Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Am J Physiol Lung Cell Mol Physiol ; 327(3): L327-L340, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38772903

ABSTRACT

Repair and regeneration of a diseased lung using stem cells or bioengineered tissues is an exciting therapeutic approach for a variety of lung diseases and critical illnesses. Over the past decade, increasing evidence from preclinical models suggests that mesenchymal stromal cells, which are not normally resident in the lung, can be used to modulate immune responses after injury, but there have been challenges in translating these promising findings to the clinic. In parallel, there has been a surge in bioengineering studies investigating the use of artificial and acellular lung matrices as scaffolds for three-dimensional lung or airway regeneration, with some recent attempts of transplantation in large animal models. The combination of these studies with those involving stem cells, induced pluripotent stem cell derivatives, and/or cell therapies is a promising and rapidly developing research area. These studies have been further paralleled by significant increases in our understanding of the molecular and cellular events by which endogenous lung stem and/or progenitor cells arise during lung development and participate in normal and pathological remodeling after lung injury. For the 2023 Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Diseases Conference, scientific symposia were chosen to reflect the most cutting-edge advances in these fields. Sessions focused on the integration of "omics" technologies with function, the influence of immune cells on regeneration, and the role of the extracellular matrix in regeneration. The necessity for basic science studies to enhance fundamental understanding of lung regeneration and to design innovative translational studies was reinforced throughout the conference.


Subject(s)
Bioengineering , Lung Diseases , Lung , Humans , Lung Diseases/therapy , Lung Diseases/pathology , Lung/pathology , Animals , Bioengineering/methods , Cell- and Tissue-Based Therapy/methods , Stem Cells/cytology , Tissue Engineering/methods , Regeneration/physiology , Stem Cell Transplantation/methods
2.
Adv Exp Med Biol ; 1413: 73-106, 2023.
Article in English | MEDLINE | ID: mdl-37195527

ABSTRACT

The airway epithelium provides a physical and biochemical barrier playing a key role in protecting the lung from infiltration of pathogens and irritants and is, therefore, crucial in maintaining tissue homeostasis and regulating innate immunity. Due to continual inspiration and expiration of air during breathing, the epithelium is exposed to a plethora of environmental insults. When severe or persistent, these insults lead to inflammation and infection. The effectiveness of the epithelium as a barrier is reliant upon its capacity for mucociliary clearance, immune surveillance, and regeneration upon injury. These functions are accomplished by the cells that comprise the airway epithelium and the niche in which they reside. Engineering of new physiological and pathological models of the proximal airways requires the generation of complex structures comprising the surface airway epithelium, submucosal gland epithelium, extracellular matrix, and niche cells, including smooth muscle cells, fibroblasts, and immune cells. This chapter focuses on the structure-function relationships in the airways and the challenges of developing complex engineered models of the human airway.


Subject(s)
Inflammation , Lung , Humans , Inflammation/pathology , Epithelium/pathology , Immunity, Innate
3.
Am J Physiol Lung Cell Mol Physiol ; 323(3): L341-L354, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35762622

ABSTRACT

The 9th biennial conference titled "Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Diseases" was hosted virtually, due to the ongoing COVID-19 pandemic, in collaboration with the University of Vermont Larner College of Medicine, the National Heart, Lung, and Blood Institute, the Alpha-1 Foundation, the Cystic Fibrosis Foundation, and the International Society for Cell & Gene Therapy. The event was held from July 12th through 15th, 2021 with a pre-conference workshop held on July 9th. As in previous years, the objectives remained to review and discuss the status of active research areas involving stem cells (SCs), cellular therapeutics, and bioengineering as they relate to the human lung. Topics included 1) technological advancements in the in situ analysis of lung tissues, 2) new insights into stem cell signaling and plasticity in lung remodeling and regeneration, 3) the impact of extracellular matrix in stem cell regulation and airway engineering in lung regeneration, 4) differentiating and delivering stem cell therapeutics to the lung, 5) regeneration in response to viral infection, and 6) ethical development of cell-based treatments for lung diseases. This selection of topics represents some of the most dynamic and current research areas in lung biology. The virtual workshop included active discussion on state-of-the-art methods relating to the core features of the 2021 conference, including in situ proteomics, lung-on-chip, induced pluripotent stem cell (iPSC)-airway differentiation, and light sheet microscopy. The conference concluded with an open discussion to suggest funding priorities and recommendations for future research directions in basic and translational lung biology.


Subject(s)
COVID-19 , Induced Pluripotent Stem Cells , Bioengineering , Biology , COVID-19/therapy , Humans , Lung , Pandemics
4.
Am J Respir Cell Mol Biol ; 65(1): 22-29, 2021 07.
Article in English | MEDLINE | ID: mdl-33625958

ABSTRACT

The National Heart, Lung, and Blood Institute of the National Institutes of Health, together with the Longfonds BREATH consortium, convened a working group to review the field of lung regeneration and suggest avenues for future research. The meeting took place on May 22, 2019, at the American Thoracic Society 2019 conference in Dallas, Texas, United States, and brought together investigators studying lung development, adult stem-cell biology, induced pluripotent stem cells, biomaterials, and respiratory disease. The purpose of the working group was 1) to examine the present status of basic science approaches to tackling lung disease and promoting lung regeneration in patients and 2) to determine priorities for future research in the field.


Subject(s)
Induced Pluripotent Stem Cells , Lung Diseases , Lung/physiology , Regeneration , Respiratory Mucosa/physiology , Animals , Cell- and Tissue-Based Therapy , Congresses as Topic , Education , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/transplantation , Lung Diseases/metabolism , Lung Diseases/therapy , National Heart, Lung, and Blood Institute (U.S.) , United States
5.
Am J Physiol Cell Physiol ; 319(4): C675-C693, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32783658

ABSTRACT

The ability to replace defective cells in an airway with cells that can engraft, integrate, and restore a functional epithelium could potentially cure a number of lung diseases. Progress toward the development of strategies to regenerate the adult lung by either in vivo or ex vivo targeting of endogenous stem cells or pluripotent stem cell derivatives is limited by our fundamental lack of understanding of the mechanisms controlling human lung development, the precise identity and function of human lung stem and progenitor cell types, and the genetic and epigenetic control of human lung fate. In this review, we intend to discuss the known stem/progenitor cell populations, their relative differences between rodents and humans, their roles in chronic lung disease, and their therapeutic prospects. Additionally, we highlight the recent breakthroughs that have increased our understanding of these cell types. These advancements include novel lineage-traced animal models and single-cell RNA sequencing of human airway cells, which have provided critical information on the stem cell subtypes, transition states, identifying cell markers, and intricate pathways that commit a stem cell to differentiate or to maintain plasticity. As our capacity to model the human lung evolves, so will our understanding of lung regeneration and our ability to target endogenous stem cells as a therapeutic approach for lung disease.


Subject(s)
Lung Diseases/therapy , Lung/growth & development , Pluripotent Stem Cells/transplantation , Regeneration/genetics , Cell Differentiation/genetics , Epithelium/growth & development , Humans , Lung/pathology , Lung Diseases/genetics , Lung Diseases/pathology
6.
Am J Physiol Lung Cell Mol Physiol ; 318(4): L671-L683, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32073882

ABSTRACT

Ferrets are an attractive mammalian model for several diseases, especially those affecting the lungs, liver, brain, and kidneys. Many chronic human diseases have been difficult to model in rodents due to differences in size and cellular anatomy. This is particularly the case for the lung, where ferrets provide an attractive mammalian model of both acute and chronic lung diseases, such as influenza, cystic fibrosis, A1A emphysema, and obliterative bronchiolitis, closely recapitulating disease pathogenesis, as it occurs in humans. As such, ferrets have the potential to be a valuable preclinical model for the evaluation of cell-based therapies for lung regeneration and, likely, for other tissues. Induced pluripotent stem cells (iPSCs) provide a great option for provision of enough autologous cells to make patient-specific cell therapies a reality. Unfortunately, they have not been successfully created from ferrets. In this study, we demonstrate the generation of ferret iPSCs that reflect the primed pluripotent state of human iPSCs. Ferret fetal fibroblasts were reprogrammed and acquired core features of pluripotency, having the capacity for self-renewal, multilineage differentiation, and a high-level expression of the core pluripotency genes and pathways at both the transcriptional and protein level. In conclusion, we have generated ferret pluripotent stem cells that provide an opportunity for advancing our capacity to evaluate autologous cell engraftment in ferrets.


Subject(s)
Ferrets/physiology , Induced Pluripotent Stem Cells/cytology , Animals , Cell Differentiation/physiology , Cells, Cultured , Cellular Reprogramming/physiology , Female , Fibroblasts/cytology , Humans , Male
7.
Am J Respir Cell Mol Biol ; 61(4): 429-439, 2019 10.
Article in English | MEDLINE | ID: mdl-31573338

ABSTRACT

The University of Vermont Larner College of Medicine, in collaboration with the National Heart, Lung, and Blood Institute (NHLBI), the Alpha-1 Foundation, the American Thoracic Society, the Cystic Fibrosis Foundation, the European Respiratory Society, the International Society for Cell & Gene Therapy, and the Pulmonary Fibrosis Foundation, convened a workshop titled "Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Diseases" from July 24 through 27, 2017, at the University of Vermont, Burlington, Vermont. The conference objectives were to review and discuss current understanding of the following topics: 1) stem and progenitor cell biology and the role that they play in endogenous repair or as cell therapies after lung injury, 2) the emerging role of extracellular vesicles as potential therapies, 3) ex vivo bioengineering of lung and airway tissue, and 4) progress in induced pluripotent stem cell protocols for deriving lung cell types and applications in disease modeling. All of these topics are research areas in which significant and exciting progress has been made over the past few years. In addition, issues surrounding the ethics and regulation of cell therapies worldwide were discussed, with a special emphasis on combating the growing problem of unproven cell interventions being administered to patients with lung diseases. Finally, future research directions were discussed, and opportunities for both basic and translational research were identified.


Subject(s)
Bioengineering , Cell- and Tissue-Based Therapy , Lung Diseases/therapy , Stem Cells , Bioengineering/trends , Cell- and Tissue-Based Therapy/ethics , Cell- and Tissue-Based Therapy/methods , Cell- and Tissue-Based Therapy/trends , Clinical Trials as Topic , Extracellular Vesicles/transplantation , Forecasting , Health Priorities , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/transplantation , Intersectoral Collaboration , Lung/cytology , Research , Small Business , Stem Cell Niche , Tissue Engineering/methods , Tissue Engineering/trends , Translational Research, Biomedical/trends
9.
Heliyon ; 10(1): e23320, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38163173

ABSTRACT

SARS-CoV-2 infection remains a major public health concern, particularly for the aged and those individuals with co-morbidities at risk for developing severe COVID-19. Understanding the pathogenesis and biomarkers associated with responses to SARS-CoV-2 infection remain critical components in developing effective therapeutic approaches, especially in cases of severe and long-COVID-19. In this study blood plasma protein expression was compared in subjects with mild, moderate, and severe COVID-19 disease. Evaluation of an inflammatory protein panel confirms upregulation of proteins including TNFß, IL-6, IL-8, IL-12, already associated with severe cytokine storm and progression to severe COVID-19. Importantly, we identify several proteins not yet associated with COVID-19 disease, including mesothelin (MSLN), that are expressed at significantly higher levels in severe COVID-19 subjects. In addition, we find a subset of markers associated with T-cell and dendritic cell responses to viral infection that are significantly higher in mild cases and decrease in expression as severity of COVID-19 increases, suggesting that an immediate and effective activation of T-cells is critical in modulating disease progression. Together, our findings identify new targets for further investigation as therapeutic approaches for the treatment of SARS-CoV-2 infection and prevention of complications of severe COVID-19.

10.
Cell Death Dis ; 15(1): 81, 2024 01 22.
Article in English | MEDLINE | ID: mdl-38253523

ABSTRACT

A core pathophysiologic feature underlying many respiratory diseases is multiciliated cell dysfunction, leading to inadequate mucociliary clearance. Due to the prevalence and highly variable etiology of mucociliary dysfunction in respiratory diseases, it is critical to understand the mechanisms controlling multiciliogenesis that may be targeted to restore functional mucociliary clearance. Multicilin, in a complex with E2F4, is necessary and sufficient to drive multiciliogenesis in airway epithelia, however this does not apply to all cell types, nor does it occur evenly across all cells in the same cell population. In this study we further investigated how co-factors regulate the ability of Multicilin to drive multiciliogenesis. Combining data in mouse embryonic fibroblasts and human bronchial epithelial cells, we identify RBL2 as a repressor of the transcriptional activity of Multicilin. Knockdown of RBL2 in submerged cultures or phosphorylation of RBL2 in response to apical air exposure, in the presence of Multicilin, allows multiciliogenesis to progress. These data demonstrate a dynamic interaction between RBL2 and Multicilin that regulates the capacity of cells to differentiate and multiciliate. Identification of this mechanism has important implications for facilitating MCC differentiation in diseases with impaired mucociliary clearance.


Subject(s)
Fibroblasts , Respiratory Tract Diseases , Animals , Mice , Humans , Cell Differentiation/genetics , Epithelial Cells , Epithelium , Retinoblastoma-Like Protein p130
11.
bioRxiv ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39282256

ABSTRACT

Human bronchial epithelial cells (HBECs) derived from the tracheo-bronchial regions of human airways provide an excellent in vitro model for studying pathological mechanisms and evaluating therapeutics in human airway cells. This cell population comprises a mixed population of basal cells (BCs), the predominant stem cell in airways capable of both self-renewal and functional differentiation. Despite their potential for regenerative medicine, BCs exhibit significant phenotypic variability in culture. To investigate how culture conditions influence BC phenotype and function, we expanded three independent BC isolates in three media, airway epithelial cell growth medium (AECGM), dual-SMAD inhibitor (DSI)-enriched AECGM, and Pneumacult Ex plus (PEx+). Extensive RNA sequencing, immune assays and electrical measurements revealed that PEx+ media significantly drove cell proliferation and a broad pro-inflammatory phenotype in BCs. In contrast, BCs expanded in AECGM, displayed increased expression of structural and extracellular matrix components at high passage. Whereas culture in AECGM increased expression of some cytokines at high passage, DSI suppressed inflammation altogether thus implicating TGF-ß in BC inflammatory processes. Differentiation capacity declined with time in culture irrespective of expansion media except for PLUNC expressing secretory cells that were elevated at high passage in AECGM and PEx+ suggestive of an immune modulatory role of PLUNC in BCs. These findings underscore the profound impact of media conditions on inflammatory niche and function of in vitro expanded BCs. The broad pro-inflammatory phenotype driven by PEx+ media, in particular, should be considered in the development of cell-based models for airway diseases and therapeutic application.

12.
bioRxiv ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38187619

ABSTRACT

Mucociliary clearance is a key mechanical defense mechanism of human airways, and clearance failure is linked to major respiratory diseases, such as chronic obstructive pulmonary disease (COPD) and asthma. While single-cell transcriptomics have unveiled the cellular complexity of the human airway epithelium, our understanding of the mechanics that link epithelial structure to clearance function mainly stem from animal models. This reliance on animal data limits crucial insights into human airway barrier function and hampers the human-relevant in vitro modeling of airway diseases. Our study fills this crucial knowledge gap and for the first time (1) maps the distribution of ciliated and secretory cell types on the mucosal surface along the proximo-distal axis of the rat and human airway tree, (2) identifies species-specific differences in ciliary beat and clearance function, and (3) elucidates structural parameters of airway epithelia that predict clearance function in both native and in vitro tissues alike. Our broad range of experimental approaches and physics-based modeling translate into generalizable parameters to quantitatively benchmark the human-relevancy of mucociliary clearance in experimental models, and to characterize distinct disease states.

13.
Res Sq ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38746209

ABSTRACT

Our study focuses on the intricate connection between tissue-level organization and ciliated organ function in humans, particularly in understanding the morphological organization of airways and their role in mucociliary clearance. Mucociliary clearance is a key mechanical defense mechanism of human airways, and clearance failure is associated with many respiratory diseases, including chronic obstructive pulmonary disease (COPD) and asthma. While single-cell transcriptomics have unveiled the cellular complexity of the human airway epithelium, our understanding of the mechanics that link epithelial structure to clearance function mainly stem from animal models. This reliance on animal data limits crucial insights into human airway barrier function and hampers the human-relevant in vitro modeling of airway diseases. This study, for the first time, maps the distribution of ciliated and secretory cell types along the airway tree in both rats and humans, noting species-specific differences in ciliary function and elucidates structural parameters of airway epithelia that predict clearance function in both native and in vitro tissues alike. By uncovering how tissue organization influences ciliary function, we can better understand disruptions in mucociliary clearance, which could have implications for various ciliated organs beyond the airways.

14.
bioRxiv ; 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37577572

ABSTRACT

A core pathophysiologic feature underlying many respiratory diseases is multiciliated cell dysfunction, leading to inadequate mucociliary clearance. Due to the prevalence and highly variable etiology of mucociliary dysfunction in respiratory diseases, it is critical to understand the mechanisms controlling multiciliogenesis that may be targeted to restore functional mucociliary clearance. Multicilin, in a complex with E2F4, is necessary and sufficient to drive multiciliogenesis in airway epithelia, however this does not apply to all cell types, nor does it occur evenly across all cells in the same cell population. In this study we further investigated how co-factors regulate the ability of Multicilin to drive multiciliogenesis. Combining data in mouse embryonic fibroblasts and human bronchial epithelial cells, we identify RBL2 as a repressor of the transcriptional activity of Multicilin. Knockdown of RBL2 in submerged cultures or phosphorylation of RBL2 in response to apical air exposure, in the presence of Multicilin, allows multiciliogenesis to progress. These data demonstrate a dynamic interaction between RBL2 and Multicilin that regulates the capacity of cells to differentiate and multiciliate. Identification of this mechanism has important implications for facilitating MCC differentiation in diseases with impaired mucociliary clearance.

15.
Front Immunol ; 14: 1112870, 2023.
Article in English | MEDLINE | ID: mdl-37006263

ABSTRACT

Introduction: In response to viral infection, neutrophils release inflammatory mediators as part of the innate immune response, contributing to pathogen clearance through virus internalization and killing. Pre- existing co-morbidities correlating to incidence to severe COVID-19 are associated with chronic airway neutrophilia. Furthermore, examination of COVID-19 explanted lung tissue revealed a series of epithelial pathologies associated with the infiltration and activation of neutrophils, indicating neutrophil activity in response to SARS-CoV-2 infection. Methods: To determine the impact of neutrophil-epithelial interactions on the infectivity and inflammatory responses to SARS-CoV-2 infection, we developed a co-culture model of airway neutrophilia. This model was infected with live SARS-CoV-2 virus the epithelial response to infection was evaluated. Results: SARS-CoV-2 infection of airway epithelium alone does not result in a notable pro-inflammatory response from the epithelium. The addition of neutrophils induces the release of proinflammatory cytokines and stimulates a significantly augmented proinflammatory response subsequent SARS-CoV-2 infection. The resulting inflammatory responses are polarized with differential release from the apical and basolateral side of the epithelium. Additionally, the integrity of the \epithelial barrier is impaired with notable epithelial damage and infection of basal stem cells. Conclusions: This study reveals a key role for neutrophil-epithelial interactions in determining inflammation and infectivity.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Epithelial Cells , Respiratory System , Inflammation
16.
bioRxiv ; 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37398026

ABSTRACT

Lymphangioleiomyomatosis (LAM) is a debilitating, progressive lung disease with few therapeutic options, largely due to a paucity of mechanistic knowledge of disease pathogenesis. Lymphatic endothelial cells (LECs) are known to envelope and invade clusters of LAM-cells, comprising of smooth muscle α-actin and/or HMB-45 positive "smooth muscle-like cells" however the role of LECs in LAM pathogenesis is still unknown. To address this critical knowledge gap, we investigated wether LECs interact with LAM-cells to augment their metastatic behaviour of LAM-cells. We performed in situ spatialomics and identified a core of transcriptomically related cells within the LAM nodules. Pathway analysis highlights wound and pulmonary healing, VEGF signaling, extracellular matrix/actin cytoskeletal regulating and the HOTAIR regulatory pathway enriched in the LAM Core cells. We developed an organoid co-culture model combining primary LAM-cells with LECs and applied this to evaluate invasion, migration, and the impact of Sorafenib, a multi-kinase inhibitor. LAM-LEC organoids had significantly higher extracellular matrix invasion, decreased solidity and a greater perimeter, reflecting increased invasion compared to non-LAM control smooth muscle cells. Sorafenib significantly inhibited this invasion in both LAM spheroids and LAM-LEC organoids compared to their respective controls. We identified TGFß1ι1, a molecular adapter coordinating protein-protein interactions at the focal adhesion complex and known to regulate VEGF, TGFß and Wnt signalling, as a Sorafenib-regulated kinase in LAM-cells. In conclusion we have developed a novel 3D co-culture LAM model and have demonstrated the effectiveness of Sorafenib to inhibit LAM-cell invasion, identifying new avenues for therapeutic intervention.

17.
Mater Today Bio ; 21: 100713, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37455819

ABSTRACT

Human lung function is intricately linked to blood flow and breathing cycles, but it remains unknown how these dynamic cues shape human airway epithelial biology. Here we report a state-of-the-art protocol for studying the effects of dynamic medium and airflow as well as stretch on human primary airway epithelial cell differentiation and maturation, including mucociliary clearance, using an organ-on-chip device. Perfused epithelial cell cultures displayed accelerated maturation and polarization of mucociliary clearance, and changes in specific cell-types when compared to traditional (static) culture methods. Additional application of airflow and stretch to the airway chip resulted in an increase in polarization of mucociliary clearance towards the applied flow, reduced baseline secretion of interleukin-8 and other inflammatory proteins, and reduced gene expression of matrix metalloproteinase (MMP) 9, fibronectin, and other extracellular matrix factors. These results indicate that breathing-like mechanical stimuli are important modulators of airway epithelial cell differentiation and maturation and that their fine-tuned application could generate models of specific epithelial pathologies, including mucociliary (dys)function.

18.
Cell Rep ; 42(12): 113286, 2023 12 26.
Article in English | MEDLINE | ID: mdl-37995179

ABSTRACT

Lung adenocarcinoma (LUAD) is the most prevalent subtype of lung cancer and presents clinically with a high degree of biological heterogeneity and distinct clinical outcomes. The current paradigm of LUAD etiology posits alveolar epithelial type II (AT2) cells as the primary cell of origin, while the role of AT1 cells in LUAD oncogenesis remains unknown. Here, we examine oncogenic transformation in mouse Gram-domain containing 2 (Gramd2)+ AT1 cells via oncogenic KRASG12D. Activation of KRASG12D in AT1 cells induces multifocal LUAD, primarily of papillary histology. Furthermore, KRT8+ intermediate cell states were observed in both AT2- and AT1-derived LUAD, but SCGB3A2+, another intermediate cell marker, was primarily associated with AT1 cells, suggesting different mechanisms of tumor evolution. Collectively, our study reveals that Gramd2+ AT1 cells can serve as a cell of origin for LUAD and suggests that distinct subtypes of LUAD based on cell of origin be considered in the development of therapeutics.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Animals , Mice , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Cell Transformation, Neoplastic/metabolism , Lung Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism
19.
iScience ; 25(2): 103780, 2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35169685

ABSTRACT

Many acute and chronic diseases affect the distal lung alveoli. Alveolar epithelial cell (AEC) lines are needed to better model these diseases. We used de-identified human remnant transplant lungs to develop a method to establish AEC lines. The lines grow well in 2-dimensional (2D) culture as epithelial monolayers expressing lung progenitor markers. In 3-dimensional (3D) culture with fibroblasts, Matrigel, and specific media conditions, the cells form alveolar-like organoids expressing mature AEC markers including aquaporin 5 (AQP5), G-protein-coupled receptor class C group 5 member A (GPRC5A), and surface marker HTII280. Single-cell RNA sequencing of an AEC line in 2D versus 3D culture revealed increased cellular heterogeneity and induction of cytokine and lipoprotein signaling in 3D organoids. Our approach yields lung progenitor lines that retain the ability to differentiate along the alveolar cell lineage despite long-term expansion and provides a valuable system to model and study the distal lung in vitro.

20.
Front Pharmacol ; 12: 645858, 2021.
Article in English | MEDLINE | ID: mdl-34054525

ABSTRACT

The extracellular matrix (ECM) is not simply a quiescent scaffold. This three-dimensional network of extracellular macromolecules provides structural, mechanical, and biochemical support for the cells of the lung. Throughout life, the ECM forms a critical component of the pulmonary stem cell niche. Basal cells (BCs), the primary stem cells of the airways capable of differentiating to all luminal cell types, reside in close proximity to the basolateral ECM. Studying BC-ECM interactions is important for the development of therapies for chronic lung diseases in which ECM alterations are accompanied by an apparent loss of the lung's regenerative capacity. The complexity and importance of the native ECM in the regulation of BCs is highlighted as we have yet to create an in vitro culture model that is capable of supporting the long-term expansion of multipotent BCs. The interactions between the pulmonary ECM and BCs are, therefore, a vital component for understanding the mechanisms regulating BC stemness during health and disease. If we are able to replicate these interactions in airway models, we could significantly improve our ability to maintain basal cell stemness ex vivo for use in in vitro models and with prospects for cellular therapies. Furthermore, successful, and sustained airway regeneration in an aged or diseased lung by small molecules, novel compounds or via cellular therapy will rely upon both manipulation of the airway stem cells and their immediate niche within the lung. This review will focus on the current understanding of how the pulmonary ECM regulates the basal stem cell function, how this relationship changes in chronic disease, and how replicating native conditions poses challenges for ex vivo cell culture.

SELECTION OF CITATIONS
SEARCH DETAIL