Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 364
Filter
Add more filters

Publication year range
1.
J Proteome Res ; 23(1): 52-70, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38048423

ABSTRACT

Many COVID-19 survivors have post-COVID-19 conditions, and females are at a higher risk. We sought to determine (1) how protein levels change from acute to post-COVID-19 conditions, (2) whether females have a plasma protein signature different from that of males, and (3) which biological pathways are associated with COVID-19 when compared to restrictive lung disease. We measured protein levels in 74 patients on the day of admission and at 3 and 6 months after diagnosis. We determined protein concentrations by multiple reaction monitoring (MRM) using a panel of 269 heavy-labeled peptides. The predicted forced vital capacity (FVC) and diffusing capacity of the lungs for carbon monoxide (DLCO) were measured by routine pulmonary function testing. Proteins associated with six key lipid-related pathways increased from admission to 3 and 6 months; conversely, proteins related to innate immune responses and vasoconstriction-related proteins decreased. Multiple biological functions were regulated differentially between females and males. Concentrations of eight proteins were associated with FVC, %, and they together had c-statistics of 0.751 (CI:0.732-0.779); similarly, concentrations of five proteins had c-statistics of 0.707 (CI:0.676-0.737) for DLCO, %. Lipid biology may drive evolution from acute to post-COVID-19 conditions, while activation of innate immunity and vascular regulation pathways decreased over that period. (ProteomeXchange identifiers: PXD041762, PXD029437).


Subject(s)
COVID-19 , Proteomics , Male , Female , Humans , Lung , Vital Capacity , Chronic Disease , Lipids
2.
Crit Care Med ; 52(5): e219-e233, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38240492

ABSTRACT

RATIONALE: New evidence is available examining the use of corticosteroids in sepsis, acute respiratory distress syndrome (ARDS) and community-acquired pneumonia (CAP), warranting a focused update of the 2017 guideline on critical illness-related corticosteroid insufficiency. OBJECTIVES: To develop evidence-based recommendations for use of corticosteroids in hospitalized adults and children with sepsis, ARDS, and CAP. PANEL DESIGN: The 22-member panel included diverse representation from medicine, including adult and pediatric intensivists, pulmonologists, endocrinologists, nurses, pharmacists, and clinician-methodologists with expertise in developing evidence-based Clinical Practice Guidelines. We followed Society of Critical Care Medicine conflict of interest policies in all phases of the guideline development, including task force selection and voting. METHODS: After development of five focused Population, Intervention, Control, and Outcomes (PICO) questions, we conducted systematic reviews to identify the best available evidence addressing each question. We evaluated the certainty of evidence using the Grading of Recommendations Assessment, Development, and Evaluation approach and formulated recommendations using the evidence-to-decision framework. RESULTS: In response to the five PICOs, the panel issued four recommendations addressing the use of corticosteroids in patients with sepsis, ARDS, and CAP. These included a conditional recommendation to administer corticosteroids for patients with septic shock and critically ill patients with ARDS and a strong recommendation for use in hospitalized patients with severe CAP. The panel also recommended against high dose/short duration administration of corticosteroids for septic shock. In response to the final PICO regarding type of corticosteroid molecule in ARDS, the panel was unable to provide specific recommendations addressing corticosteroid molecule, dose, and duration of therapy, based on currently available evidence. CONCLUSIONS: The panel provided updated recommendations based on current evidence to inform clinicians, patients, and other stakeholders on the use of corticosteroids for sepsis, ARDS, and CAP.


Subject(s)
Respiratory Distress Syndrome , Sepsis , Shock, Septic , Adult , Humans , Child , Shock, Septic/drug therapy , Sepsis/drug therapy , Adrenal Cortex Hormones/therapeutic use , Respiratory Distress Syndrome/drug therapy , Critical Care , Critical Illness/therapy
3.
Crit Care ; 28(1): 63, 2024 02 27.
Article in English | MEDLINE | ID: mdl-38414082

ABSTRACT

RATIONALE: Acute respiratory distress syndrome (ARDS) is a life-threatening critical care syndrome commonly associated with infections such as COVID-19, influenza, and bacterial pneumonia. Ongoing research aims to improve our understanding of ARDS, including its molecular mechanisms, individualized treatment options, and potential interventions to reduce inflammation and promote lung repair. OBJECTIVE: To map and compare metabolic phenotypes of different infectious causes of ARDS to better understand the metabolic pathways involved in the underlying pathogenesis. METHODS: We analyzed metabolic phenotypes of 3 ARDS cohorts caused by COVID-19, H1N1 influenza, and bacterial pneumonia compared to non-ARDS COVID-19-infected patients and ICU-ventilated controls. Targeted metabolomics was performed on plasma samples from a total of 150 patients using quantitative LC-MS/MS and DI-MS/MS analytical platforms. RESULTS: Distinct metabolic phenotypes were detected between different infectious causes of ARDS. There were metabolomics differences between ARDSs associated with COVID-19 and H1N1, which include metabolic pathways involving taurine and hypotaurine, pyruvate, TCA cycle metabolites, lysine, and glycerophospholipids. ARDSs associated with bacterial pneumonia and COVID-19 differed in the metabolism of D-glutamine and D-glutamate, arginine, proline, histidine, and pyruvate. The metabolic profile of COVID-19 ARDS (C19/A) patients admitted to the ICU differed from COVID-19 pneumonia (C19/P) patients who were not admitted to the ICU in metabolisms of phenylalanine, tryptophan, lysine, and tyrosine. Metabolomics analysis revealed significant differences between C19/A, H1N1/A, and PNA/A vs ICU-ventilated controls, reflecting potentially different disease mechanisms. CONCLUSION: Different metabolic phenotypes characterize ARDS associated with different viral and bacterial infections.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza, Human , Pneumonia, Bacterial , Respiratory Distress Syndrome , Humans , COVID-19/complications , Influenza, Human/complications , Influenza, Human/therapy , Tandem Mass Spectrometry , Chromatography, Liquid , Lysine , Respiratory Distress Syndrome/complications , Respiratory Distress Syndrome/therapy , Pyruvates
4.
Behav Res Methods ; 56(3): 1207-1228, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38129736

ABSTRACT

Data censoring occurs when researchers do not know precise values of data points (e.g., age is 55+ or concentration ≤ .001). Censoring is frequent within psychology but typically unrecognized outside of longitudinal studies. We describe five circumstances when censoring may occur, demonstrate censoring distorts correlations, and discuss how censoring can create spurious factors. Next, we explain how to use R package lava to calculate maximum likelihood estimates (Holst and Budtz-Jørgensen Computational Statistics, 28(4), 1385-1452, 2013) of correlations between uncensored variables based upon censored variables. Previous research demonstrated these estimates were more accurate than Muthén's (1984) estimate for one particular model, but no research has systematically examined their accuracy. We therefore conducted a simulation study exploring the effects of the correlation, sample size, and censoring on point and interval estimates of correlations. Based upon 80 cells in which low values of normally distributed variables were censored, we recommend the constrained regression model with Wald confidence intervals. These methods were precise and unbiased unless both variables had 70% censoring and the correlation was large and negative (e.g., -.9), in which case estimates were closer to -1 than they should be. Opposite results would occur if low values of one variable and high values of the other were censored: Estimates would be precise and unbiased unless censoring was extreme and correlations were large and positive. To estimate large correlations accurately, we recommend researchers reduce censoring by using longer longitudinal studies, using scales with more response options, and matching measures to populations to reduce floor and ceiling effects.


Subject(s)
Computer Simulation , Humans , Likelihood Functions , Longitudinal Studies , Data Interpretation, Statistical
5.
Behav Brain Sci ; 46: e308, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37789525

ABSTRACT

Purity violations overlap with other moral domains. They are not uniquely characterized by hypothesized markers of purity - the witness's emotion of disgust, taint to perpetrator's soul, or the diminished role of intention in moral judgment. Thus, Fitouchi et al.'s proposition that puritanical morality (a subset of violations in the purity domain) is part of cooperation-based morality is an important advance.


Subject(s)
Disgust , Emotions , Humans , Morals , Judgment , Intention
6.
J Proteome Res ; 21(4): 975-992, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35143212

ABSTRACT

The host response to COVID-19 pathophysiology over the first few days of infection remains largely unclear, especially the mechanisms in the blood compartment. We report on a longitudinal proteomic analysis of acute-phase COVID-19 patients, for which we used blood plasma, multiple reaction monitoring with internal standards, and data-independent acquisition. We measured samples on admission for 49 patients, of which 21 had additional samples on days 2, 4, 7, and 14 after admission. We also measured 30 externally obtained samples from healthy individuals for comparison at baseline. The 31 proteins differentiated in abundance between acute COVID-19 patients and healthy controls belonged to acute inflammatory response, complement activation, regulation of inflammatory response, and regulation of protein activation cascade. The longitudinal analysis showed distinct profiles revealing increased levels of multiple lipid-associated functions, a rapid decrease followed by recovery for complement activation, humoral immune response, and acute inflammatory response-related proteins, and level fluctuation in the regulation of smooth muscle cell proliferation, secretory mechanisms, and platelet degranulation. Three proteins were differentiated between survivors and nonsurvivors. Finally, increased levels of fructose-bisphosphate aldolase B were determined in patients with exposure to angiotensin receptor blockers versus decreased levels in those exposed to angiotensin-converting enzyme inhibitors. Data are available via ProteomeXchange PXD029437.


Subject(s)
COVID-19 , Biomarkers , Humans , Plasma , Proteomics , Retrospective Studies
7.
Circulation ; 143(9): 921-934, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33228395

ABSTRACT

BACKGROUND: The high-density lipoprotein hypothesis of atherosclerosis has been challenged by clinical trials of cholesteryl ester transfer protein (CETP) inhibitors, which failed to show significant reductions in cardiovascular events. Plasma levels of high-density lipoprotein cholesterol (HDL-C) decline drastically during sepsis, and this phenomenon is explained, in part, by the activity of CETP, a major determinant of plasma HDL-C levels. We tested the hypothesis that genetic or pharmacological inhibition of CETP would preserve high-density lipoprotein levels and decrease mortality in clinical cohorts and animal models of sepsis. METHODS: We examined the effect of a gain-of-function variant in CETP (rs1800777, p.Arg468Gln) and a genetic score for decreased CETP function on 28-day sepsis survival using Cox proportional hazard models adjusted for age and sex in the UK Biobank (n=5949), iSPAAR (Identification of SNPs Predisposing to Altered Acute Lung Injury Risk; n=882), Copenhagen General Population Study (n=2068), Copenhagen City Heart Study (n=493), Early Infection (n=200), St Paul's Intensive Care Unit 2 (n=203), and Vasopressin Versus Norepinephrine Infusion in Patients With Septic Shock studies (n=632). We then studied the effect of the CETP inhibitor, anacetrapib, in adult female APOE*3-Leiden mice with or without human CETP expression using the cecal-ligation and puncture model of sepsis. RESULTS: A fixed-effect meta-analysis of all 7 cohorts found that the CETP gain-of-function variant was significantly associated with increased risk of acute sepsis mortality (hazard ratio, 1.44 [95% CI, 1.22-1.70]; P<0.0001). In addition, a genetic score for decreased CETP function was associated with significantly decreased sepsis mortality in the UK Biobank (hazard ratio, 0.77 [95% CI, 0.59-1.00] per 1 mmol/L increase in HDL-C) and iSPAAR cohorts (hazard ratio, 0.60 [95% CI, 0.37-0.98] per 1 mmol/L increase in HDL-C). APOE*3-Leiden.CETP mice treated with anacetrapib had preserved levels of HDL-C and apolipoprotein-AI and increased survival relative to placebo treatment (70.6% versus 35.3%, Log-rank P=0.03), whereas there was no effect of anacetrapib on the survival of APOE*3-Leiden mice that did not express CETP (50.0% versus 42.9%, Log-rank P=0.87). CONCLUSIONS: Clinical genetics and humanized mouse models suggest that inhibiting CETP may preserve high-density lipoprotein levels and improve outcomes for individuals with sepsis.


Subject(s)
Anticholesteremic Agents/therapeutic use , Cholesterol Ester Transfer Proteins/metabolism , Cholesterol, HDL/blood , Oxazolidinones/therapeutic use , Sepsis/drug therapy , Animals , Apolipoprotein A-I/blood , Apolipoprotein E3/genetics , Cholesterol Ester Transfer Proteins/antagonists & inhibitors , Cholesterol Ester Transfer Proteins/genetics , Cytokines/metabolism , Disease Models, Animal , Female , Gain of Function Mutation , Humans , Mice , Mice, Transgenic , Placebo Effect , Polymorphism, Single Nucleotide , Risk Factors , Sepsis/mortality , Sepsis/pathology , Survival Rate
8.
Crit Care Med ; 50(3): e284-e293, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34593707

ABSTRACT

OBJECTIVES: Multiple organ failure in critically ill patients is associated with poor prognosis, but biomarkers contributory to pathogenesis are unknown. Previous studies support a role for Fas cell surface death receptor (Fas)-mediated apoptosis in organ dysfunction. Our objectives were to test for associations between soluble Fas and multiple organ failure, identify protein quantitative trait loci, and determine associations between genetic variants and multiple organ failure. DESIGN: Retrospective observational cohort study. SETTING: Four academic ICUs at U.S. hospitals. PATIENTS: Genetic analyses were completed in a discovery (n = 1,589) and validation set (n = 863). Fas gene expression and flow cytometry studies were completed in outpatient research participants (n = 250). INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: In discovery and validation sets of critically ill patients, we tested for associations between enrollment plasma soluble Fas concentrations and Sequential Organ Failure Assessment score on day 3. We conducted a genome-wide association study of plasma soluble Fas (discovery n = 1,042) and carried forward a single nucleotide variant in the FAS gene, rs982764, for validation (n = 863). We further tested whether the single nucleotide variant in FAS (rs982764) was associated with Sequential Organ Failure Assessment score, FAS transcriptional isoforms, and Fas cell surface expression. Higher plasma soluble Fas was associated with higher day 3 Sequential Organ Failure Assessment scores in both the discovery (ß = 4.07; p < 0.001) and validation (ß = 6.96; p < 0.001) sets. A single nucleotide variant in FAS (rs982764G) was associated with lower plasma soluble Fas concentrations and lower day 3 Sequential Organ Failure Assessment score in meta-analysis (-0.21; p = 0.02). Single nucleotide variant rs982764G was also associated with a lower relative expression of the transcript for soluble as opposed to transmembrane Fas and higher cell surface expression of Fas on CD4+ T cells. CONCLUSIONS: We found that single nucleotide variant rs982764G was associated with lower plasma soluble Fas concentrations in a discovery and validation population, and single nucleotide variant rs982764G was also associated with lower organ dysfunction on day 3. These findings support further study of the Fas pathway as a potential mediator of organ dysfunction in critically ill patients.


Subject(s)
Critical Illness/epidemiology , Multiple Organ Failure/epidemiology , fas Receptor/genetics , Adult , Aged , Apoptosis , Biomarkers , Female , Genome-Wide Association Study , Genotype , Humans , Intensive Care Units , Male , Middle Aged , Multiple Organ Failure/blood , Organ Dysfunction Scores , Polymorphism, Single Nucleotide , fas Receptor/blood
9.
Crit Care Med ; 50(9): 1306-1317, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35607951

ABSTRACT

OBJECTIVES: To determine whether angiotensin receptor blockers (ARBs) or angiotensin-converting enzyme (ACE) inhibitors are associated with improved outcomes in hospitalized patients with COVID-19 according to sex and to report sex-related differences in renin-angiotensin system (RAS) components. DESIGN: Prospective observational cohort study comparing the effects of ARB or ACE inhibitors versus no ARBs or ACE inhibitors in males versus females. Severe acute respiratory syndrome coronavirus 2 downregulates ACE-2, potentially increasing angiotensin II (a pro-inflammatory vasoconstrictor). Sex-based differences in RAS dysregulation may explain sex-based differences in responses to ARBs because the ACE2 gene is on the X chromosome. We recorded baseline characteristics, comorbidities, prehospital ARBs or ACE inhibitor treatment, use of organ support and mortality, and measured RAS components at admission and days 2, 4, 7, and 14 in a subgroup ( n = 46), recorded d -dimer ( n = 967), comparing males with females. SETTING: ARBs CORONA I is a multicenter Canadian observational cohort of patients hospitalized with acute COVID-19. This analysis includes patients admitted to 10 large urban hospitals across the four most populated provinces. PATIENTS: One-thousand six-hundred eighty-six patients with polymerase chain reaction-confirmed COVID-19 (February 2020 to March 2021) for acute COVID-19 illness were included. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Males on ARBs before admission had decreased use of ventilation (adjusted odds ratio [aOR] = 0.52; p = 0.007) and vasopressors (aOR = 0.55; p = 0.011) compared with males not on ARBs or ACE inhibitors. No significant effects were observed in females for these outcomes. The test for interaction was significant for use of ventilation ( p = 0.006) and vasopressors ( p = 0.044) indicating significantly different responses to ARBs according to sex. Males had significantly higher plasma ACE-1 at baseline and angiotensin II at day 7 and 14 than females. CONCLUSIONS: ARBs use was associated with less ventilation and vasopressors in males but not females. Sex-based differences in RAS dysregulation may contribute to sex-based differences in outcomes and responses to ARBs in COVID-19.


Subject(s)
COVID-19 Drug Treatment , Hypertension , Angiotensin II/pharmacology , Angiotensin Receptor Antagonists/pharmacology , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Canada , Female , Humans , Male , Prospective Studies , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/physiology , Sex Characteristics
10.
Health Qual Life Outcomes ; 20(1): 170, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36575437

ABSTRACT

BACKGROUND: Fatigue is a common symptom in hospitalized and non-hospitalized patients recovering from COVID-19, but no fatigue measurement scales or questions have been validated in these populations. The objective of this study was to perform validity assessments of the fatigue severity scale (FSS) and two single-item screening questions (SISQs) for fatigue in patients recovering from COVID-19. METHODS: We examined patients ≥ 28 days after their first SARS-CoV-2 infection who were hospitalized for their acute illness, as well as non-hospitalized patients referred for persistent symptoms. Patients completed questionnaires through 1 of 4 Post COVID-19 Recovery Clinics in British Columbia, Canada. Construct validity was assessed by comparing FSS scores to quality of life and depression measures. Two SISQs were evaluated based on the ability to classify fatigue (FSS score ≥ 4). RESULTS: Questionnaires were returned in 548 hospitalized and 546 non-hospitalized patients, with scores computable in 96.4% and 98.2% of patients respectively. Cronbach's alpha was 0.96 in both groups. The mean ± SD FSS score was 4.4 ± 1.8 in the hospitalized and 5.2 ± 1.6 in the non-hospitalized group, with 62.5% hospitalized and 78.9% non-hospitalized patients classified as fatigued. Ceiling effects were 7.6% in the hospitalized and 16.1% in non-hospitalized patients. FSS scores negatively correlated with EQ-5D scores in both groups (Spearman's rho - 0.6 in both hospitalized and non-hospitalized; p < 0.001) and were higher among patients with a positive PHQ-2 depression screen (5.4 vs. 4.0 in hospitalized and 5.9 vs. 4.9 in non-hospitalized; p < 0.001). An SISQ asking whether there was "fatigue present" had a sensitivity of 70.6% in hospitalized and 83.2% in non-hospitalized patients; the "always feeling tired" SISQ, had a sensitivity of 70.5% and 89.6% respectively. CONCLUSIONS: Fatigue was common and severe in patients referred for post COVID-19 assessment. Overall, the FSS is suitable for measuring fatigue in these patients, as there was excellent data quality, strong internal consistency, and construct validity. However, ceiling effects may be a limitation in the non-hospitalized group. SISQs had good sensitivity for identifying clinically relevant fatigue in non-hospitalized patients but only moderate sensitivity in the hospitalized group, indicating that there were more false negatives.


Subject(s)
COVID-19 , Quality of Life , Humans , Reproducibility of Results , Severity of Illness Index , COVID-19/complications , SARS-CoV-2 , Surveys and Questionnaires , Psychometrics
11.
Crit Care Med ; 49(9): 1558-1566, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33870918

ABSTRACT

OBJECTIVES: Severe acute respiratory syndrome-related coronavirus-2 binds and inhibits angiotensin-converting enzyme-2. The frequency of acute cardiac injury in patients with coronavirus disease 2019 is unknown. The objective was to compare the rates of cardiac injury by angiotensin-converting enzyme-2-binding viruses from viruses that do not bind to angiotensin-converting enzyme-2. DATA SOURCES: We performed a systematic review of coronavirus disease 2019 literature on PubMed and EMBASE. STUDY SELECTION: We included studies with ten or more hospitalized adults with confirmed coronavirus disease 2019 or other viral pathogens that described the occurrence of acute cardiac injury. This was defined by the original publication authors or by: 1) myocardial ischemia, 2) new cardiac arrhythmia on echocardiogram, or 3) new or worsening heart failure on echocardiogram. DATA EXTRACTION: We compared the rates of cardiac injury among patients with respiratory infections with viruses that down-regulate angiotensin-converting enzyme-2, including H1N1, H5N1, H7N9, and severe acute respiratory syndrome-related coronavirus-1, to those with respiratory infections from other influenza viruses that do not bind angiotensin-converting enzyme-2, including Influenza H3N2 and influenza B. DATA SYNTHESIS: Of 57 studies including 34,072 patients, acute cardiac injury occurred in 50% (95% CI, 44-57%) of critically ill patients with coronavirus disease 2019. The overall risk of acute cardiac injury was 21% (95% CI, 18-26%) among hospitalized patients with coronavirus disease 2019. In comparison, 37% (95% CI, 26-49%) of critically ill patients with other respiratory viruses that bind angiotensin-converting enzyme-2 (p = 0.061) and 12% (95% CI, 7-22%) of critically ill patients with other respiratory viruses that do not bind angiotensin-converting enzyme-2 (p < 0.001) experienced a cardiac injury. CONCLUSIONS: Acute cardiac injury may be associated with whether the virus binds angiotensin-converting enzyme-2. Acute cardiac injury occurs in half of critically ill coronavirus disease 2019 patients, but only 12% of patients infected by viruses that do not bind to angiotensin-converting enzyme-2.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme Inhibitors , COVID-19/complications , Heart Failure/etiology , Influenza, Human/complications , Myocardial Ischemia/etiology , SARS-CoV-2/metabolism , Acute Disease , Arrhythmias, Cardiac/etiology , Down-Regulation , Humans , Influenza A virus/metabolism , Influenza B virus/metabolism
12.
Semin Respir Crit Care Med ; 42(1): 59-77, 2021 02.
Article in English | MEDLINE | ID: mdl-32820475

ABSTRACT

After fluid administration for vasodilatory shock, vasopressors are commonly infused. Causes of vasodilatory shock include septic shock, post-cardiovascular surgery, post-acute myocardial infarction, postsurgery, other causes of an intense systemic inflammatory response, and drug -associated anaphylaxis. Therapeutic vasopressors are hormones that activate receptors-adrenergic: α1, α2, ß1, ß2; angiotensin II: AG1, AG2; vasopressin: AVPR1a, AVPR1B, AVPR2; dopamine: DA1, DA2. Vasopressor choice and dose vary widely because of patient and physician practice heterogeneity. Vasopressor adverse effects are excessive vasoconstriction causing organ ischemia/infarction, hyperglycemia, hyperlactatemia, tachycardia, and tachyarrhythmias. To date, no randomized controlled trial (RCT) of vasopressors has shown a decreased 28-day mortality rate. There is a need for evidence regarding alternative vasopressors as first-line vasopressors. We emphasize that vasopressors should be administered simultaneously with fluid replacement to prevent and decrease duration of hypotension in shock with vasodilation. Norepinephrine is the first-choice vasopressor in septic and vasodilatory shock. Interventions that decrease norepinephrine dose (vasopressin, angiotensin II) have not decreased 28-day mortality significantly. In patients not responsive to norepinephrine, vasopressin or epinephrine may be added. Angiotensin II may be useful for rapid resuscitation of profoundly hypotensive patients. Inotropic agent(s) (e.g., dobutamine) may be needed if vasopressors decrease ventricular contractility. Dopamine has fallen to almost no-use recommendation because of adverse effects; angiotensin II is available clinically; there are potent vasopressors with scant literature (e.g., methylene blue); and the novel V1a agonist selepressin missed on its pivotal RCT primary outcome. In pediatric septic shock, vasopressors, epinephrine, and norepinephrine are recommended equally because there is no clear evidence that supports the use of one vasoactive agent. Dopamine is recommended when epinephrine or norepinephrine is not available. New strategies include perhaps patients will be started on several vasopressors with complementary mechanisms of action, patients may be selected for particular vasopressors according to predictive biomarkers, and novel vasopressors may emerge with fewer adverse effects.


Subject(s)
Shock, Septic , Shock , Angiotensin II , Dopamine , Epinephrine , Humans , Intensive Care Units , Norepinephrine , Shock, Septic/drug therapy , Vasoconstrictor Agents/adverse effects , Vasopressins
13.
Crit Care Med ; 48(1): 41-48, 2020 01.
Article in English | MEDLINE | ID: mdl-31651422

ABSTRACT

OBJECTIVES: Obese patients have lower sepsis mortality termed the "obesity paradox." We hypothesized that lipopolysaccharide, known to be carried within lipoproteins such as very low density lipoprotein, could be sequestered in adipose tissue during sepsis; potentially contributing a survival benefit. DESIGN: Retrospective analysis. SETTING: University research laboratory. SUBJECTS AND PATIENTS: Vldlr knockout mice to decrease very low density lipoprotein receptors, Pcsk9 knockout mice to increase very low density lipoprotein receptor, and Ldlr knockout mice to decrease low density lipoprotein receptors. Differentiated 3T3-L1 adipocytes. Caucasian septic shock patients. INTERVENTIONS: We measured lipopolysaccharide uptake into adipose tissue 6 hours after injection of fluorescent lipopolysaccharide into mice. Lipopolysaccharide uptake and very low density lipoprotein receptor protein expression were measured in adipocytes. To determine relevance to humans, we genotyped the VLDLR rs7852409 G/C single-nucleotide polymorphism in 519 patients and examined the association of 28-day survival with genotype. MEASUREMENTS AND MAIN RESULTS: Lipopolysaccharide injected into mice was found in adipose tissue within 6 hours and was dependent on very low density lipoprotein receptor but not low density lipoprotein receptors. In an adipocyte cell line decreased very low density lipoprotein receptor expression resulted in decreased lipopolysaccharide uptake. In septic shock patients, the minor C allele of VLDLR rs7852409 was associated with increased survival (p = 0.010). Previously published data indicate that the C allele is a gain-of-function variant of VLDLR which may increase sequestration of very low density lipoprotein (and lipopolysaccharide within very low density lipoprotein) into adipose tissue. When body mass index less than 25 this survival effect was accentuated and when body mass index greater than or equal to 25 this effect was diminished suggesting that the effect of variation in very low density lipoprotein receptor function is overwhelmed when copious adipose tissue is present. CONCLUSIONS: Lipopolysaccharide may be sequestered in adipose tissue via the very low density lipoprotein receptor and this sequestration may contribute to improved sepsis survival.


Subject(s)
Adipose Tissue/metabolism , Lipopolysaccharides/metabolism , Receptors, LDL/metabolism , Sepsis/metabolism , Adipocytes/metabolism , Adult , Aged , Animals , Cells, Cultured , Female , Humans , Male , Mice , Middle Aged , Retrospective Studies
14.
Clin Transplant ; 34(9): e14018, 2020 09.
Article in English | MEDLINE | ID: mdl-32573834

ABSTRACT

Optimal conditioning and graft-vs-host disease (GVHD) prophylaxis for hematopoietic cell transplantation (HCT) are unknown. Here, we report on outcomes after low toxicity, myeloablative conditioning consisting of fludarabine, busulfan, and 4 Gy total body irradiation, in combination with thymoglobulin and post-transplant methotrexate and cyclosporine. We retrospectively studied 700 patients with hematologic malignancies who received blood stem cells from 7 to 8/8 HLA-matched unrelated or related donors. Median follow-up of surviving patients was 5 years. At 5 years, overall survival (OS), relapse-free survival (RFS), and chronic GVHD/relapse-free survival (cGRFS) were 58%, 55%, and 40%. Risk factors for poor OS, RFS, and cGRFS were (1). high to very high disease risk index (DRI), (2). high recipient age, and (3). cytomegalovirus (CMV)-seropositive recipient with seronegative donor (D-R+). The latter risk factor applied particularly to patients with lymphoid malignancies. Neither donor other than HLA-matched sibling (7-8/8 unrelated) nor one HLA allele mismatch was risk factors for poor OS, RFS, or cGRFS. In conclusion, the above regimen results in excellent long-term outcomes. The outcomes are negatively impacted by older age, high or very high DRI, and CMV D-R+ serostatus, but not by donor unrelatedness or one HLA allele mismatch.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Aged , Antilymphocyte Serum/therapeutic use , Busulfan/therapeutic use , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control , Humans , Myeloablative Agonists/therapeutic use , Neoplasm Recurrence, Local , Retrospective Studies , Transplantation Conditioning , Treatment Outcome , Vidarabine/analogs & derivatives , Vidarabine/therapeutic use , Whole-Body Irradiation
15.
Am J Respir Crit Care Med ; 199(7): 854-862, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30321485

ABSTRACT

RATIONALE: High-density lipoprotein (HDL) cholesterol (HDL-C) levels decline during sepsis, and lower levels are associated with worse survival. However, the genetic mechanisms underlying changes in HDL-C during sepsis, and whether the relationship with survival is causative, are largely unknown. OBJECTIVES: We hypothesized that variation in genes involved in HDL metabolism would contribute to changes in HDL-C levels and clinical outcomes during sepsis. METHODS: We performed targeted resequencing of HDL-related genes in 200 patients admitted to an emergency department with sepsis (Early Infection cohort). We examined the association of genetic variants with HDL-C levels, 28-day survival, 90-day survival, organ dysfunction, and need for vasopressor or ventilatory support. Candidate variants were further assessed in the VASST (Vasopressin versus Norepinephrine Infusion in Patients with Septic Shock Trial) cohort (n = 632) and St. Paul's Hospital Intensive Care Unit 2 (SPHICU2) cohort (n = 203). MEASUREMENTS AND MAIN RESULTS: We identified a rare missense variant in CETP (cholesteryl ester transfer protein gene; rs1800777-A) that was associated with significant reductions in HDL-C levels during sepsis. Carriers of the A allele (n = 10) had decreased survival, more organ failure, and greater need for organ support compared with noncarriers. We replicated this finding in the VASST and SPHICU2 cohorts, in which carriers of rs1800777-A (n = 35 and n = 12, respectively) had significantly reduced 28-day survival. Mendelian randomization was consistent with genetically reduced HDL levels being a causal factor for decreased sepsis survival. CONCLUSIONS: Our results identify CETP as a critical regulator of HDL levels and clinical outcomes during sepsis. These data point toward a critical role for HDL in sepsis.


Subject(s)
Cholesterol Ester Transfer Proteins/genetics , Cholesterol Ester Transfer Proteins/metabolism , Cholesterol, HDL/genetics , Cholesterol, HDL/metabolism , Sepsis/genetics , Sepsis/metabolism , Survival/physiology , Aged , British Columbia , Cohort Studies , Female , Humans , Male , Middle Aged , Risk Factors , Sepsis/physiopathology
17.
Crit Care Med ; 47(3): 463-466, 2019 03.
Article in English | MEDLINE | ID: mdl-30394916

ABSTRACT

OBJECTIVES: Low low-density lipoprotein levels are associated with increased mortality in sepsis. Whether low low-density lipoprotein levels contribute causally to adverse sepsis outcome is unknown. DESIGN: Retrospective analysis of two sepsis patient cohorts using a Mendelian Randomization strategy. SETTING: Sepsis patients enrolled into clinical research cohorts at tertiary care teaching hospitals. PATIENTS: The first cohort included 200 sepsis patients enrolled in an observational study in a hospital Emergency Department. The second cohort included genotyped patients enrolled in the Vasopressin and Septic Shock Trial. INTERVENTIONS: Retrospective analysis of these patient datasets. In 632 patients enrolled in Vasopressin and Septic Shock Trial, Proprotein Convertase Subtilisin/Kexin type 9, and 3-Hydroxy-3-Methylglutaryl-CoA Reductase single nucleotide polymorphisms known to be associated with low-density lipoprotein levels were genotyped, and a genetic score related to low-density lipoprotein levels was calculated. MEASUREMENTS AND MAIN RESULTS: In the first cohort, we replicated the finding that low low-density lipoprotein levels are associated with increased 28-day mortality. In genotyped patients in the Vasopressin and Septic Shock Trial trial, we found that the 3-Hydroxy-3-Methylglutaryl-CoA Reductase genetic score, known to be directly related to low low-density lipoprotein levels, was not associated with increased mortality. Surprisingly the Proprotein Convertase Subtilisin/Kexin type 9 genetic score, known to be directly related to low low-density lipoprotein levels, was associated with decreased (not increased) mortality. CONCLUSIONS: Both 3-Hydroxy-3-Methylglutaryl-CoA Reductase and Proprotein Convertase Subtilisin/Kexin type 9 genetic scores should have been associated with increased mortality if low low-density lipoprotein levels contributed causally to sepsis mortality. But this was not the case, and the opposite was observed for the Proprotein Convertase Subtilisin/Kexin type 9 genetic score. This suggests that low-density lipoprotein levels, per se, do not contribute causally to adverse sepsis outcomes. The Proprotein Convertase Subtilisin/Kexin type 9 genetic score finding raises the possibility that increased low-density lipoprotein clearance (the effect of these Proprotein Convertase Subtilisin/Kexin type 9 genotypes) may contribute to improved sepsis outcomes.


Subject(s)
Lipoproteins, LDL/blood , Sepsis/mortality , Female , Humans , Hydroxymethylglutaryl CoA Reductases/genetics , Lipoproteins, LDL/genetics , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Proprotein Convertase 9/genetics , Retrospective Studies , Risk Factors , Sepsis/blood , Sepsis/genetics
20.
Proc Natl Acad Sci U S A ; 113(44): 12403-12407, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27791137

ABSTRACT

Theory and research show that humans attribute both emotions and intentions to others on the basis of facial behavior: A gasping face can be seen as showing "fear" and intent to submit. The assumption that such interpretations are pancultural derives largely from Western societies. Here, we report two studies conducted in an indigenous, small-scale Melanesian society with considerable cultural and visual isolation from the West: the Trobrianders of Papua New Guinea. Our multidisciplinary research team spoke the vernacular and had extensive prior fieldwork experience. In study 1, Trobriand adolescents were asked to attribute emotions, social motives, or both to a set of facial displays. Trobrianders showed a mixed and variable attribution pattern, although with much lower agreement than studies of Western samples. Remarkably, the gasping face (traditionally considered a display of fear and submission in the West) was consistently matched to two unpredicted categories: anger and threat. In study 2, adolescents were asked to select the face that was threatening; Trobrianders chose the "fear" gasping face whereas Spaniards chose an "angry" scowling face. Our findings, consistent with functional approaches to animal communication and observations made on threat displays in small-scale societies, challenge the Western assumption that "fear" gasping faces uniformly express fear or signal submission across cultures.


Subject(s)
Emotions/physiology , Facial Expression , Fear/physiology , Social Perception , Adolescent , Anger/physiology , Child , Fear/psychology , Female , Humans , Logistic Models , Male , Melanesia , Papua New Guinea , Pattern Recognition, Visual/physiology
SELECTION OF CITATIONS
SEARCH DETAIL