encoded in the cucumber and bitter melon genomes, respectively. Their high specificity for cytidine (Cusativin) and uridine (MC1) make them ideal molecular biology tools for RNA modification mapping. However, heterogenous recombinant expression of either enzyme has been challenging because of their high toxicity to expression hosts and the requirement of posttranslational modifications. Here, we present two highly efficient and time-saving protocols that overcome these hurdles and enhance the expression and purification of these RNases. We first purified MC1 and Cusativin from bacteria by expressing and shuttling both enzymes to the periplasm as MBP-fusion proteins in T7 Express lysY/IqE. coli strain at low temperature. The RNases were enriched using amylose affinity chromatography, followed by a subsequent purification via a C-terminal 6xHIS tag. This fast, two-step purification allows for the purification of highly active recombinant RNases significantly surpassing yields reported in previous studies. In addition, we expressed and purified a Cusativin-CBD fusion enzyme in P. pastoris using chitin magnetic beads. Both Cusativin variants exhibited a similar sequence preference, suggesting that neither posttranslational modifications nor the epitope-tags have a substantial effect on the sequence specificity of the enzyme.


Subject(s)
Endoribonucleases , Escherichia coli , Gene Expression , Ribonucleases , Endoribonucleases/biosynthesis , Endoribonucleases/chemistry , Endoribonucleases/genetics , Endoribonucleases/isolation & purification , Escherichia coli/genetics , Escherichia coli/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Ribonucleases/biosynthesis , Ribonucleases/chemistry , Ribonucleases/genetics , Ribonucleases/isolation & purification
5.
Nucleic Acids Res ; 48(22): 12858-12873, 2020 12 16.
Article in English | MEDLINE | ID: mdl-33270887

ABSTRACT

Analysis of genomic DNA from pathogenic strains of Burkholderia cenocepacia J2315 and Escherichia coli O104:H4 revealed the presence of two unusual MTase genes. Both are plasmid-borne ORFs, carried by pBCA072 for B. cenocepacia J2315 and pESBL for E. coli O104:H4. Pacific Biosciences SMRT sequencing was used to investigate DNA methyltransferases M.BceJIII and M.EcoGIX, using artificial constructs. Mating properties of engineered pESBL derivatives were also investigated. Both MTases yield promiscuous m6A modification of single strands, in the context SAY (where S = C or G and Y = C or T). Strikingly, this methylation is asymmetric in vivo, detected almost exclusively on one DNA strand, and is incomplete: typically, around 40% of susceptible motifs are modified. Genetic and biochemical studies suggest that enzyme action depends on replication mode: DNA Polymerase I (PolI)-dependent ColE1 and p15A origins support asymmetric modification, while the PolI-independent pSC101 origin does not. An MTase-PolI complex may enable discrimination of PolI-dependent and independent plasmid origins. M.EcoGIX helps to establish pESBL in new hosts by blocking the action of restriction enzymes, in an orientation-dependent fashion. Expression and action appear to occur on the entering single strand in the recipient, early in conjugal transfer, until lagging-strand replication creates the double-stranded form.


Subject(s)
DNA Methylation/genetics , DNA Polymerase I/genetics , DNA, Single-Stranded/genetics , Methyltransferases/genetics , Bacterial Proteins/genetics , Burkholderia cenocepacia/genetics , DNA Replication/genetics , Escherichia coli O104/genetics , Escherichia coli Proteins/genetics , Genome, Bacterial/genetics , Plasmids/genetics , Ribosomal Proteins/genetics
6.
J Biol Chem ; 295(14): 4748-4759, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32111740

ABSTRACT

Microtubules are cytoskeletal structures critical for mitosis, cell motility, and protein and organelle transport and are a validated target for anticancer drugs. However, how tubulins are regulated and recruited to support these distinct cellular processes is incompletely understood. Posttranslational modifications of tubulins are proposed to regulate microtubule function and dynamics. Although many of these modifications have been investigated, only one prior study reports tubulin methylation and an enzyme responsible for this methylation. Here we used in vitro radiolabeling, MS, and immunoblotting approaches to monitor protein methylation and immunoprecipitation, immunofluorescence, and pulldown approaches to measure protein-protein interactions. We demonstrate that N-lysine methyltransferase 5A (KMT5A or SET8/PR-Set7), which methylates lysine 20 in histone H4, bound α-tubulin and methylated it at a specific lysine residue, Lys311 Furthermore, late SV40 factor (LSF)/CP2, a known transcription factor, bound both α-tubulin and SET8 and enhanced SET8-mediated α-tubulin methylation in vitro In addition, we found that the ability of LSF to facilitate this methylation is countered by factor quinolinone inhibitor 1 (FQI1), a specific small-molecule inhibitor of LSF. These findings suggest the general model that microtubule-associated proteins, including transcription factors, recruit or stimulate protein-modifying enzymes to target tubulins. Moreover, our results point to dual functions for SET8 and LSF not only in chromatin regulation but also in cytoskeletal modification.


Subject(s)
DNA-Binding Proteins/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Transcription Factors/metabolism , Tubulin/metabolism , Animals , COS Cells , Chlorocebus aethiops , DNA-Binding Proteins/genetics , HEK293 Cells , Histone-Lysine N-Methyltransferase/genetics , Histones/metabolism , Humans , Methylation , Protein Binding , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Transcription Factors/genetics
7.
Anal Biochem ; 612: 113761, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32502490

ABSTRACT

Tubulin polyglutamylation is a polymeric modification that extends from the carboxyl-terminus of tubulins. Molecular description of amino acids and their branching polyglutamyls is a hallmark of tubulin in microtubules. There are different chemical approaches for detecting these polymeric structures, mostly reported prior to development of nESI peptide analysis. Here we demonstrate a novel and simple approach to detect shared regions of amino acid ions from tubulin polyglutamylated peptides in nanoLC-MS/MS. This involves two parallel in gel digestions with trypsin and subtilisin followed by mapping of di- and triglutamyl modifications of α- and ß-tubulins using a routine proteomics assay. We present three levels of information: i) identification of proteomics MS/MS data, ii) description of internal fragment ion series common across digests, and iii) extracted ion chromatograms mapped relative to retention time standards for confirmation of relative hydrophobicity values. Our nanoLC assay positive ion ESI detects up to 3 conjugated glutamates in tubulins. We implemented an analytical column only bottom up approach that characterizes molecular features of polyglutamylated tubulins.


Subject(s)
Chromatography, High Pressure Liquid/methods , Nanotechnology/methods , Polyglutamic Acid/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods , Tubulin/chemistry , Amino Acid Sequence , Animals , Hydrophobic and Hydrophilic Interactions , Ions/chemistry , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Polyglutamic Acid/metabolism , Protein Processing, Post-Translational , Proteolysis , Swine , Tubulin/metabolism
8.
Nature ; 487(7406): 244-8, 2012 Jul 12.
Article in English | MEDLINE | ID: mdl-22722845

ABSTRACT

Tumour suppressor genes encode a broad class of molecules whose mutational attenuation contributes to malignant progression. In the canonical situation, the tumour suppressor is completely inactivated through a two-hit process involving a point mutation in one allele and chromosomal deletion of the other. Here, to identify tumour suppressor genes in lymphoma, we screen a short hairpin RNA library targeting genes deleted in human lymphomas. We functionally identify those genes whose suppression promotes tumorigenesis in a mouse lymphoma model. Of the nine tumour suppressors we identified, eight correspond to genes occurring in three physically linked 'clusters', suggesting that the common occurrence of large chromosomal deletions in human tumours reflects selective pressure to attenuate multiple genes. Among the new tumour suppressors are adenosylmethionine decarboxylase 1 (AMD1) and eukaryotic translation initiation factor 5A (eIF5A), two genes associated with hypusine, a unique amino acid produced as a product of polyamine metabolism through a highly conserved pathway. Through a secondary screen surveying the impact of all polyamine enzymes on tumorigenesis, we establish the polyamine-hypusine axis as a new tumour suppressor network regulating apoptosis. Unexpectedly, heterozygous deletions encompassing AMD1 and eIF5A often occur together in human lymphomas and co-suppression of both genes promotes lymphomagenesis in mice. Thus, some tumour suppressor functions can be disabled through a two-step process targeting different genes acting in the same pathway.


Subject(s)
Lymphoma, B-Cell/genetics , Lysine/analogs & derivatives , Polyamines/chemistry , Tumor Suppressor Proteins/genetics , Animals , Cell Line, Tumor , Disease Models, Animal , Female , Gene Deletion , Gene Regulatory Networks , Genetic Testing , Humans , Lymphoma, B-Cell/physiopathology , Lysine/chemistry , Mice , Mice, Inbred C57BL , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Reproducibility of Results
9.
J Virol ; 87(13): 7668-79, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23637413

ABSTRACT

Papillomaviruses have complex life cycles that are understood only superficially. Although it is well established that the viral E1 and E2 proteins play key roles in controlling viral transcription and DNA replication, how these factors are regulated is not well understood. Here, we demonstrate that phosphorylation by the protein kinase CK2 controls the biochemical activities of the bovine papillomavirus E1 and E2 proteins by modifying their DNA binding activity. Phosphorylation at multiple sites in the N-terminal domain in E1 results in the loss of sequence-specific DNA binding activity, a feature that is also conserved in human papillomavirus (HPV) E1 proteins. The bovine papillomavirus (BPV) E2 protein, when phosphorylated by CK2 on two specific sites in the hinge, also loses its site-specific DNA binding activity. Mutation of these sites in E2 results in greatly increased levels of latent viral DNA replication, indicating that CK2 phosphorylation of E2 is a negative regulator of viral DNA replication during latent viral replication. In contrast, mutation of the N-terminal phosphorylation sites in E1 has no effect on latent viral DNA replication. We propose that the phosphorylation of the N terminus of E1 plays a role only in vegetative viral DNA replication, and consistent with such a role, caspase 3 cleavage of E1, which has been shown to be necessary for vegetative viral DNA replication, restores the DNA binding activity to phosphorylated E1.


Subject(s)
Casein Kinase II/metabolism , DNA-Binding Proteins/metabolism , DNA/metabolism , Viral Proteins/metabolism , Animals , Blotting, Southern , COS Cells , Caspase 3/metabolism , Cell Line, Tumor , Chlorocebus aethiops , Chromatography, Affinity , Electrophoresis, Agar Gel , Escherichia coli , Mass Spectrometry , Mice , Phosphorylation , Protein Binding , Virus Replication/genetics
10.
Proteomics ; 13(16): 2386-97, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23733317

ABSTRACT

Chromatographed peptide signals form the basis of further data processing that eventually results in functional information derived from data-dependent bottom-up proteomics assays. We seek to rank LC/MS parent ions by the quality of their extracted ion chromatograms. Ranked extracted ion chromatograms act as an intuitive physical/chemical preselection filter to improve the quality of MS/MS fragment scans submitted for database search. We identify more than 4900 proteins when considering detector shifts of less than 7 ppm. High quality parent ions for which the database search yields no hits become candidates for subsequent unrestricted analysis for PTMs. Following this rational approach, we prioritize identification of more than 5000 spectrum matches from modified peptides and confirmed the presence of acetylaldehyde-modified His/Lys. We present a logical workflow that scores data-dependent selected ion chromatograms and leverage information about semianalytical LC/LC dimension prior to MS. Our method can be successfully used to identify unexpected modifications in peptides with excellent chromatography characteristics, independent of fragmentation pattern and activation methods. We illustrate analysis of ion chromatograms detected in two different modes by RF linear ion trap and electrostatic field orbitrap.


Subject(s)
Peptides/analysis , Peptides/chemistry , Proteomics/methods , Software , Tandem Mass Spectrometry/methods , Databases, Protein , HEK293 Cells , Humans , Models, Statistical
11.
Development ; 137(24): 4201-9, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21068064

ABSTRACT

The molecular mechanisms driving the conserved metazoan developmental shift referred to as the mid-blastula transition (MBT) remain mysterious. Typically, cleavage divisions give way to longer asynchronous cell cycles with the acquisition of a gap phase. In Drosophila, rapid synchronous nuclear divisions must pause at the MBT to allow the formation of a cellular blastoderm through a special form of cytokinesis termed cellularization. Drosophila Fragile X mental retardation protein (dFMRP; FMR1), a transcript-specific translational regulator, is required for cellularization. The role of FMRP has been most extensively studied in the nervous system because the loss of FMRP activity in neurons causes the misexpression of specific mRNAs required for synaptic plasticity, resulting in mental retardation and autism in humans. Here, we show that in the early embryo dFMRP associates specifically with Caprin, another transcript-specific translational regulator implicated in synaptic plasticity, and with eIF4G, a key regulator of translational initiation. dFMRP and Caprin collaborate to control the cell cycle at the MBT by directly mediating the normal repression of maternal Cyclin B mRNA and the activation of zygotic frühstart mRNA. These findings identify two new targets of dFMRP regulation and implicate conserved translational regulatory mechanisms in processes as diverse as learning, memory and early embryonic development.


Subject(s)
Cell Cycle/physiology , Drosophila Proteins/metabolism , Drosophila/embryology , Drosophila/metabolism , Fragile X Mental Retardation Protein/metabolism , Animals , Cell Cycle/genetics , Cell Cycle Proteins/genetics , Cyclin B/genetics , Drosophila/cytology , Drosophila Proteins/genetics , Eukaryotic Initiation Factor-4G/genetics , Eukaryotic Initiation Factor-4G/metabolism , Fragile X Mental Retardation Protein/genetics , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Developmental/physiology , Protein Binding
12.
PLoS One ; 18(7): e0286435, 2023.
Article in English | MEDLINE | ID: mdl-37471401

ABSTRACT

We report here the first occurrence of an adenosine deaminase-related growth factor (ADGF) that deaminates adenosine 5' monophosphate (AMP) in preference to adenosine. The ADGFs are a group of secreted deaminases found throughout the animal kingdom that affect the extracellular concentration of adenosine by converting it to inosine. The AMP deaminase studied here was first isolated and biochemically characterized from the roman snail Helix pomatia in 1983. Determination of the amino acid sequence of the AMP deaminase enabled sequence comparisons to protein databases and revealed it as a member of the ADGF family. Cloning and expression of its cDNA in Pichia pastoris allowed the comparison of the biochemical characteristics of the native and recombinant forms of the enzyme and confirmed they correspond to the previously reported activity. Uncharacteristically, the H. pomatia AMP deaminase was determined to be dissimilar to the AMP deaminase family by sequence comparison while demonstrating similarity to the ADGFs despite having AMP as its preferred substrate rather than adenosine.


Subject(s)
AMP Deaminase , Animals , Adenosine Deaminase/metabolism , Adenosine/metabolism , Mollusca/metabolism , Intercellular Signaling Peptides and Proteins , Adenosine Monophosphate
13.
Sci Rep ; 13(1): 7951, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37193733

ABSTRACT

N-linked glycosylation is a critical post translational modification of eukaryotic proteins. N-linked glycans are present on surface and secreted filarial proteins that play a role in host parasite interactions. Examples of glycosylated Brugia malayi proteins have been previously identified but there has not been a systematic study of the N-linked glycoproteome of this or any other filarial parasite. In this study, we applied an enhanced N-glyco FASP protocol using an engineered carbohydrate-binding protein, Fbs1, to enrich N-glycosylated peptides for analysis by LC-MS/MS. We then mapped the N-glycosites on proteins from three host stages of the parasite: adult female, adult male and microfilariae. Fbs1 enrichment of N-glycosylated peptides enhanced the identification of N-glycosites. Our data identified 582 N-linked glycoproteins with 1273 N-glycosites. Gene ontology and cell localization prediction of the identified N-glycoproteins indicated that they were mostly membrane and extracellular proteins. Comparing results from adult female worms, adult male worms, and microfilariae, we find variability in N-glycosylation at the protein level as well as at the individual N-glycosite level. These variations are highlighted in cuticle N-glycoproteins and adult worm restricted N-glycoproteins as examples of proteins at the host parasite interface that are well positioned as potential therapeutic targets or biomarkers.


Subject(s)
Brugia malayi , Animals , Humans , Male , Female , Brugia malayi/genetics , Chromatography, Liquid , Tandem Mass Spectrometry , Peptides/metabolism , Microfilariae/genetics , Microfilariae/metabolism , Glycoproteins/genetics , Glycoproteins/metabolism , Proteome/metabolism
14.
Proc Natl Acad Sci U S A ; 106(5): 1392-7, 2009 Feb 03.
Article in English | MEDLINE | ID: mdl-19171884

ABSTRACT

Recent studies suggest that superoxide dismutase 1 (SOD1)-linked amyotrophic lateral sclerosis results from destabilization and misfolding of mutant forms of this abundant cytosolic enzyme. Here, we have tracked the expression and fate of a misfolding-prone human SOD1, G85R, fused to YFP, in a line of transgenic G85R SOD1-YFP mice. These mice, but not wild-type human SOD1-YFP transgenics, developed lethal paralyzing motor symptoms at 9 months. In situ RNA hybridization of spinal cords revealed predominant expression in motor neurons in spinal cord gray matter in all transgenic animals. Concordantly, G85R SOD-YFP was diffusely fluorescent in motor neurons of animals at 1 and 6 months of age, but at the time of symptoms, punctate aggregates were observed in cell bodies and processes. Biochemical analyses of spinal cord soluble extracts indicated that G85R SOD-YFP behaved as a misfolded monomer at all ages. It became progressively insoluble at 6 and 9 months of age, associated with presence of soluble oligomers observable by gel filtration. Immunoaffinity capture and mass spectrometry revealed association of G85R SOD-YFP, but not WT SOD-YFP, with the cytosolic chaperone Hsc70 at all ages. In addition, 3 Hsp110's, nucleotide exchange factors for Hsp70s, were captured at 6 and 9 months. Despite such chaperone interactions, G85R SOD-YFP formed insoluble inclusions at late times, containing predominantly intermediate filament proteins. We conclude that motor neurons, initially "compensated" to maintain the misfolded protein in a soluble state, become progressively unable to do so.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Luminescent Proteins/genetics , Molecular Chaperones/metabolism , Superoxide Dismutase/genetics , Animals , Glial Fibrillary Acidic Protein/metabolism , Mice , Mice, Transgenic , Motor Neurons/metabolism , Nucleic Acid Hybridization , Solubility , Spinal Cord/cytology , Spinal Cord/metabolism , Ubiquitin/metabolism
15.
Commun Biol ; 5(1): 1292, 2022 11 25.
Article in English | MEDLINE | ID: mdl-36434141

ABSTRACT

In mammalian cells, SET8 mediated Histone H4 Lys 20 monomethylation (H4K20me1) has been implicated in regulating mitotic condensation, DNA replication, DNA damage response, and gene expression. Here we show SET8, the only known enzyme for H4K20me1 is post-translationally poly ADP-ribosylated by PARP1 on lysine residues. PARP1 interacts with SET8 in a cell cycle-dependent manner. Poly ADP-ribosylation on SET8 renders it catalytically compromised, and degradation via ubiquitylation pathway. Knockdown of PARP1 led to an increase of SET8 protein levels, leading to aberrant H4K20me1 and H4K20me3 domains in the genome. H4K20me1 is associated with higher gene transcription levels while the increase of H4K20me3 levels was predominant in DNA repeat elements. Hence, SET8 mediated chromatin remodeling in mammalian cells are modulated by poly ADP-ribosylation by PARP1.


Subject(s)
Histone-Lysine N-Methyltransferase , Protein Processing, Post-Translational , Animals , Methylation , Histone-Lysine N-Methyltransferase/genetics , Histones/genetics , Histones/metabolism , Lysine/metabolism , Mammals , ADP-Ribosylation/genetics
16.
Sci Rep ; 11(1): 160, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33420304

ABSTRACT

The BLL lectin from the edible Japanese "Kurokawa" mushroom (Boletopsis leucomelaena) was previously reported to bind to N-glycans harboring terminal N-acetylglucosamine (GlcNAc) and to induce apoptosis in a leukemia cell line. However, its gene has not been reported. In this study, we used a transcriptomics-based workflow to identify a full-length transcript of a BLL functional ortholog (termed BGL) from Boletopsis grisea, a close North American relative of B. leucomelaena. The deduced amino acid sequence of BGL was an obvious member of fungal fruit body lectin family (Pfam PF07367), a highly conserved group of mushroom lectins with a preference for binding O-glycans harboring the Thomsen-Friedenreich antigen (TF-antigen; Galß1,3GalNAc-α-) and having two ligand binding sites. Functional characterization of recombinant BGL using glycan microarray analysis and surface plasmon resonance confirmed its ability to bind both the TF-antigen and ß-GlcNAc-terminated N-glycans. Structure-guided mutagenesis of BGL's two ligand binding clefts showed that one site is responsible for binding TF-antigen structures associated with O-glycans, whereas the second site specifically recognizes N-glycans with terminal ß-GlcNAc. Additionally, the two sites show no evidence of allosteric communication. Finally, mutant BGL proteins having single functional bindings site were used to enrich GlcNAc-capped N-glycans or mucin type O-glycopeptides from complex samples in glycomics and glycoproteomics analytical workflows.


Subject(s)
Basidiomycota/metabolism , Fungal Proteins/metabolism , Lectins/metabolism , Agaricales/chemistry , Agaricales/genetics , Agaricales/metabolism , Amino Acid Sequence , Basidiomycota/chemistry , Basidiomycota/genetics , Binding Sites , Fungal Proteins/chemistry , Fungal Proteins/genetics , Humans , Lectins/chemistry , Lectins/genetics , Polysaccharides/chemistry , Polysaccharides/metabolism , Protein Binding , Sequence Alignment
17.
G3 (Bethesda) ; 11(1)2021 01 18.
Article in English | MEDLINE | ID: mdl-33561243

ABSTRACT

Bacteriophage L, a P22-like phage of Salmonella enterica sv Typhimurium LT2, was important for definition of mosaic organization of the lambdoid phage family and for characterization of restriction-modification systems of Salmonella. We report the complete genome sequences of bacteriophage L cI-40 13-am43 and L cII-101; the deduced sequence of wildtype L is 40,633 bp long with a 47.5% GC content. We compare this sequence with those of P22 and ST64T, and predict 72 Coding Sequences, 2 tRNA genes and 14 intergenic rho-independent transcription terminators. The overall genome organization of L agrees with earlier genetic and physical evidence; for example, no secondary immunity region (immI: ant, arc) or known genes for superinfection exclusion (sieA and sieB) are present. Proteomic analysis confirmed identification of virion proteins, along with low levels of assembly intermediates and host cell envelope proteins. The genome of L is 99.9% identical at the nucleotide level to that reported for phage ST64T, despite isolation on different continents ∼35 years apart. DNA modification by the epigenetic regulator Dam is generally incomplete. Dam modification is also selectively missing in one location, corresponding to the P22 phase-variation-sensitive promoter region of the serotype-converting gtrABC operon. The number of sites for SenLTIII (StySA) action may account for stronger restriction of L (13 sites) than of P22 (3 sites).


Subject(s)
Bacteriophages , Salmonella typhimurium , DNA Restriction-Modification Enzymes , Proteomics , Serogroup
18.
Annu Rev Biomed Eng ; 11: 49-79, 2009.
Article in English | MEDLINE | ID: mdl-19400705

ABSTRACT

Mass spectrometry (MS) is the most comprehensive and versatile tool in large-scale proteomics. In this review, we dissect the overall framework of the MS experiment into its key components. We discuss the fundamentals of proteomic analyses as well as recent developments in the areas of separation methods, instrumentation, and overall experimental design. We highlight both the inherent strengths and limitations of protein MS and offer a rough guide for selecting an experimental design based on the goals of the analysis. We emphasize the versatility of the Orbitrap, a novel mass analyzer that features high resolution (up to 150,000), high mass accuracy (2-5 ppm), a mass-to-charge range of 6000, and a dynamic range greater than 10(3). High mass accuracy of the Orbitrap expands the arsenal of the data acquisition and analysis approaches compared with a low-resolution instrument. We discuss various chromatographic techniques, including multidimensional separation and ultra-performance liquid chromatography. Multidimensional protein identification technology (MudPIT) involves a continuum sample preparation, orthogonal separations, and MS and software solutions. We discuss several aspects of MudPIT applications to quantitative phosphoproteomics. MudPIT application to large-scale analysis of phosphoproteins includes (a) a fractionation procedure for motif-specific enrichment of phosphopeptides, (b) development of informatics tools for interrogation and validation of shotgun phosphopeptide data, and (c) in-depth data analysis for simultaneous determination of protein expression and phosphorylation levels, analog to western blot measurements. We illustrate MudPIT application to quantitative phosphoproteomics of the beta adrenergic pathway. We discuss several biological discoveries made via mass spectrometry pipelines with a focus on cell signaling proteomics.


Subject(s)
Mass Spectrometry/methods , Proteomics/methods , Animals , Computational Biology/methods , Humans , Peptides/chemistry , Phosphorylation , Proteins/chemistry , Receptors, Adrenergic, beta/metabolism , Reproducibility of Results , Signal Transduction , Software , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
19.
Drugs R D ; 20(3): 217-223, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32415538

ABSTRACT

BACKGROUND AND OBJECTIVE: Based on previous experience of sorbent-mediated ticagrelor, dabigatran, and radiocontrast agent removal, we set out in this study to test the effect of two sorbents on the removal of edoxaban, a factor Xa antagonist direct oral anticoagulant. METHODS: We circulated 100 mL of edoxaban solution during six first-pass cycles through 40-mL sorbent columns (containing either CytoSorb in three passes or Porapak Q 50-80 mesh in the remaining three passes) during experiments using human plasma and 4% bovine serum albumin solution as drug vehicles. Drug concentration was measured by liquid chromatography-tandem mass spectrometry. RESULTS: Edoxaban concentration in two experiments performed with human plasma dropped from 276.8 to 2.7 ng/mL and undetectable concentrations, respectively, with CytoSorb or Porapak Q 50-80 mesh (p = 0.0031). The average edoxaban concentration decreased from 407 ng/mL ± 216 ng/mL to 3.3 ng/mL ± 7 ng/mL (p = 0.017), for a removal rate of 99% across all six samples of human plasma (two samples) and bovine serum albumin solution (four samples). In four out of the six adsorbed samples, the drug concentrations were undetectable. CONCLUSION: Sorbent-mediated technology may represent a viable pathway for edoxaban removal from human plasma or albumin solution.


Subject(s)
Factor Xa Inhibitors/blood , Pyridines/blood , Thiazoles/blood , Adsorption , Albumins/chemistry , Chromatography, Liquid , Factor Xa Inhibitors/chemistry , Humans , Pyridines/chemistry , Styrenes/chemistry , Thiazoles/chemistry
20.
Curr Biol ; 16(15): 1489-501, 2006 Aug 08.
Article in English | MEDLINE | ID: mdl-16890524

ABSTRACT

BACKGROUND: Duplicated chromosomes are equally segregated to daughter cells by a bipolar mitotic spindle during cell division. By metaphase, sister chromatids are coupled to microtubule (MT) plus ends from opposite poles of the bipolar spindle via kinetochores. Here we describe a phosphorylation event that promotes the coupling of kinetochores to microtubule plus ends. RESULTS: Dam1 is a kinetochore component that directly binds to microtubules. We identified DAM1-765, a dominant allele of DAM1, in a genetic screen for mutations that increase stress on the spindle pole body (SPB) in Saccharomyces cerevisiae. DAM1-765 contains the single mutation S221F. We show that S221 is one of six Dam1 serines (S13, S49, S217, S218, S221, and S232) phosphorylated by Mps1 in vitro. In cells with single mutations S221F, S218A, or S221A, kinetochores in the metaphase spindle form tight clusters that are closer to the SPBs than in a wild-type cell. Five lines of experimental evidence, including localization of spindle components by fluorescence microscopy, measurement of microtubule dynamics by fluorescence redistribution after photobleaching, and reconstructions of three-dimensional structure by electron tomography, combined with computational modeling of microtubule behavior strongly indicate that, unlike wild-type kinetochores, Dam1-765 kinetochores do not colocalize with an equal number of plus ends. Despite the uncoupling of the kinetochores from the plus ends of MTs, the DAM1-765 cells are viable, complete the cell cycle with the same kinetics as wild-type cells, and biorient their chromosomes as efficiently as wild-type cells. CONCLUSIONS: We conclude that phosphorylation of Dam1 residues S218 and S221 by Mps1 is required for efficient coupling of kinetochores to MT plus ends. We find that efficient plus-end coupling is not required for (1) maintenance of chromosome biorientation, (2) maintenance of tension between sister kinetochores, or (3) chromosome segregation.


Subject(s)
Cell Cycle Proteins/metabolism , Chromosome Segregation/physiology , Kinetochores/metabolism , Metaphase/physiology , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Spindle Apparatus/physiology , Cell Cycle Proteins/genetics , Fluorescence Recovery After Photobleaching , Microscopy, Fluorescence , Microtubule-Associated Proteins/genetics , Models, Biological , Mutation/genetics , Phosphorylation , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/genetics , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL