Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters

Publication year range
1.
Circulation ; 147(1): 35-46, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36503273

ABSTRACT

BACKGROUND: Cardiovascular disease is the leading cause of death worldwide. Existing studies on the association between temperatures and cardiovascular deaths have been limited in geographic zones and have generally considered associations with total cardiovascular deaths rather than cause-specific cardiovascular deaths. METHODS: We used unified data collection protocols within the Multi-Country Multi-City Collaborative Network to assemble a database of daily counts of specific cardiovascular causes of death from 567 cities in 27 countries across 5 continents in overlapping periods ranging from 1979 to 2019. City-specific daily ambient temperatures were obtained from weather stations and climate reanalysis models. To investigate cardiovascular mortality associations with extreme hot and cold temperatures, we fit case-crossover models in each city and then used a mixed-effects meta-analytic framework to pool individual city estimates. Extreme temperature percentiles were compared with the minimum mortality temperature in each location. Excess deaths were calculated for a range of extreme temperature days. RESULTS: The analyses included deaths from any cardiovascular cause (32 154 935), ischemic heart disease (11 745 880), stroke (9 351 312), heart failure (3 673 723), and arrhythmia (670 859). At extreme temperature percentiles, heat (99th percentile) and cold (1st percentile) were associated with higher risk of dying from any cardiovascular cause, ischemic heart disease, stroke, and heart failure as compared to the minimum mortality temperature, which is the temperature associated with least mortality. Across a range of extreme temperatures, hot days (above 97.5th percentile) and cold days (below 2.5th percentile) accounted for 2.2 (95% empirical CI [eCI], 2.1-2.3) and 9.1 (95% eCI, 8.9-9.2) excess deaths for every 1000 cardiovascular deaths, respectively. Heart failure was associated with the highest excess deaths proportion from extreme hot and cold days with 2.6 (95% eCI, 2.4-2.8) and 12.8 (95% eCI, 12.2-13.1) for every 1000 heart failure deaths, respectively. CONCLUSIONS: Across a large, multinational sample, exposure to extreme hot and cold temperatures was associated with a greater risk of mortality from multiple common cardiovascular conditions. The intersections between extreme temperatures and cardiovascular health need to be thoroughly characterized in the present day-and especially under a changing climate.


Subject(s)
Cardiovascular Diseases , Heart Failure , Myocardial Ischemia , Stroke , Humans , Hot Temperature , Temperature , Cause of Death , Cold Temperature , Death , Mortality
2.
PLoS Med ; 21(5): e1004364, 2024 May.
Article in English | MEDLINE | ID: mdl-38743771

ABSTRACT

BACKGROUND: The regional disparity of heatwave-related mortality over a long period has not been sufficiently assessed across the globe, impeding the localisation of adaptation planning and risk management towards climate change. We quantified the global mortality burden associated with heatwaves at a spatial resolution of 0.5°×0.5° and the temporal change from 1990 to 2019. METHODS AND FINDINGS: We collected data on daily deaths and temperature from 750 locations of 43 countries or regions, and 5 meta-predictors in 0.5°×0.5° resolution across the world. Heatwaves were defined as location-specific daily mean temperature ≥95th percentiles of year-round temperature range with duration ≥2 days. We first estimated the location-specific heatwave-mortality association. Secondly, a multivariate meta-regression was fitted between location-specific associations and 5 meta-predictors, which was in the third stage used with grid cell-specific meta-predictors to predict grid cell-specific association. Heatwave-related excess deaths were calculated for each grid and aggregated. During 1990 to 2019, 0.94% (95% CI: 0.68-1.19) of deaths [i.e., 153,078 cases (95% eCI: 109,950-194,227)] per warm season were estimated to be from heatwaves, accounting for 236 (95% eCI: 170-300) deaths per 10 million residents. The ratio between heatwave-related excess deaths and all premature deaths per warm season remained relatively unchanged over the 30 years, while the number of heatwave-related excess deaths per 10 million residents per warm season declined by 7.2% per decade in comparison to the 30-year average. Locations with the highest heatwave-related death ratio and rate were in Southern and Eastern Europe or areas had polar and alpine climates, and/or their residents had high incomes. The temporal change of heatwave-related mortality burden showed geographic disparities, such that locations with tropical climate or low incomes were observed with the greatest decline. The main limitation of this study was the lack of data from certain regions, e.g., Arabian Peninsula and South Asia. CONCLUSIONS: Heatwaves were associated with substantial mortality burden that varied spatiotemporally over the globe in the past 30 years. The findings indicate the potential benefit of governmental actions to enhance health sector adaptation and resilience, accounting for inequalities across communities.


Subject(s)
Climate Change , Extreme Heat , Humans , Extreme Heat/adverse effects , Global Health/trends , Hot Temperature/adverse effects , Mortality/trends , Seasons
3.
Thorax ; 78(5): 459-466, 2023 05.
Article in English | MEDLINE | ID: mdl-35361687

ABSTRACT

BACKGROUND: Ambient air pollution is thought to contribute to increased risk of COVID-19, but the evidence is controversial. OBJECTIVE: To evaluate the associations between short-term variations in outdoor concentrations of ambient air pollution and COVID-19 emergency department (ED) visits. METHODS: We conducted a case-crossover study of 78 255 COVID-19 ED visits in Alberta and Ontario, Canada between 1 March 2020 and 31 March 2021. Daily air pollution data (ie, fine particulate matter with diameter less than 2.5 µm (PM2.5), nitrogen dioxide (NO2) and ozone were assigned to individual case of COVID-19 in 10 km × 10 km grid resolution. Conditional logistic regression was used to estimate associations between air pollution and ED visits for COVID-19. RESULTS: Cumulative ambient exposure over 0-3 days to PM2.5 (OR 1.010; 95% CI 1.004 to 1.015, per 6.2 µg/m3) and NO2 (OR 1.021; 95% CI 1.015 to 1.028, per 7.7 ppb) concentrations were associated with ED visits for COVID-19. We found that the association between PM2.5 and COVID-19 ED visits was stronger among those hospitalised following an ED visit, as a measure of disease severity, (OR 1.023; 95% CI 1.015 to 1.031) compared with those not hospitalised (OR 0.992; 95% CI 0.980 to 1.004) (p value for effect modification=0.04). CONCLUSIONS: We found associations between short-term exposure to ambient air pollutants and COVID-19 ED visits. Exposure to air pollution may also lead to more severe COVID-19 disease.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Humans , Cross-Over Studies , Nitrogen Dioxide/toxicity , Nitrogen Dioxide/analysis , COVID-19/epidemiology , Air Pollution/adverse effects , Air Pollution/analysis , Air Pollutants/adverse effects , Air Pollutants/analysis , Particulate Matter/adverse effects , Particulate Matter/analysis , Ontario/epidemiology , Emergency Service, Hospital , Environmental Exposure/adverse effects , Environmental Exposure/analysis
4.
Am J Respir Crit Care Med ; 206(8): 999-1007, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35671471

ABSTRACT

Rationale: The associations between ambient coarse particulate matter (PM2.5-10) and daily mortality are not fully understood on a global scale. Objectives: To evaluate the short-term associations between PM2.5-10 and total, cardiovascular, and respiratory mortality across multiple countries/regions worldwide. Methods: We collected daily mortality (total, cardiovascular, and respiratory) and air pollution data from 205 cities in 20 countries/regions. Concentrations of PM2.5-10 were computed as the difference between inhalable and fine PM. A two-stage time-series analytic approach was applied, with overdispersed generalized linear models and multilevel meta-analysis. We fitted two-pollutant models to test the independent effect of PM2.5-10 from copollutants (fine PM, nitrogen dioxide, sulfur dioxide, ozone, and carbon monoxide). Exposure-response relationship curves were pooled, and regional analyses were conducted. Measurements and Main Results: A 10 µg/m3 increase in PM2.5-10 concentration on lag 0-1 day was associated with increments of 0.51% (95% confidence interval [CI], 0.18%-0.84%), 0.43% (95% CI, 0.15%-0.71%), and 0.41% (95% CI, 0.06%-0.77%) in total, cardiovascular, and respiratory mortality, respectively. The associations varied by country and region. These associations were robust to adjustment by all copollutants in two-pollutant models, especially for PM2.5. The exposure-response curves for total, cardiovascular, and respiratory mortality were positive, with steeper slopes at lower exposure ranges and without discernible thresholds. Conclusions: This study provides novel global evidence on the robust and independent associations between short-term exposure to ambient PM2.5-10 and total, cardiovascular, and respiratory mortality, suggesting the need to establish a unique guideline or regulatory limit for daily concentrations of PM2.5-10.


Subject(s)
Air Pollutants , Air Pollution , Ozone , Respiratory Tract Diseases , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Carbon Monoxide/analysis , China , Cities , Dust , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Humans , Mortality , Nitrogen Dioxide , Ozone/analysis , Particulate Matter/adverse effects , Particulate Matter/analysis , Sulfur Dioxide
5.
BMC Public Health ; 23(1): 554, 2023 03 23.
Article in English | MEDLINE | ID: mdl-36959548

ABSTRACT

BACKGROUND: Cold winter weather increases the risk of stroke, but the evidence is scarce on whether the risk increases during season-specific cold weather in the other seasons. The objective of our study was to test the hypothesis of an association between personal cold spells and different types of stroke in the season-specific context, and to formally assess effect modification by age and sex. METHODS: We conducted a case-crossover study of all 5396 confirmed 25-64 years old cases with stroke in the city of Kaunas, Lithuania, 2000-2015. We assigned to each case a one-week hazard period and 15 reference periods of the same calendar days of other study years. A personal cold day was defined for each case with a mean temperature below the fifth percentile of the frequency distribution of daily mean temperatures of the hazard and reference periods. Conditional logistic regression was applied to estimate odds ratios (OR) and 95% confidence intervals (95% CI) representing associations between time- and place-specific cold weather and stroke. RESULTS: There were positive associations between cold weather and stroke in Kaunas, with each additional cold day during the week before the stroke increases the risk by 3% (OR 1.03; 95% CI 1.00-1.07). The association was present for ischemic stroke (OR 1.05; 95% CI 1.01-1.09) but not hemorrhagic stroke (OR 0.98; 95% CI 0.91-1.06). In the summer, the risk of stroke increased by 8% (OR 1.08; 95% CI 1.00-1.16) per each additional cold day during the hazard period. Age and sex did not modify the effect. CONCLUSIONS: Our findings show that personal cold spells increase the risk of stroke, and this pertains to ischemic stroke specifically. Most importantly, cold weather in the summer season may be a previously unrecognized determinant of stroke.


Subject(s)
Ischemic Stroke , Stroke , Humans , Adult , Middle Aged , Seasons , Cross-Over Studies , Cold Temperature , Stroke/epidemiology , Stroke/etiology
6.
N Engl J Med ; 381(8): 705-715, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31433918

ABSTRACT

BACKGROUND: The systematic evaluation of the results of time-series studies of air pollution is challenged by differences in model specification and publication bias. METHODS: We evaluated the associations of inhalable particulate matter (PM) with an aerodynamic diameter of 10 µm or less (PM10) and fine PM with an aerodynamic diameter of 2.5 µm or less (PM2.5) with daily all-cause, cardiovascular, and respiratory mortality across multiple countries or regions. Daily data on mortality and air pollution were collected from 652 cities in 24 countries or regions. We used overdispersed generalized additive models with random-effects meta-analysis to investigate the associations. Two-pollutant models were fitted to test the robustness of the associations. Concentration-response curves from each city were pooled to allow global estimates to be derived. RESULTS: On average, an increase of 10 µg per cubic meter in the 2-day moving average of PM10 concentration, which represents the average over the current and previous day, was associated with increases of 0.44% (95% confidence interval [CI], 0.39 to 0.50) in daily all-cause mortality, 0.36% (95% CI, 0.30 to 0.43) in daily cardiovascular mortality, and 0.47% (95% CI, 0.35 to 0.58) in daily respiratory mortality. The corresponding increases in daily mortality for the same change in PM2.5 concentration were 0.68% (95% CI, 0.59 to 0.77), 0.55% (95% CI, 0.45 to 0.66), and 0.74% (95% CI, 0.53 to 0.95). These associations remained significant after adjustment for gaseous pollutants. Associations were stronger in locations with lower annual mean PM concentrations and higher annual mean temperatures. The pooled concentration-response curves showed a consistent increase in daily mortality with increasing PM concentration, with steeper slopes at lower PM concentrations. CONCLUSIONS: Our data show independent associations between short-term exposure to PM10 and PM2.5 and daily all-cause, cardiovascular, and respiratory mortality in more than 600 cities across the globe. These data reinforce the evidence of a link between mortality and PM concentration established in regional and local studies. (Funded by the National Natural Science Foundation of China and others.).


Subject(s)
Air Pollution/adverse effects , Environmental Exposure/analysis , Mortality , Particulate Matter/adverse effects , Air Pollution/analysis , Cardiovascular Diseases/mortality , Cause of Death , Environmental Exposure/adverse effects , Environmental Exposure/legislation & jurisprudence , Global Health , Humans , Particle Size , Particulate Matter/analysis , Respiratory Tract Diseases/mortality , Risk
7.
Epidemiology ; 33(2): 167-175, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34907973

ABSTRACT

BACKGROUND: The association between fine particulate matter (PM2.5) and mortality widely differs between as well as within countries. Differences in PM2.5 composition can play a role in modifying the effect estimates, but there is little evidence about which components have higher impacts on mortality. METHODS: We applied a 2-stage analysis on data collected from 210 locations in 16 countries. In the first stage, we estimated location-specific relative risks (RR) for mortality associated with daily total PM2.5 through time series regression analysis. We then pooled these estimates in a meta-regression model that included city-specific logratio-transformed proportions of seven PM2.5 components as well as meta-predictors derived from city-specific socio-economic and environmental indicators. RESULTS: We found associations between RR and several PM2.5 components. Increasing the ammonium (NH4+) proportion from 1% to 22%, while keeping a relative average proportion of other components, increased the RR from 1.0063 (95% confidence interval [95% CI] = 1.0030, 1.0097) to 1.0102 (95% CI = 1.0070, 1.0135). Conversely, an increase in nitrate (NO3-) from 1% to 71% resulted in a reduced RR, from 1.0100 (95% CI = 1.0067, 1.0133) to 1.0037 (95% CI = 0.9998, 1.0077). Differences in composition explained a substantial part of the heterogeneity in PM2.5 risk. CONCLUSIONS: These findings contribute to the identification of more hazardous emission sources. Further work is needed to understand the health impacts of PM2.5 components and sources given the overlapping sources and correlations among many components.


Subject(s)
Air Pollutants , Air Pollution , Particulate Matter , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/statistics & numerical data , Cities/epidemiology , Environmental Exposure/statistics & numerical data , Humans , Mortality , Nitrates/adverse effects , Particulate Matter/analysis , Particulate Matter/toxicity
8.
Am J Public Health ; 112(1): 107-115, 2022 01.
Article in English | MEDLINE | ID: mdl-34936410

ABSTRACT

Objectives. To test the a priori hypothesis that out-of-hospital cardiac arrest (OHCA) is associated with cold weather during all seasons, not only during the winter. Methods. We applied a case‒crossover design to all cases of nontraumatic OHCA in Helsinki, Finland, over 22 years: 1997 to 2018. We statistically defined cold weather for each case and season, and applied conditional logistic regression with 2 complementary models a priori according to the season of death. Results. There was an association between cold weather and OHCA during all seasons, not only during the winter. Each additional cold day increased the odds of OHCA by 7% (95% confidence interval [CI] = 4%, 10%), with similar strength of association during the autumn (6%; 95% CI = 0%, 12%), winter (6%; 95% CI = 1%, 12%), spring (8%; 95% CI = 2%, 14%), and summer (7%; 95% CI = 0%, 15%). Conclusions. Cold weather, defined according to season, increased the odds of OHCA during all seasons in similar quantity. Public Health Implications. Early warning systems and cold weather plans focus implicitly on the winter season. This may lead to incomplete measures in reducing excess mortality related to cold weather. (Am J Public Health. 2022;112(1):107-115. https://doi.org/10.2105/AJPH.2021.306549).


Subject(s)
Cold Temperature , Out-of-Hospital Cardiac Arrest/epidemiology , Seasons , Weather , Adult , Aged , Epidemiologic Research Design , Female , Finland/epidemiology , Humans , Male , Middle Aged
9.
Environ Res ; 198: 111227, 2021 07.
Article in English | MEDLINE | ID: mdl-33974842

ABSTRACT

Air temperature has been the most commonly used exposure metric in assessing relationships between thermal stress and mortality. Lack of the high-quality meteorological station data necessary to adequately characterize the thermal environment has been one of the main limitations for the use of more complex thermal indices. Global climate reanalyses may provide an ideal platform to overcome this limitation and define complex heat and cold stress conditions anywhere in the world. In this study, we explored the potential of the Universal Thermal Climate Index (UTCI) based on ERA5 - the latest global climate reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF) - as a health-related tool. Employing a novel ERA5-based thermal comfort dataset ERA5-HEAT, we investigated the relationships between the UTCI and daily mortality data in 21 cities across 9 European countries. We used distributed lag nonlinear models to assess exposure-response relationships between mortality and thermal conditions in individual cities. We then employed meta-regression models to pool the results for each city into four groups according to climate zone. To evaluate the performance of ERA5-based UTCI, we compared its effects on mortality with those for the station-based UTCI data. In order to assess the additional effect of the UTCI, the performance of ERA5-and station-based air temperature (T) was evaluated. Whilst generally similar heat- and cold-effects were observed for the ERA5-and station-based data in most locations, the important role of wind in the UTCI appeared in the results. The largest difference between any two datasets was found in the Southern European group of cities, where the relative risk of mortality at the 1st percentile of daily mean temperature distribution (1.29 and 1.30 according to the ERA5 vs station data, respectively) considerably exceeded the one for the daily mean UTCI (1.19 vs 1.22). These differences were mainly due to the effect of wind in the cold tail of the UTCI distribution. The comparison of exposure-response relationships between ERA5-and station-based data shows that ERA5-based UTCI may be a useful tool for definition of life-threatening thermal conditions in locations where high-quality station data are not available.


Subject(s)
Climate , Hot Temperature , Cities , Europe/epidemiology , Wind
10.
Eur J Public Health ; 31(4): 722-724, 2021 10 11.
Article in English | MEDLINE | ID: mdl-33822900

ABSTRACT

We conducted a time-series analysis of the relations between daily levels of allergenic pollen and mortality in the Helsinki Metropolitan Area with 153 378 deaths; 9742 from respiratory and 57 402 from cardiovascular causes. Daily (average) pollen counts of alder, birch, mugwort and grass were measured. In quasi-Poisson regression analysis, abundant alder pollen increased the risk of non-accidental deaths with an adjusted cumulative mortality rate ratio (acMRR) of 1.10 (95% CI 1.01-1.19) and of deaths from respiratory-diseases with acMRR of 1.78 (95% CI 1.19-2.65). Abundant mugwort pollen increased cardiovascular mortality (1.41, 1.02-1.95). These findings identify an important global public health problem.


Subject(s)
Allergens , Pollen , Causality , Humans
11.
Environ Res ; 184: 109290, 2020 05.
Article in English | MEDLINE | ID: mdl-32126375

ABSTRACT

BACKGROUND: Previous studies have provided evidence that prenatal exposure to low-level air pollution increases the risk of preterm birth (PTB), but the findings of the effects of short-term exposure have been inconclusive. Moreover, there is little knowledge on potential synergistic effects of different combinations of air pollutants. OBJECTIVES: To assess independent and joint effects of prenatal exposure to air pollutants during the week prior to the delivery on the risk of PTB. METHODS: The study population included 2568 members of the Espoo Cohort Study, living in the City of Espoo, Finland, born between 1984 and 1990. We assessed individual-level prenatal exposure to ambient air pollutants of interest based on maternal residential addresses, while taking into account their residential mobility. We used both regional-to-city-scale dispersion modelling and land-use regression-based method to estimates the pollutant concentrations. We contrasted the risk of PTB in the highest quartile (Q4) of exposure to the lower exposure quartiles (Q1-Q3) during the specific periods of pregnancy. We applied Poisson regression analysis to estimate the adjusted risk ratios (RRs) with their 95% confidence intervals (CI), adjusting for season of birth, maternal age, sex of the baby, family's socioeconomic status, maternal smoking, and exposure to environmental tobacco smoke during pregnancy, single parenthood, and exposure to other air pollutants (this in multi-pollutant models). RESULTS: The risk of PTB was related to exposures to PM2.5, PM10 and NO2 during the week prior to the delivery with adjusted RRs of 1.67 (95%CI: 1.14, 2.46), 1.60 (95% CI: 1.09, 2.34) and 1.65 (95% CI: 1.14, 2.37), from three-pollutant models respectively. There were no significant joint effects for these different air pollutants (during the week prior to the delivery). CONCLUSION: Our results provide evidence that exposure to fairly low-level air pollution may trigger PTB, but synergistic effects of different pollutants are not likely.


Subject(s)
Air Pollutants , Air Pollution , Premature Birth , Prenatal Exposure Delayed Effects , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/adverse effects , Cohort Studies , Female , Finland/epidemiology , Humans , Infant, Newborn , Maternal Exposure/adverse effects , Particulate Matter/adverse effects , Pregnancy , Premature Birth/chemically induced , Premature Birth/epidemiology , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/epidemiology
12.
Int J Biometeorol ; 64(12): 2065-2076, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32852609

ABSTRACT

There is substantial epidemiological evidence on the associations between cold weather and adverse health effects. Meteorological alarm systems are being developed globally, and generalized protective advice is given to the public based on outdoor exposure parameters. It is not clear how these shared outdoor exposure parameters relate to the individual-level thermal exposure indoors, where the majority of time is spent. We hypothesized a priori that there are opposite correlations between indoor and outdoor temperatures in residential apartments. Apartments were classified into 3 categories according to their response to declining outdoor temperature: under-controlled apartments cool down, controlled apartments maintain constant indoor temperature level, and over-controlled apartments warm up. Outdoor and indoor temperatures were measured in 30-min intervals in 417 residential apartments in 14 buildings in Kotka, Finland, between February and April 2018 with outdoor temperatures ranging from - 20.4 °C to + 14.0 °C. Different apartment types were present in all buildings. Floor and orientation did not explain the divergence. Indoor temperatures below the limit value + 20 °C by building code occurred in 26.2%, 7.9%, and 23.6% of the under-controlled, controlled, and over-controlled apartments, some in conjunction with increasing outdoor temperatures. Indoor temperatures above the limit + 25 °C occurred but were more rare. This proof-of-concept study demonstrates that while the home environment may be a source of thermal stress during cold weather, generalized advice for adjusting the heating may lead to paradoxical exposures in some cases. More elaborate conceptualizations of everyday thermal exposures are needed to safely reduce weather-related health risks using shared meteorological alarm systems.


Subject(s)
Heating , Housing , Finland , Temperature , Weather
13.
BMC Cardiovasc Disord ; 19(1): 69, 2019 03 25.
Article in English | MEDLINE | ID: mdl-30909877

ABSTRACT

BACKGROUND: Methodological information acknowledging safety of cardiac patients in controlled medical experiments are lacking. The descriptive report presents one good practice for considering safety in a randomized controlled study involving augmented cardiovascular strain among persons with coronary artery disease (CAD). METHODS: The patients were pre-selected by a cardiologist according to strictly defined selection criteria. Further confirmation of eligibility included screening of health. In addition, assessments of physical capacity by a graded bicycle ergometer test were implemented and safety monitored by an exercise physiologist and medical doctor. In this context, an emergency simulation was also carried out. A total of 18 CAD patients each underwent four different experimental interventions where either temperature (+ 22 °C and - 15 °C) and the level of exercise (rest and brisk walking) were employed for 30 min in random order (72 experiments). Baseline (20 min) and follow-up (60 min) measurements were conducted resting at + 22 °C. ECG, and brachial blood pressure were measured and perceived exertion and symptoms of chest pain inquired throughout the experiments. An emergency nurse was responsible for the health monitoring and at least two persons followed the patient throughout the experiment. A medical doctor was available on call for consultation. The termination criteria followed the generally accepted international guidelines for exercise testing and were planned prior to the experiments. RESULTS: The exercise test simulation revealed risks requiring changes in the study design and emergency response. The cardiovascular responses of the controlled trials were related to irregular HR, ST-depression or post-exercise hypotension. These were expected and the majority could be dealt on site by the research personnel and on call consultation. Only one patient was encouraged to seek for external health care consultation. CONCLUSIONS: Appropriate prospective design is a key to safe implementation of controlled studies involving cardiac patients and stimulation of cardiovascular function. This includes careful selection of participants, sufficient and knowledgeable staff, as well as identifying possible emergency situations and the required responses. TRIAL REGISTRATION: ClinicalTrials ID: NCT02855905 .


Subject(s)
Coronary Artery Disease/diagnosis , Eligibility Determination , Exercise Test/adverse effects , Exercise Tolerance , Patient Selection , Research Subjects , Aged , Bicycling , Coronary Artery Disease/physiopathology , Finland , Health Status , Humans , Male , Middle Aged , Patient Safety , Predictive Value of Tests , Risk Assessment , Risk Factors , Temperature , Walking
14.
Environ Res ; 176: 108549, 2019 09.
Article in English | MEDLINE | ID: mdl-31252204

ABSTRACT

BACKGROUND: There is some evidence that prenatal exposure to low-level air pollution increases the risk of preterm birth (PTB), but little is known about synergistic effects of different pollutants. OBJECTIVES: We assessed the independent and joint effects of prenatal exposure to air pollution during the entire duration of pregnancy. METHODS: The study population consisted of the 2568 members of the Espoo Cohort Study, born between 1984 and 1990, and living in the City of Espoo, Finland. We assessed individual-level prenatal exposure to ambient air pollutants of interest at all the residential addresses from conception to birth. The pollutant concentrations were estimated both by using regional-to-city-scale dispersion modelling and land-use regression-based method. We applied Poisson regression analysis to estimate the adjusted risk ratios (RRs) with their 95% confidence intervals (CI) by comparing the risk of PTB among babies with the highest quartile (Q4) of exposure during the entire duration of pregnancy with those with the lower exposure quartiles (Q1-Q3). We adjusted for season of birth, maternal age, sex of the baby, family's socioeconomic status, maternal smoking during pregnancy, maternal exposure to environmental tobacco smoke during pregnancy, single parenthood, and exposure to other air pollutants (only in multi-pollutant models) in the analysis. RESULTS: In a multi-pollutant model estimating the effects of exposure during entire pregnancy, the adjusted RR was 1.37 (95% CI: 0.85, 2.23) for PM2.5 and 1.64 (95% CI: 1.15, 2.35) for O3. The joint effect of PM2.5 and O3 was substantially higher, an adjusted RR of 3.63 (95% CI: 2.16, 6.10), than what would have been expected from their independent effects (0.99 for PM2.5 and 1.34 for O3). The relative risk due to interaction (RERI) was 2.30 (95% CI: 0.95, 4.57). DISCUSSION: Our results strengthen the evidence that exposure to fairly low-level air pollution during pregnancy increases the risk of PTB. We provide novel observations indicating that individual air pollutants such as PM2.5 and O3 may act synergistically potentiating each other's adverse effects.


Subject(s)
Air Pollutants , Air Pollution/statistics & numerical data , Maternal Exposure/statistics & numerical data , Ozone , Premature Birth/epidemiology , Cohort Studies , Female , Finland , Humans , Infant, Newborn , Particulate Matter , Pregnancy , Prenatal Exposure Delayed Effects
15.
PLoS Med ; 15(7): e1002629, 2018 07.
Article in English | MEDLINE | ID: mdl-30063714

ABSTRACT

BACKGROUND: Heatwaves are a critical public health problem. There will be an increase in the frequency and severity of heatwaves under changing climate. However, evidence about the impacts of climate change on heatwave-related mortality at a global scale is limited. METHODS AND FINDINGS: We collected historical daily time series of mean temperature and mortality for all causes or nonexternal causes, in periods ranging from January 1, 1984, to December 31, 2015, in 412 communities within 20 countries/regions. We estimated heatwave-mortality associations through a two-stage time series design. Current and future daily mean temperature series were projected under four scenarios of greenhouse gas emissions from 1971-2099, with five general circulation models. We projected excess mortality in relation to heatwaves in the future under each scenario of greenhouse gas emissions, with two assumptions for adaptation (no adaptation and hypothetical adaptation) and three scenarios of population change (high variant, median variant, and low variant). Results show that, if there is no adaptation, heatwave-related excess mortality is expected to increase the most in tropical and subtropical countries/regions (close to the equator), while European countries and the United States will have smaller percent increases in heatwave-related excess mortality. The higher the population variant and the greenhouse gas emissions, the higher the increase of heatwave-related excess mortality in the future. The changes in 2031-2080 compared with 1971-2020 range from approximately 2,000% in Colombia to 150% in Moldova under the highest emission scenario and high-variant population scenario, without any adaptation. If we considered hypothetical adaptation to future climate, under high-variant population scenario and all scenarios of greenhouse gas emissions, the heatwave-related excess mortality is expected to still increase across all the countries/regions except Moldova and Japan. However, the increase would be much smaller than the no adaptation scenario. The simple assumptions with respect to adaptation as follows: no adaptation and hypothetical adaptation results in some uncertainties of projections. CONCLUSIONS: This study provides a comprehensive characterisation of future heatwave-related excess mortality across various regions and under alternative scenarios of greenhouse gas emissions, different assumptions of adaptation, and different scenarios of population change. The projections can help decision makers in planning adaptation and mitigation strategies for climate change.


Subject(s)
Climate Change/mortality , Greenhouse Effect/mortality , Hot Temperature/adverse effects , Cause of Death , Environmental Exposure/adverse effects , Greenhouse Effect/prevention & control , Greenhouse Gases/adverse effects , Humans , Risk Assessment , Risk Factors , Time Factors
16.
Am J Physiol Regul Integr Comp Physiol ; 315(4): R768-R776, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29975565

ABSTRACT

Regular year-round exercise is recommended for patients with coronary artery disease (CAD). However, the combined effects of cold and moderate sustained exercise, both known to increase cardiac workload, on cardiovascular responses are not known. We tested the hypothesis that cardiac workload is increased, and evidence of ischemia would be observed during exercise in the cold in patients with CAD. Sixteen men (59.3 ± 7.0 yr, means ± SD) with stable CAD each underwent 4, 30 min exposures in a randomized order: seated rest and moderate-intensity exercise [walking, 60%-70% of max heart rate (HR)] performed at +22°C and -15°C. Systolic brachial blood pressure (SBP), HR, electrocardiogram (ECG), and skin temperatures were recorded throughout the intervention. Rate pressure product (RPP) and ECG parameters were obtained. The combined effects of cold and submaximal exercise were additive for SBP and RPP and synergistic for HR when compared with rest in a neutral environment. RPP (mmHg·beats/min) was 17% higher during exercise in the cold (18,080 ± 3540) compared with neutral (15,490 ± 2,940) conditions ( P = 0.001). Only a few ST depressions were detected during exercise but without an effect of ambient temperature. The corrected QT interval increased while exercising in the cold compared with neutral temperature ( P = 0.023). Recovery of postexercise blood pressure was similar regardless of temperature. Whole body exposure to cold during submaximal exercise results in higher cardiac workload compared with a neutral environment. Despite the higher RPP, no signs of myocardial ischemia or abnormal ECG responses were observed. The results of this study are useful for planning year-round exercise-based rehabilitation programs for stable CAD patients.


Subject(s)
Cardiac Rehabilitation/methods , Cold Temperature , Coronary Artery Disease/rehabilitation , Exercise Therapy/methods , Hemodynamics , Aged , Cardiac Rehabilitation/adverse effects , Cold Temperature/adverse effects , Coronary Artery Disease/diagnosis , Coronary Artery Disease/physiopathology , Cross-Over Studies , Exercise Test , Exercise Therapy/adverse effects , Exercise Tolerance , Finland , Health Status , Humans , Male , Middle Aged , Time Factors , Treatment Outcome
17.
Lancet Planet Health ; 8(2): e108-e116, 2024 02.
Article in English | MEDLINE | ID: mdl-38331527

ABSTRACT

BACKGROUND: Exposure to cold spells is associated with mortality. However, little is known about the global mortality burden of cold spells. METHODS: A three-stage meta-analytical method was used to estimate the global mortality burden associated with cold spells by means of a time series dataset of 1960 locations across 59 countries (or regions). First, we fitted the location-specific, cold spell-related mortality associations using a quasi-Poisson regression with a distributed lag non-linear model with a lag period of up to 21 days. Second, we built a multivariate meta-regression model between location-specific associations and seven predictors. Finally, we predicted the global grid-specific cold spell-related mortality associations during 2000-19 using the fitted meta-regression model and the yearly grid-specific meta-predictors. We calculated the annual excess deaths, excess death ratio (excess deaths per 1000 deaths), and excess death rate (excess deaths per 100 000 population) due to cold spells for each grid across the world. FINDINGS: Globally, 205 932 (95% empirical CI [eCI] 162 692-250 337) excess deaths, representing 3·81 (95% eCI 2·93-4·71) excess deaths per 1000 deaths (excess death ratio), and 3·03 (2·33-3·75) excess deaths per 100 000 population (excess death rate) were associated with cold spells per year between 2000 and 2019. The annual average global excess death ratio in 2016-19 increased by 0·12 percentage points and the excess death rate in 2016-19 increased by 0·18 percentage points, compared with those in 2000-03. The mortality burden varied geographically. The excess death ratio and rate were highest in Europe, whereas these indicators were lowest in Africa. Temperate climates had higher excess death ratio and rate associated with cold spells than other climate zones. INTERPRETATION: Cold spells are associated with substantial mortality burden around the world with geographically varying patterns. Although the number of cold spells has on average been decreasing since year 2000, the public health threat of cold spells remains substantial. The findings indicate an urgency of taking local and regional measures to protect the public from the mortality burdens of cold spells. FUNDING: Australian Research Council, Australian National Health and Medical Research Council, EU's Horizon 2020 Project Exhaustion.


Subject(s)
Climate , Public Health , Australia , Europe , Adaptor Proteins, Signal Transducing
18.
Lancet Planet Health ; 8(2): e86-e94, 2024 02.
Article in English | MEDLINE | ID: mdl-38331534

ABSTRACT

BACKGROUND: Climate change can directly impact temperature-related excess deaths and might subsequently change the seasonal variation in mortality. In this study, we aimed to provide a systematic and comprehensive assessment of potential future changes in the seasonal variation, or seasonality, of mortality across different climate zones. METHODS: In this modelling study, we collected daily time series of mean temperature and mortality (all causes or non-external causes only) via the Multi-Country Multi-City Collaborative (MCC) Research Network. These data were collected during overlapping periods, spanning from Jan 1, 1969 to Dec 31, 2020. We projected daily mortality from Jan 1, 2000 to Dec 31, 2099, under four climate change scenarios corresponding to increasing emissions (Shared Socioeconomic Pathways [SSP] scenarios SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). We compared the seasonality in projected mortality between decades by its shape, timings (the day-of-year) of minimum (trough) and maximum (peak) mortality, and sizes (peak-to-trough ratio and attributable fraction). Attributable fraction was used to measure the burden of seasonality of mortality. The results were summarised by climate zones. FINDINGS: The MCC dataset included 126 809 537 deaths from 707 locations within 43 countries or areas. After excluding the only two polar locations (both high-altitude locations in Peru) from climatic zone assessments, we analysed 126 766 164 deaths in 705 locations aggregated in four climate zones (tropical, arid, temperate, and continental). From the 2000s to the 2090s, our projections showed an increase in mortality during the warm seasons and a decrease in mortality during the cold seasons, albeit with mortality remaining high during the cold seasons, under all four SSP scenarios in the arid, temperate, and continental zones. The magnitude of this changing pattern was more pronounced under the high-emission scenarios (SSP3-7.0 and SSP5-8.5), substantially altering the shape of seasonality of mortality and, under the highest emission scenario (SSP5-8.5), shifting the mortality peak from cold seasons to warm seasons in arid, temperate, and continental zones, and increasing the size of seasonality in all zones except the arid zone by the end of the century. In the 2090s compared with the 2000s, the change in peak-to-trough ratio (relative scale) ranged from 0·96 to 1·11, and the change in attributable fraction ranged from 0·002% to 0·06% under the SSP5-8.5 (highest emission) scenario. INTERPRETATION: A warming climate can substantially change the seasonality of mortality in the future. Our projections suggest that health-care systems should consider preparing for a potentially increased demand during warm seasons and sustained high demand during cold seasons, particularly in regions characterised by arid, temperate, and continental climates. FUNDING: The Environment Research and Technology Development Fund of the Environmental Restoration and Conservation Agency, provided by the Ministry of the Environment of Japan.


Subject(s)
Climate Change , Cold Temperature , Temperature , Seasons , Prospective Studies
19.
Environ Int ; 187: 108712, 2024 May.
Article in English | MEDLINE | ID: mdl-38714028

ABSTRACT

BACKGROUND: Temperature variability (TV) is associated with increased mortality risk. However, it is still unknown whether intra-day or inter-day TV has different effects. OBJECTIVES: We aimed to assess the association of intra-day TV and inter-day TV with all-cause, cardiovascular, and respiratory mortality. METHODS: We collected data on total, cardiovascular, and respiratory mortality and meteorology from 758 locations in 47 countries or regions from 1972 to 2020. We defined inter-day TV as the standard deviation (SD) of daily mean temperatures across the lag interval, and intra-day TV as the average SD of minimum and maximum temperatures on each day. In the first stage, inter-day and intra-day TVs were modelled simultaneously in the quasi-Poisson time-series model for each location. In the second stage, a multi-level analysis was used to pool the location-specific estimates. RESULTS: Overall, the mortality risk due to each interquartile range [IQR] increase was higher for intra-day TV than for inter-day TV. The risk increased by 0.59% (95% confidence interval [CI]: 0.53, 0.65) for all-cause mortality, 0.64% (95% CI: 0.56, 0.73) for cardiovascular mortality, and 0.65% (95% CI: 0.49, 0.80) for respiratory mortality per IQR increase in intra-day TV0-7 (0.9 °C). An IQR increase in inter-day TV0-7 (1.6 °C) was associated with 0.22% (95% CI: 0.18, 0.26) increase in all-cause mortality, 0.44% (95% CI: 0.37, 0.50) increase in cardiovascular mortality, and 0.31% (95% CI: 0.21, 0.41) increase in respiratory mortality. The proportion of all-cause deaths attributable to intra-day TV0-7 and inter-day TV0-7 was 1.45% and 0.35%, respectively. The mortality risks varied by lag interval, climate area, season, and climate type. CONCLUSIONS: Our results indicated that intra-day TV may explain the main part of the mortality risk related to TV and suggested that comprehensive evaluations should be proposed in more countries to help protect human health.


Subject(s)
Cardiovascular Diseases , Temperature , Humans , Cardiovascular Diseases/mortality , Mortality , Respiratory Tract Diseases/mortality , Seasons
20.
J Biol Chem ; 287(7): 4572-80, 2012 Feb 10.
Article in English | MEDLINE | ID: mdl-22170057

ABSTRACT

Neuronostatin, a recently discovered peptide encoded by somatostatin gene, is involved in regulation of neuronal function, blood pressure, food intake, and drinking behavior. However, the biological effects of neuronostatin on cardiac myocytes are not known, and the intracellular signaling mechanisms induced by neuronostatin remain unidentified. We analyzed the effect of neuronostatin in isolated perfused rat hearts and in cultured primary cardiomyocytes. Neuronostatin infusion alone had no effect on left ventricular (LV) contractile function or on isoprenaline- or preload-induced increase in cardiac contractility. However, infusion of neuronostatin significantly decreased the positive inotropic response to endothelin-1 (ET-1). This was associated with an increase in phosphorylation of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase (JNK). Treatment of both neonatal and adult cardiomyocytes with neuronostatin resulted in reduced cardiomyocyte viability. Inhibition of JNK further increased the neuronostatin-induced cell death. We conclude that neuronostatin regulates cardiac contractile function and cardiomyocyte survival. Receptors for neuronostatin need to be identified to further characterize the biological functions of the peptide.


Subject(s)
Myocardial Contraction/physiology , Myocytes, Cardiac/metabolism , Peptide Fragments/metabolism , Somatostatin/metabolism , Animals , Cell Survival/drug effects , Cell Survival/physiology , Cells, Cultured , Endothelin-1/metabolism , Heart Ventricles/cytology , Heart Ventricles/metabolism , MAP Kinase Kinase 4/metabolism , Male , Myocytes, Cardiac/cytology , Peptide Fragments/pharmacology , Rats , Rats, Sprague-Dawley , Somatostatin/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL