Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
J Neurosci ; 36(21): 5748-62, 2016 05 25.
Article in English | MEDLINE | ID: mdl-27225765

ABSTRACT

UNLABELLED: Dependence is a hallmark feature of opiate addiction and is defined by the emergence of somatic and affective withdrawal signs. The nucleus accumbens (NAc) integrates dopaminergic and glutamatergic inputs to mediate rewarding and aversive properties of opiates. Evidence suggests that AMPA glutamate-receptor-dependent synaptic plasticity within the NAc underlies aspects of addiction. However, the degree to which NAc AMPA receptors (AMPARs) contribute to somatic and affective signs of opiate withdrawal is not fully understood. Here, we show that microinjection of the AMPAR antagonist NBQX into the NAc shell of morphine-dependent rats prevented naloxone-induced conditioned place aversions and decreases in sensitivity to brain stimulation reward, but had no effect on somatic withdrawal signs. Using a protein cross-linking approach, we found that the surface/intracellular ratio of NAc GluA1, but not GluA2, increased with morphine treatment, suggesting postsynaptic insertion of GluA2-lacking AMPARs. Consistent with this, 1-naphthylacetyl spermine trihydrochloride (NASPM), an antagonist of GluA2-lacking AMPARs, attenuated naloxone-induced decreases in sensitivity to brain stimulation reward. Naloxone decreased the surface/intracellular ratio and synaptosomal membrane levels of NAc GluA1 in morphine-dependent rats, suggesting a compensatory removal of AMPARs from synaptic zones. Together, these findings indicate that chronic morphine increases synaptic availability of GluA1-containing AMPARs in the NAc, which is necessary for triggering negative-affective states in response to naloxone. This is broadly consistent with the hypothesis that activation of NAc neurons produces acute aversive states and raises the possibility that inhibiting AMPA transmission selectively in the NAc may have therapeutic value in the treatment of addiction. SIGNIFICANCE STATEMENT: Morphine dependence and withdrawal result in profound negative-affective states that play a major role in the maintenance of addiction. However, the underlying neurobiological mechanisms are not fully understood. We use a rat model of morphine dependence to show that GluA1 subunits of AMPA glutamate receptors in the nucleus accumbens (NAc), a brain region critical for modulating affective states, are necessary for aversive effects of morphine withdrawal. Using biochemical methods in NAc tissue, we show that morphine dependence increases cell surface expression of GluA1, suggesting that neurons in this area are primed for increased AMPA receptor activation upon withdrawal. This work is important because it suggests that targeting AMPA receptor trafficking and activation could provide novel targets for addiction treatment.


Subject(s)
Mood Disorders/chemically induced , Mood Disorders/metabolism , Morphine Dependence/metabolism , Morphine/poisoning , Nucleus Accumbens/metabolism , Receptors, AMPA/metabolism , Substance Withdrawal Syndrome/metabolism , Animals , Male , Rats , Rats, Sprague-Dawley , Tissue Distribution
2.
Biol Psychiatry ; 76(3): 213-22, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24090794

ABSTRACT

BACKGROUND: Dynorphin, an endogenous ligand at kappa opioid receptors (KORs), produces depressive-like effects and contributes to addictive behavior in male nonhuman primates and rodents. Although comorbidity of depression and addiction is greater in women than men, the role of KORs in female motivated behavior is unknown. METHODS: In adult Sprague-Dawley rats, we used intracranial self-stimulation to measure effects of the KOR agonist (±)-trans-U-50488 methanesulfonate salt (U-50488) (.0-10.0 mg/kg) on brain stimulation reward in gonadally intact and castrated males and in females at estrous cycle stages associated with low and high estrogen levels. Pharmacokinetic studies of U-50488 in plasma and brain were conducted. Immunohistochemistry was used to identify sex-dependent expression of U-50488-induced c-Fos in brain. RESULTS: U-50488 dose-dependently increased the frequency of stimulation (threshold) required to maintain intracranial self-stimulation responding in male and female rats, a depressive-like effect. However, females were significantly less sensitive than males to the threshold-increasing effects of U-50488, independent of estrous cycle stage in females or gonadectomy in males. Although initial plasma concentrations of U-50488 were higher in females, there were no sex differences in brain concentrations. Sex differences in U-50488-induced c-Fos activation were observed in corticotropin releasing factor-containing neurons of the paraventricular nucleus of the hypothalamus and primarily in non-corticotropin releasing factor-containing neurons of the bed nucleus of the stria terminalis. CONCLUSIONS: These data suggest that the role of KORs in motivated behavior of rats is sex-dependent, which has important ramifications for the study and treatment of mood-related disorders, including depression and drug addiction in people.


Subject(s)
3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology , Depression/metabolism , Limbic System/metabolism , Neurons/metabolism , Receptors, Opioid, kappa/agonists , Reward , 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/blood , Animals , Electric Stimulation , Female , Male , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Sprague-Dawley , Self Stimulation/drug effects , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL