Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 144
Filter
Add more filters

Publication year range
1.
Biochem Biophys Res Commun ; 694: 149417, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38150919

ABSTRACT

In the era of immunotherapy, the targeting of disease-specific biomarkers goes hand in hand with the development of highly selective antibody-based reagents having optimal pharmacological/toxicological profiles. One interesting and debated biomaker for several types of cancers is the onco-fetal protein Cripto-1 that is selectively expressed in many solid tumours and has been actively investigated as potential theranostic target. Starting from previously described anti-CFC/Cripto-1 murine monoclonal antibodies, we have moved forward to prepare the humanized recombinant Fabs which have been engineered so as to bear an MTGase site useful for a one-step site-specific labelling. The purified and bioconjugated molecules have been extensively characterized and tested on Cripto-1-positive cancer cells through in vitro binding assays. These recombinant Fab fragments recognize the target antigen in its native form on intact cells suggesting that they can be further developed as reagents for detecting Cripto-1 in theranostic settings.


Subject(s)
Immunoglobulin Fab Fragments , Neoplasms , Animals , Humans , Mice , Antibodies , GPI-Linked Proteins/metabolism , Immunoglobulin Fab Fragments/chemistry , Intercellular Signaling Peptides and Proteins , Neoplasm Proteins/metabolism
2.
Chemistry ; 30(35): e202400846, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38682403

ABSTRACT

The widespread ability of proteins and peptides to self-assemble by forming cross-ß structure is one of the most significant discoveries in structural biology. Intriguingly, the cross-ß association of proteins/peptides may generate intricate supramolecular architectures with uncommon spectroscopic properties. We have recently characterized self-assembled peptides extracted from the PREP1 protein that are endowed with interesting structural/spectroscopic properties. We here demonstrate that the green fluorescence emission of the peptide PREP1[117-132] (λem ~520 nm), can be induced by excitation with UV radiation. The associated unusually large Stokes shift (Δλ ~150 nm) represents, to the best of our knowledge, the first evidence of an internal resonance energy transfer in amyloid-like structures, where the blue emission of some assemblies becomes the excitation radiation for others. Moreover, the characterization of PREP1[117-132] variants provides insights into the sequence/structure and structure/spectroscopic properties relationships. Our data suggests that the green fluorescence is plausibly associated with antiparallel ß-sheet states of the peptide whereas parallel ß-sheet assemblies are only endowed with blue fluorescence. Notably, the different PREP1[117-132] variants also form assemblies characterized by distinct morphologies. Indeed, the parent peptide and single mutants form compact but structured aggregates whereas most of the double mutants exhibit elongated and highly extended fibers.


Subject(s)
Amyloid , Peptides , Peptides/chemistry , Amyloid/chemistry , Spectrometry, Fluorescence , Amino Acid Sequence
3.
Int J Mol Sci ; 25(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38256156

ABSTRACT

Peptides are increasingly emerging as a drug class for a wide range of human diseases due to their intrinsic properties, such as excellent recognition abilities and biocompatibility [...].


Subject(s)
Peptidomimetics , Humans , Peptidomimetics/pharmacology , Research , Peptides , Recognition, Psychology
4.
Mol Cell ; 58(6): 1001-14, 2015 Jun 18.
Article in English | MEDLINE | ID: mdl-26004228

ABSTRACT

Apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein that, beyond its apoptotic function, is required for the normal expression of major respiratory chain complexes. Here we identified an AIF-interacting protein, CHCHD4, which is the central component of a redox-sensitive mitochondrial intermembrane space import machinery. Depletion or hypomorphic mutation of AIF caused a downregulation of CHCHD4 protein by diminishing its mitochondrial import. CHCHD4 depletion sufficed to induce a respiratory defect that mimicked that observed in AIF-deficient cells. CHCHD4 levels could be restored in AIF-deficient cells by enforcing its AIF-independent mitochondrial localization. This modified CHCHD4 protein reestablished respiratory function in AIF-deficient cells and enabled AIF-deficient embryoid bodies to undergo cavitation, a process of programmed cell death required for embryonic morphogenesis. These findings explain how AIF contributes to the biogenesis of respiratory chain complexes, and they establish an unexpected link between the vital function of AIF and the propensity of cells to undergo apoptosis.


Subject(s)
Apoptosis Inducing Factor/metabolism , Electron Transport Chain Complex Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Amino Acid Sequence , Animals , Apoptosis Inducing Factor/genetics , Cell Line, Tumor , Electron Transport/genetics , Electron Transport Chain Complex Proteins/genetics , Embryo, Mammalian/embryology , Embryo, Mammalian/metabolism , Embryonic Development/genetics , Humans , Immunoblotting , Mice, Knockout , Mitochondria/genetics , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Precursor Protein Import Complex Proteins , Molecular Sequence Data , Protein Binding , Protein Transport/genetics , RNA Interference , Time Factors
5.
Int J Mol Sci ; 24(9)2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37175549

ABSTRACT

Protein-protein interfaces play fundamental roles in the molecular mechanisms underlying pathophysiological pathways and are important targets for the design of compounds of therapeutic interest. However, the identification of binding sites on protein surfaces and the development of modulators of protein-protein interactions still represent a major challenge due to their highly dynamic and extensive interfacial areas. Over the years, multiple strategies including structural, computational, and combinatorial approaches have been developed to characterize PPI and to date, several successful examples of small molecules, antibodies, peptides, and aptamers able to modulate these interfaces have been determined. Notably, peptides are a particularly useful tool for inhibiting PPIs due to their exquisite potency, specificity, and selectivity. Here, after an overview of PPIs and of the commonly used approaches to identify and characterize them, we describe and evaluate the impact of chemical peptide libraries in medicinal chemistry with a special focus on the results achieved through recent applications of this methodology. Finally, we also discuss the role that this methodology can have in the framework of the opportunities, and challenges that the application of new predictive approaches based on artificial intelligence is generating in structural biology.


Subject(s)
Artificial Intelligence , Peptide Library , Peptides/chemistry , Binding Sites , Membrane Proteins , Protein Binding
6.
Int J Mol Sci ; 24(9)2023 May 06.
Article in English | MEDLINE | ID: mdl-37176084

ABSTRACT

Amyloid aggregation is a widespread process that involves proteins and peptides with different molecular complexity and amino acid composition. The structural motif (cross-ß) underlying this supramolecular organization generates aggregates endowed with special mechanical and spectroscopic properties with huge implications in biomedical and technological fields, including emerging precision medicine. The puzzling ability of these assemblies to emit intrinsic and label-free fluorescence in regions of the electromagnetic spectrum, such as visible and even infrared, usually considered to be forbidden in the polypeptide chain, has attracted interest for its many implications in both basic and applied science. Despite the interest in this phenomenon, the physical basis of its origin is still poorly understood. To gain a global view of the available information on this phenomenon, we here provide an exhaustive survey of the current literature in which original data on this fluorescence have been reported. The emitting systems have been classified in terms of their molecular complexity, amino acid composition, and physical state. Information about the wavelength of the radiation used for the excitation as well as the emission range/peak has also been retrieved. The data collected here provide a picture of the complexity of this multifaceted phenomenon that could be helpful for future studies aimed at defining its structural and electronic basis and/or stimulating new applications.


Subject(s)
Amyloid , Peptides , Fluorescence , Peptides/chemistry , Amyloid/chemistry , Amyloidogenic Proteins , Amino Acids
7.
Int J Mol Sci ; 24(10)2023 May 10.
Article in English | MEDLINE | ID: mdl-37239905

ABSTRACT

CD59 is an abundant immuno-regulatory human protein that protects cells from damage by inhibiting the complement system. CD59 inhibits the assembly of the Membrane Attack Complex (MAC), the bactericidal pore-forming toxin of the innate immune system. In addition, several pathogenic viruses, including HIV-1, escape complement-mediated virolysis by incorporating this complement inhibitor in their own viral envelope. This makes human pathogenic viruses, such as HIV-1, not neutralised by the complement in human fluids. CD59 is also overexpressed in several cancer cells to resist the complement attack. Consistent with its importance as a therapeutical target, CD59-targeting antibodies have been proven to be successful in hindering HIV-1 growth and counteracting the effect of complement inhibition by specific cancer cells. In this work, we make use of bioinformatics and computational tools to identify CD59 interactions with blocking antibodies and to describe molecular details of the paratope-epitope interface. Based on this information, we design and produce paratope-mimicking bicyclic peptides able to target CD59. Our results set the basis for the development of antibody-mimicking small molecules targeting CD59 with potential therapeutic interest as complement activators.


Subject(s)
Complement System Proteins , HIV-1 , Humans , Binding Sites, Antibody , Complement System Proteins/metabolism , CD59 Antigens/metabolism , Complement Membrane Attack Complex/metabolism , Complement Inactivating Agents , HIV-1/physiology
8.
FASEB J ; 35(11): e21989, 2021 11.
Article in English | MEDLINE | ID: mdl-34679197

ABSTRACT

Aging exacerbates neointimal formation by reducing apoptosis of vascular smooth muscle cells (VSMCs) and induces inflammation within vascular wall. Prep1 is a homeodomain transcription factor which stimulates the expression of proinflammatory cytokines in aortic endothelial cell models and plays a primary role in the regulation of apoptosis. In this study, we have investigated the role of Prep1 in aorta of Prep1 hypomorphic heterozygous mice (Prep1i/+ ) and in VSMCs, and its correlation with aging. Histological analysis from Prep1i/+ aortas revealed a 25% reduction in medial smooth muscle cell density compared to WT animals. This result paralleled higher apoptosis, caspase 3, caspase 9 and p53 levels in Prep1i/+ mice and lower Bcl-xL. Prep1 overexpression in VSMCs decreased apoptosis by 25% and caspase 3 and caspase 9 expression by 40% and 37%. In parallel, Bcl-xL inhibition by BH3I-1 and p53 induction by etoposide reverted the antiapoptotic effect of Prep1. Experiments performed in aorta from 18 months old WT mice showed a significant increase in Prep1, p16INK4 , p21Waf1 and interleukin 6 (IL-6) compared to youngest animals. Similar results have been observed in H2 O2 -induced senescent VSMCs. Interestingly, the synthetic Prep1 inhibitory peptide Prep1 (54-72) reduced the antiapoptotic effects mediated by IL-6, particularly in senescent VSMCs. These results indicate that IL-6-Prep1 signaling reduces apoptosis, by modulating Bcl-xL and p53 both in murine aorta and in VSMCs. In addition, age-dependent increase in IL-6 and Prep1 in senescent VSMCs and in old mice may be involved in the aging-related vascular dysfunction.


Subject(s)
Aging/metabolism , Homeodomain Proteins/physiology , Interleukin-6/physiology , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Animals , Apoptosis , Cells, Cultured , Mice , Mice, Inbred C57BL , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism
9.
J Enzyme Inhib Med Chem ; 37(1): 1987-1994, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35880250

ABSTRACT

We have recently developed a new synthetic methodology that provided both N-aryl-5-hydroxytriazoles and N-pyridine-4-alkyl triazoles. A selection of these products was carried through virtual screening towards targets that are contemporary and validated for drug discovery and development. This study determined a number of potential structure target dyads of which N-pyridinium-4-carboxylic-5-alkyl triazole displayed the highest score specificity towards KAT2A. Binding affinity tests of abovementioned triazole and related analogs towards KAT2A confirmed the predictions of the in-silico assay. Finally, we have run in vitro inhibition assays of selected triazoles towards KAT2A; the ensemble of binding and inhibition assays delivered pyridyl-triazoles carboxylates as the prototype of a new class of inhibitors of KAT2A.


Subject(s)
Acetyltransferases , Triazoles , Carboxylic Acids/chemistry , Molecular Structure , Structure-Activity Relationship , Triazoles/chemistry , Triazoles/pharmacology
10.
J Transl Med ; 19(1): 89, 2021 02 26.
Article in English | MEDLINE | ID: mdl-33637105

ABSTRACT

The antigenicity as well as the immunogenicity of tumor associated antigens (TAAs) may need to be potentiated in order to break the immunological tolerance. To this aim, heteroclitic peptides were designed introducing specific substitutions in the residue at position 4 (p4) binding to TCR. The effect of such modifications also on the affinity to the major histocompatibility class I (MHC-I) molecule was assessed. The Trp2 antigen, specific for the mouse melanoma B16F10 cells, as well as the HPV-E7 antigen, specific for the TC1 tumor cell lines, were used as models. Affinity of such heteroclitic peptides to HLA was predicted by bioinformatics tools and the most promising ones were validated by structural conformational and HLA binding analyses. Overall, we demonstrated that TAAs modified at the TCR-binding p4 residue are predicted to have higher affinity to MHC-I molecules. Experimental evaluation confirms the stronger binding, suggesting that this strategy may be very effective for designing new vaccines with improved antigenic efficacy.


Subject(s)
HLA-A2 Antigen , Peptides , Animals , Antigens, Neoplasm , Mice , Protein Binding , Receptors, Antigen, T-Cell
11.
Oral Dis ; 27(5): 1137-1147, 2021 Jul.
Article in English | MEDLINE | ID: mdl-32916013

ABSTRACT

Oral squamous cell carcinoma (OSCC) is a common epithelial malignancy of the oral cavity. Nodal and Cripto-1 (CR-1) are important developmental morphogens expressed in several adult cancers and are associated with disease progression. Whether Nodal and CR-1 are simultaneously expressed in the same tumor and how this affects cancer biology are unclear. We investigate the expression and potential role of both Nodal and CR-1 in human OSCC. Immunohistochemistry results show that Nodal and CR-1 are both expressed in the same human OSCC sample and that intensity of Nodal staining is correlated with advanced-stage disease. However, this was not observed with CR-1 staining. Western blot analysis of lysates from two human OSCC line experiments shows expression of CR-1 and Nodal, and their respective signaling molecules, Src and ERK1/2. Treatment of SCC25 and SCC15 cells with both Nodal and CR-1 inhibitors simultaneously resulted in reduced cell viability and reduced levels of P-Src and P-ERK1/2. Further investigation showed that the combination treatment with both Nodal and CR-1 inhibitors was capable of reducing invasiveness of SCC25 cells. Our results show a possible role for Nodal/CR-1 function during progression of human OSCC and that targeting both proteins simultaneously may have therapeutic potential.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Adult , Cell Line, Tumor , Humans , Squamous Cell Carcinoma of Head and Neck
12.
Biochem J ; 477(8): 1391-1407, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32215602

ABSTRACT

Bicyclic peptides assembled around small organic scaffolds are gaining an increasing interest as new potent, stable and highly selective therapeutics because of their uncommon ability to specifically recognize protein targets, of their small size that favor tissue penetration and of the versatility and easiness of the synthesis. We have here rationally designed bicyclic peptides assembled around a common tri-bromo-methylbenzene moiety in order to mimic the structure of the CFC domain of the oncogene Cripto-1 and, more specifically, to orient in the most fruitful way the hot spot residues H120 and W123. Through the CFC domain, Cripto-1 binds the ALK4 receptor and other protein partners supporting uncontrolled cell growth and proliferation. Soluble variants of CFC have the potential to inhibit these interactions suppressing the protein activity. A CFC analog named B3 binds ALK4 in vitro with an affinity in the nanomolar range. Structural analyses in solution via NMR and CD show that B3 has rather flexible conformations, like the parent CFC domain. The functional effects of B3 on the Cripto-1-positive NTERA cancer cell line have been evaluated showing that both CFC and B3 are cytotoxic for the cells and block the Cripto-1 intracellular signaling. Altogether, the data suggest that the administration of the soluble CFC and of the structurally related analog has the potential to inhibit tumor growth.


Subject(s)
GPI-Linked Proteins/antagonists & inhibitors , Neoplasm Proteins/antagonists & inhibitors , Peptides/chemistry , Activin Receptors, Type I/genetics , Activin Receptors, Type I/metabolism , Amino Acid Motifs , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Design , GPI-Linked Proteins/chemistry , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Humans , Intercellular Signaling Peptides and Proteins/chemistry , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Magnetic Resonance Spectroscopy , Neoplasm Proteins/chemistry , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Peptides/pharmacology
13.
Int J Mol Sci ; 22(16)2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34445382

ABSTRACT

Natural and de novo designed peptides are gaining an ever-growing interest as drugs against several diseases. Their use is however limited by the intrinsic low bioavailability and poor stability. To overcome these issues retro-inverso analogues have been investigated for decades as more stable surrogates of peptides composed of natural amino acids. Retro-inverso peptides possess reversed sequences and chirality compared to the parent molecules maintaining at the same time an identical array of side chains and in some cases similar structure. The inverted chirality renders them less prone to degradation by endogenous proteases conferring enhanced half-lives and an increased potential as new drugs. However, given their general incapability to adopt the 3D structure of the parent peptides their application should be careful evaluated and investigated case by case. Here, we review the application of retro-inverso peptides in anticancer therapies, in immunology, in neurodegenerative diseases, and as antimicrobials, analyzing pros and cons of this interesting subclass of molecules.


Subject(s)
Peptides/genetics , Peptides/pharmacology , Amino Acid Sequence , Animals , Humans , Peptides/chemical synthesis , Protein Conformation
14.
Int J Mol Sci ; 22(19)2021 Oct 02.
Article in English | MEDLINE | ID: mdl-34639041

ABSTRACT

The three members (GADD45α, GADD45ß, and GADD45γ) of the growth arrest and DNA damage-inducible 45 (GADD45) protein family are involved in a myriad of diversified cellular functions. With the aim of unravelling analogies and differences, we performed comparative biochemical and biophysical analyses on the three proteins. The characterization and quantification of their binding to the MKK7 kinase, a validated functional partner of GADD45ß, indicate that GADD45α and GADD45γ are strong interactors of the kinase. Despite their remarkable sequence similarity, the three proteins present rather distinct biophysical properties. Indeed, while GADD45ß and GADD45γ are marginally stable at physiological temperatures, GADD45α presents the Tm value expected for a protein isolated from a mesophilic organism. Surprisingly, GADD45α and GADD45ß, when heated, form high-molecular weight species that exhibit features (ThT binding and intrinsic label-free UV/visible fluorescence) proper of amyloid-like aggregates. Cell viability studies demonstrate that they are endowed with a remarkable toxicity against SHSY-5Y and HepG2 cells. The very uncommon property of GADD45ß to form cytotoxic species in near-physiological conditions represents a puzzling finding with potential functional implications. Finally, the low stability and/or the propensity to form toxic species of GADD45 proteins constitute important features that should be considered in interpreting their many functions.


Subject(s)
Amyloid/metabolism , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/metabolism , Protein Aggregates , Amyloid/chemistry , Cell Survival , Cells, Cultured , Humans , Intracellular Signaling Peptides and Proteins/genetics , MAP Kinase Kinase 7/metabolism , Protein Aggregation, Pathological/metabolism , Protein Binding , Protein Conformation, beta-Strand , Protein Stability , Recombinant Proteins , Thermodynamics , GADD45 Proteins
15.
Int J Mol Sci ; 23(1)2021 Dec 27.
Article in English | MEDLINE | ID: mdl-35008690

ABSTRACT

The AIF/CypA complex exerts a lethal activity in several rodent models of acute brain injury. Upon formation, it translocates into the nucleus of cells receiving apoptotic stimuli, inducing chromatin condensation, DNA fragmentation, and cell death by a caspase-independent mechanism. Inhibition of this complex in a model of glutamate-induced cell death in HT-22 neuronal cells by an AIF peptide (AIF(370-394)) mimicking the binding site on CypA, restores cell survival and prevents brain injury in neonatal mice undergoing hypoxia-ischemia without apparent toxicity. Here, we explore the effects of the peptide on SH-SY5Y neuroblastoma cells stimulated with staurosporine (STS), a cellular model widely used to study Parkinson's disease (PD). This will pave the way to understanding the role of the complex and the potential therapeutic efficacy of inhibitors in PD. We find that AIF(370-394) confers resistance to STS-induced apoptosis in SH-SY5Y cells similar to that observed with CypA silencing and that the peptide works on the AIF/CypA translocation pathway and not on caspases activation. These findings suggest that the AIF/CypA complex is a promising target for developing novel therapeutic strategies against PD.


Subject(s)
Apoptosis Inducing Factor/metabolism , Cyclophilin A/metabolism , Staurosporine/pharmacology , Caspase 3/metabolism , Cell Death/drug effects , Cell Line, Tumor , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Down-Regulation/drug effects , Enzyme Activation/drug effects , Gene Silencing/drug effects , Humans , Peptides/metabolism , Poly(ADP-ribose) Polymerases/metabolism , Protein Transport/drug effects
16.
Int J Mol Sci ; 23(1)2021 Dec 31.
Article in English | MEDLINE | ID: mdl-35008880

ABSTRACT

APEH is a ubiquitous and cytosolic serine protease belonging to the prolyl oligopeptidase (POP) family, playing a critical role in the processes of degradation of proteins through both exo- and endopeptidase events. Endopeptidase activity has been associated with protein oxidation; however, the actual mechanisms have yet to be elucidated. We show that a synthetic fragment of GDF11 spanning the region 48-64 acquires sensitivity to the endopeptidase activity of APEH only when the methionines are transformed into the corresponding sulphoxide derivatives. The data suggest that the presence of sulphoxide-modified methionines is an important prerequisite for the substrates to be processed by APEH and that the residue is crucial for switching the enzyme activity from exo- to endoprotease. The cleavage occurs on residues placed on the C-terminal side of Met(O), with an efficiency depending on the methionine adjacent residues, which thereby may play a crucial role in driving and modulating APEH endoprotease activity.


Subject(s)
Peptide Hydrolases/metabolism , Peptides/metabolism , Humans , Models, Molecular , Oxidation-Reduction , Substrate Specificity
17.
Int J Mol Sci ; 22(6)2021 Mar 20.
Article in English | MEDLINE | ID: mdl-33804612

ABSTRACT

BACKGROUND: Monoclonal antibodies (mAbs) against cancer biomarkers are key reagents in diagnosis and therapy. One such relevant biomarker is a preferentially expressed antigen in melanoma (PRAME) that is selectively expressed in many tumors. Knowing mAb's epitope is of utmost importance for understanding the potential activity and therapeutic prospective of the reagents. METHODS: We generated a mAb against PRAME immunizing mice with PRAME fragment 161-415; the affinity of the antibody for the protein was evaluated by ELISA and SPR, and its ability to detect the protein in cells was probed by cytofluorimetry and Western blotting experiments. The antibody epitope was identified immobilizing the mAb on bio-layer interferometry (BLI) sensor chip, capturing protein fragments obtained following trypsin digestion and performing mass spectrometry analyses. RESULTS: A mAb against PRAME with an affinity of 35 pM was obtained and characterized. Its epitope on PRAME was localized on residues 202-212, taking advantage of the low volumes and lack of fluidics underlying the BLI settings. CONCLUSIONS: The new anti-PRAME mAb recognizes the folded protein on the surface of cell membranes suggesting that the antibody's epitope is well exposed. BLI sensor chips can be used to identify antibody epitopes.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antigens, Neoplasm/immunology , Antineoplastic Agents, Immunological/pharmacology , Drug Development , Epitopes/immunology , Interferometry , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibody Specificity , Antineoplastic Agents, Immunological/chemistry , Antineoplastic Agents, Immunological/immunology , Dose-Response Relationship, Drug , Enzyme-Linked Immunosorbent Assay , Epitopes/chemistry , Flow Cytometry , Humans , Kinetics , Melanoma , Mice , Molecular Targeted Therapy , Protein Binding/immunology , Recombinant Proteins , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
18.
Angiogenesis ; 23(3): 357-369, 2020 08.
Article in English | MEDLINE | ID: mdl-32152757

ABSTRACT

N-formyl peptide receptors (FPRs) are G protein-coupled receptors involved in the recruitment and activation of immune cells in response to pathogen-associated molecular patterns. Three FPRs have been identified in humans (FPR1-FPR3), characterized by different ligand properties, biological function and cellular distribution. Recent findings from our laboratory have shown that the peptide BOC-FLFLF (L-BOC2), related to the FPR antagonist BOC2, acts as an angiogenesis inhibitor by binding to various angiogenic growth factors, including vascular endothelial growth factor-A165 (VEGF). Here we show that the all-D-enantiomer of L-BOC2 (D-BOC2) is devoid of any VEGF antagonist activity. At variance, D-BOC2, as well as the D-FLFLF and succinimidyl (Succ)-D-FLFLF (D-Succ-F3) D-peptide variants, is endowed with a pro-angiogenic potential. In particular, the D-peptide D-Succ-F3 exerts a pro-angiogenic activity in a variety of in vitro assays on human umbilical vein endothelial cells (HUVECs) and in ex vivo and in vivo assays in chick and zebrafish embryos and adult mice. This activity is related to the capacity of D-Succ-F3 to bind FRP3 expressed by HUVECs. Indeed, the effects exerted by D-Succ-F3 on HUVECs are fully suppressed by the G protein-coupled receptor inhibitor pertussis toxin, the FPR2/FPR3 antagonist WRW4 and by an anti-FPR3 antibody. A similar inhibition was observed following WRW4-induced FPR3 desensitization in HUVECs. Finally, D-Succ-F3 prevented the binding of the anti-FPR3 antibody to the cell surface of HUVECs. In conclusion, our data demonstrate that the angiogenic activity of D-Succ-F3 is due to the engagement and activation of FPR3 expressed by endothelial cells, thus shedding a new light on the biological function of this chemoattractant receptor.


Subject(s)
Human Umbilical Vein Endothelial Cells/metabolism , Neovascularization, Physiologic/drug effects , Oligopeptides/pharmacology , Receptors, Formyl Peptide , Humans , Oligopeptides/chemical synthesis , Oligopeptides/chemistry , Receptors, Formyl Peptide/agonists , Receptors, Formyl Peptide/metabolism
19.
Anal Biochem ; 607: 113898, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32777266

ABSTRACT

Small molecular weight species such as miRNAs and other nucleic acid fragments are gaining an increased interest as biomarkers for relevant diseases. Also, cheap and rapid assays for their routine detection are becoming an urgent need. We have investigated the usability and convenience of a price affordable, label free and fast technique for their detection on a laboratory scale small device based on Bio-Layer Interferometry. Using a model DNA fragment (7 kDa), we have found that the technique is effectively fast and sensitive enough for the detection of nucleic acid fragments having a MW below the stated molecular size detection limit (10 kDa). The test molecule has been detected in solution at 100 nM in a direct capture experiment and up to about 10 nM following an improved approach where an enhancing probe is used to increase the apparent molecular dimensions of the analyte. The technique, following further optimizations, can be applied for the routine, cheap and fast analysis of small nucleic acid fragments that have a relevance in diagnosis and in therapy.


Subject(s)
DNA/analysis , Base Sequence , Biosensing Techniques , DNA Fragmentation , Interferometry , Light , Limit of Detection , Molecular Weight , Nucleic Acid Hybridization , Surface Properties
20.
FASEB J ; 33(12): 13893-13904, 2019 12.
Article in English | MEDLINE | ID: mdl-31618597

ABSTRACT

Angiogenesis depends on a delicate balance between the different transcription factors, and their control should be considered necessary for preventing or treating diseases. Pre-B-cell leukemia transcription factor regulating protein 1 (Prep1) is a homeodomain transcription factor that plays a primary role in organogenesis and metabolism. Observations performed in a Prep1 hypomorphic mouse model, expressing 3-5% of the protein, show an increase of embryonic lethality due, in part, to defects in angiogenesis. In this study, we provide evidence that overexpression of Prep1 in mouse aortic endothelial cells (MAECs) stimulates migration, proliferation, and tube formation. These effects are paralleled by an increase of several proangiogenic factors and by a decrease of the antiangiogenic gene neurogenic locus notch homolog protein 1 (Notch1). Prep1-mediated angiogenesis involves the activation of the p160 Myb-binding protein (p160)/peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) pathway. Indeed, Prep1 overexpression increases its binding with p160 and induces a 4-fold increase of p160 and 70% reduction of PGC-1α compared with control cells. Incubation of MAECs with a synthetic Prep1(54-72) peptide, mimicking the Prep1 region involved in the interaction with p160, reverts the proangiogenic effects mediated by Prep1. In addition, Prep1 levels increase by 3.2-fold during the fibroblast growth factor ß (bFGF)-mediated endothelial colony-forming cells' activation, whereas Prep1(54-72) peptide reduces the capability of these cells to generate tubular-like structures in response to bFGF, suggesting a possible role of Prep1 both in angiogenesis from preexisting vessels and in postnatal vasculogenesis. Finally, Prep1 hypomorphic heterozygous mice, expressing low levels of Prep1, show attenuated placental angiogenesis and vessel formation within Matrigel plugs. All of these observations indicate that Prep1, complexing with p160, decreases PGC-1α and stimulates angiogenesis.-Cimmino, I., Margheri, F., Prisco, F., Perruolo, G., D'Esposito, V., Laurenzana, A., Fibbi, G., Paciello, O., Doti, N., Ruvo, M., Miele, C., Beguinot, F., Formisano, P., Oriente, F. Prep1 regulates angiogenesis through a PGC-1α-mediated mechanism.


Subject(s)
Endothelial Cells/metabolism , Homeodomain Proteins/metabolism , Neovascularization, Pathologic/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Animals , Cell Movement/physiology , Cell Proliferation/physiology , Cells, Cultured , Gene Expression Regulation/physiology , Mice
SELECTION OF CITATIONS
SEARCH DETAIL