Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Pathol ; 253(1): 55-67, 2021 01.
Article in English | MEDLINE | ID: mdl-32918742

ABSTRACT

Nonalcoholic fatty liver disease is a chronic condition involving steatosis, steatohepatitis and fibrosis, and its progression remains unclear. Although the tetraspanin transmembrane 4 L six family member 5 (TM4SF5) is involved in hepatic fibrosis and cancer, its role in nonalcoholic steatohepatitis (NASH) progression is unknown. We investigated the contribution of TM4SF5 to liver pathology using transgenic and KO mice, diet- or drug-treated mice, in vitro primary cells, and in human tissue. TM4SF5-overexpressing mice exhibited nonalcoholic steatosis and NASH in an age-dependent manner. Initially, TM4SF5-positive hepatocytes and liver tissue exhibited lipid accumulation, decreased Sirtuin 1 (SIRT1), increased sterol regulatory-element binding proteins (SREBPs) and inactive STAT3 via suppressor of cytokine signaling (SOCS)1/3 upregulation. In older mice, TM4SF5 promoted inflammatory factor induction, SIRT1 expression and STAT3 activity, but did not change SOCS or SREBP levels, leading to active STAT3-mediated ECM production for NASH progression. A TM4SF5-associated increase in chemokines promoted SIRT1 expression and progression to NASH with fibrosis. Suppression of the chemokine CCL20 reduced immune cell infiltration and ECM production. Liver tissue from high-fat diet- or CCl4 -treated mice and human patients exhibited TM4SF5-dependent steatotic or steatohepatitic livers with links between TM4SF5-mediated SIRT1 modulation and SREBP or SOCS/STAT3 signaling axes. TM4SF5-mediated STAT3 activation in fibrotic NASH livers increased collagen I and laminin γ2. Both collagen I α1 and laminin γ2 suppression resulted in reduced SIRT1 and active STAT3, but no change in SREBP1 or SOCS, and abolished CCl4 -mediated mouse liver damage. TM4SF5-mediated signaling pathways that involve SIRT1, SREBPs and SOCS/STAT3 promoted progression to NASH. Therefore, TM4SF5 and its downstream effectors may be promising therapeutic targets to treat nonalcoholic fatty liver disease. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Chemical and Drug Induced Liver Injury/enzymology , Extracellular Matrix/enzymology , Lipid Metabolism , Liver Cirrhosis, Experimental/enzymology , Liver/enzymology , Membrane Proteins/metabolism , Non-alcoholic Fatty Liver Disease/enzymology , Sirtuin 1/metabolism , Animals , Carbon Tetrachloride , Cell Line, Tumor , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/pathology , Diet, High-Fat , Disease Progression , Extracellular Matrix/pathology , Humans , Liver/pathology , Liver Cirrhosis, Experimental/chemically induced , Liver Cirrhosis, Experimental/genetics , Liver Cirrhosis, Experimental/pathology , Membrane Proteins/genetics , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Signal Transduction
2.
Cell Mol Life Sci ; 79(1): 49, 2021 Dec 18.
Article in English | MEDLINE | ID: mdl-34921636

ABSTRACT

Aberrant extracellular matrix and immune cell alterations within the tumor microenvironment promote the pathological progression of liver carcinogenesis. Although transmembrane 4 L six family member 5 (TM4SF5) is involved in liver fibrosis and cancer, its mechanism avoiding immune surveillance during carcinogenesis remains unknown. We investigated how TM4SF5-mediated signaling caused immune evasion using in vitro primary cells and in vivo liver tissues from genetic or chemically induced mouse models. TM4SF5-transgenic and diethylnitrosamine (DEN)-induced liver cancer mouse models exhibited fibrotic and cancerous livers, respectively, with enhanced TM4SF5, pY705STAT3, collagen I, and laminin γ2 levels. These TM4SF5-mediated effects were abolished by TM4SF5 inhibitor, 4'-(p-toluenesulfonylamido)-4-hydroxychalcone (TSAHC). TM4SF5-dependent tumorigenesis involved natural killer (NK) cell exhaustion-like phenotypes including the reduction of NK cell number or function, which were blocked with TSAHC treatment. TM4SF5 expression in cancer cells downregulated stimulatory ligands and receptors for NK cell cytotoxicity, including SLAMF6, SLAMF7, MICA/B, and others. TM4SF5 suppression or inhibition reduced STAT3 signaling activity and recovered the receptor levels and NK cell surveillance, leading to reduced fibrotic and cancerous phenotypes, and longer survival. Altogether, these findings suggest that TM4SF5-mediated STAT3 activity for extracellular matrix modulation is involved in the progression of liver disease to HCC and that TM4SF5 appears to suppress NK cells during liver carcinogenesis.


Subject(s)
Carcinoma, Hepatocellular/immunology , Killer Cells, Natural/immunology , Liver Neoplasms/immunology , Membrane Proteins/physiology , Tumor Microenvironment/immunology , Animals , Cell Line, Tumor , Humans , Killer Cells, Natural/cytology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
3.
Sensors (Basel) ; 22(12)2022 Jun 11.
Article in English | MEDLINE | ID: mdl-35746215

ABSTRACT

Although interest in using wearable sensors to characterize movement disorders is growing, there is a lack of methodology for developing clinically interpretable biomarkers. Such digital biomarkers would provide a more objective diagnosis, capturing finer degrees of motor deficits, while retaining the information of traditional clinical tests. We aim at digitizing traditional tests of cognitive and memory performance to derive motor biometrics of pen-strokes and voice, thereby complementing clinical tests with objective criteria, while enhancing the overall characterization of Parkinson's disease (PD). 35 participants including patients with PD, healthy young and age-matched controls performed a series of drawing and memory tasks, while their pen movement and voice were digitized. We examined the moment-to-moment variability of time series reflecting the pen speed and voice amplitude. The stochastic signatures of the fluctuations in pen drawing speed and voice amplitude of patients with PD show a higher signal-to-noise ratio compared to those of neurotypical controls. It appears that contact motions of the pen strokes on a tablet evoke sensory feedback for more immediate and predictable control in PD, while voice amplitude loses its neurotypical richness. We offer new standardized data types and analytics to discover the hidden motor aspects within the cognitive and memory clinical assays.


Subject(s)
Parkinson Disease , Stroke , Biomarkers , Cognition , Humans , Movement , Parkinson Disease/diagnosis
4.
FASEB J ; 31(4): 1461-1481, 2017 04.
Article in English | MEDLINE | ID: mdl-28073834

ABSTRACT

Membrane proteins sense extracellular cues and transduce intracellular signaling to coordinate directionality and speed during cellular migration. They are often localized to specific regions, as with lipid rafts or tetraspanin-enriched microdomains; however, the dynamic interactions of tetraspanins with diverse receptors within tetraspanin-enriched microdomains on cellular surfaces remain largely unexplored. Here, we investigated effects of tetraspan(in) TM4SF5 (transmembrane 4 L6 family member 5)-enriched microdomains (T5ERMs) on the directionality of cell migration. Physical association of TM4SF5 with epidermal growth factor receptor (EGFR) and integrin α5 was visualized by live fluorescence cross-correlation spectroscopy and higher-resolution microscopy at the leading edge of migratory cells, presumably forming TM4SF5-enriched microdomains. Whereas TM4SF5 and EGFR colocalized at the migrating leading region more than at the rear, TM4SF5 and integrin α5 colocalized evenly throughout cells. Cholesterol depletion and disruption in TM4SF5 post-translational modifications, including N-glycosylation and palmitoylation, altered TM4SF5 interactions and cellular localization, which led to less cellular migration speed and directionality in 2- or 3-dimensional conditions. TM4SF5 controlled directional cell migration and invasion, and importantly, these TM4SF5 functions were dependent on cholesterol, TM4SF5 post-translational modifications, and EGFR and integrin α5 activity. Altogether, we showed that TM4SF5 dynamically interacted with EGFR and integrin α5 in migratory cells to control directionality and invasion.-Kim, H.-J., Kwon, S., Nam, S. H., Jung, J. W., Kang, M., Ryu, J., Kim, J. E., Cheong, J.-G., Cho, C. Y., Kim, S., Song, D.-G., Kim, Y.-N., Kim, T. Y., Jung, M.-K., Lee, K.-M., Pack, C.-G., Lee, J. W. Dynamic and coordinated single-molecular interactions at TM4SF5-enriched microdomains guide invasive behaviors in 2- and 3-dimensional environments.


Subject(s)
Membrane Microdomains/metabolism , Membrane Proteins/metabolism , Cell Line, Tumor , Cell Movement , Cholesterol/metabolism , ErbB Receptors/metabolism , Glycosylation , HEK293 Cells , Hepatocytes/metabolism , Hepatocytes/physiology , Hepatocytes/ultrastructure , Humans , Integrin alpha5/metabolism , Lipoylation , Membrane Microdomains/ultrastructure , Protein Binding , Protein Processing, Post-Translational
5.
Mediators Inflamm ; 2017: 5108525, 2017.
Article in English | MEDLINE | ID: mdl-28458469

ABSTRACT

Transmembrane 4 L six family member 5 (TM4SF5) can form tetraspanin-enriched microdomains (TERMs) on the cell's surface. TERMs contain protein-protein complexes comprised of tetraspanins, growth factor receptors, and integrins. These complexes regulate communication between extracellular and intracellular spaces to control diverse cellular functions. TM4SF5 influences the epithelial-mesenchymal transition (EMT), aberrant multilayer cellular growth, drug resistance, enhanced migration and invasion, circulation through the bloodstream, tumor-initiation property, metastasis, and muscle development in zebrafish. Here, current data on TM4SF5's roles in the development of fibrotic phenotypes are reviewed. TM4SF5 is induced by transforming growth factor ß1 (TGFß1) signaling via a collaboration with epidermal growth factor receptor (EGFR) activation. TM4SF5, by itself or in concert with other receptors, transduces signals intracellularly. In hepatocytes, TM4SF5 expression regulates cell cycle progression, migration, and expression of extracellular matrix components. In CCl4-treated mice, TM4SF5, α-smooth muscle actin (α-SMA), and collagen I expression are observed together along the fibrotic septa regions of the liver. These fibrotic phenotypes are diminished by anti-TM4SF5 reagents, such as a specific small compound [TSAHC, 4'-(p-toluenesulfonylamido)-4-hydroxychalcone] or a chimeric antibody. This review discusses the antifibrotic strategies that target TM4SF5 and its associated protein networks that regulate the intracellular signaling necessary for fibrotic functions of hepatocytes.


Subject(s)
Fibrosis/metabolism , Membrane Proteins/metabolism , Actins/metabolism , Animals , ErbB Receptors/genetics , ErbB Receptors/metabolism , Fibrosis/genetics , Hepatocytes/metabolism , Humans , Membrane Proteins/genetics , Mice
6.
J Hum Genet ; 61(5): 423-6, 2016 May.
Article in English | MEDLINE | ID: mdl-26763874

ABSTRACT

A genome-wide association study (GWAS) was conducted to examine genetic associations of common autosomal nucleotide variants with sex in a Korean population with 4183 males and 4659 females. Nine genetic association signals were identified in four intragenic and five intergenic regions (P<5 × 10(-8)). Further analysis with an independent data set confirmed two intragenic association signals in the genes encoding protein phosphatase 1, regulatory subunit 12B (PPP1R12B, intron 12, rs1819043) and dynein, axonemal, heavy chain 11 (DNAH11, intron 61, rs10255013), which are directly involved in the reproductive system. This study revealed autosomal genetic variants associated with sex ratio by GWAS for the first time. This implies that genetic variants in proximity to the association signals may influence sex-specific selection and contribute to sex ratio variation. Further studies are required to reveal the mechanisms underlying sex-specific selection.


Subject(s)
Genetic Variation , Genetics, Population , Genome-Wide Association Study , Selection, Genetic , Algorithms , Alleles , Female , Gene Frequency , Genotype , Humans , Linkage Disequilibrium , Male , Models, Genetic , Odds Ratio , Polymorphism, Single Nucleotide , Reproducibility of Results , Republic of Korea , Sex Factors
7.
Hepatology ; 61(6): 1978-97, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25627085

ABSTRACT

UNLABELLED: Tumor metastasis involves circulating and tumor-initiating capacities of metastatic cancer cells. Epithelial-mesenchymal transition (EMT) is related to self-renewal capacity and circulating tumor cell (CTC) characteristics for tumor metastasis. Although tumor metastasis is a life-threatening, complicated process that occurs through circulation of tumor cells, mechanistic aspects of self-renewal and circulating capacities have been largely unknown. Hepatic transmembrane 4 L six family member 5 (TM4SF5) promotes EMT for malignant growth and migration, so it was rationalized that TM4SF5, as a hepatocellular carcinoma (HCC) biomarker, might be important for metastatic potential. Here, self-renewal capacity by TM4SF5 was mechanistically explored using hepatocarcinoma cells with or without TM4SF5 expression, and we explored whether they became CTCs using mouse liver-orthotopic model systems. We found that TM4SF5-dependent sphere growth correlated with CD24(-) , aldehyde dehydrogenase (ALDH) activity, as well as a physical association between CD44 and TM4SF5. Interaction between TM4SF5 and CD44 was through their extracellular domains with N-glycosylation modifications. TM4SF5/CD44 interaction activated proto-oncogene tyrosine-protein kinase Src (c-Src)/signal transducer and activator of transcription 3 (STAT3)/Twist-related protein 1 (Twist1)/B-cell-specific Moloney murine leukemia virus integration site 1 (Bmi1) signaling for spheroid formation, whereas disturbing the interaction, expression, or activity of any component in this signaling pathway inhibited spheroid formation. In serial xenografts using 200∼5,000 cells per injection, TM4SF5-positive tumors exhibited subpopulations with locally increased CD44 expressions, supporting for tumor cell differentiation. TM4SF5-positive, but not TM4SF5- or CD44-knocked-down, cells were identified circulating in blood 4-6 weeks after orthotopic liver injection using in vivo laser scanning endomicroscopy. Anti-TM4SF5 reagent blocked their metastasis to distal intestinal organs. CONCLUSION: TM4SF5 promotes self-renewal and CTC properties supported by TM4SF5(+) /CD44(+(TM4SF5-bound)) /ALDH(+) /CD24(-) markers during HCC metastasis.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Hyaluronan Receptors/metabolism , Liver Neoplasms, Experimental/metabolism , Membrane Proteins/metabolism , Neoplastic Cells, Circulating/metabolism , Animals , CSK Tyrosine-Protein Kinase , Cell Line, Tumor , Humans , Male , Mice, Inbred BALB C , Mice, Nude , Polycomb Repressive Complex 1/metabolism , Proto-Oncogene Mas , Proto-Oncogene Proteins/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction , Spheroids, Cellular , Twist-Related Protein 1/metabolism , src-Family Kinases/metabolism
8.
Biochim Biophys Acta ; 1843(9): 2037-54, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24861866

ABSTRACT

Although an in vitro 3D environment cannot completely mimic the in vivo tumor site, embedding tumor cells in a 3D extracellular matrix (ECM) allows for the study of cancer cell behaviors and the screening of anti-metastatic reagents with a more in vivo-like context. Here we explored the behaviors of MDA-MB-231 breast cancer cells embedded in 3D collagen I. Diverse tumor environmental conditions (including cell density, extracellular acidity, or hypoxia as mimics for a continuous tumor growth) reduced JNKs, enhanced TGFß1/Smad signaling activity, induced Snail1, and reduced cortactin expression. The reduced JNKs activity blocked efficient formation of invadopodia labeled with actin, cortactin, or MT1-MMP. JNKs inactivation activated Smad2 and Smad4, which were required for Snail1 expression. Snail1 then repressed cortactin expression, causing reduced invadopodia formation and prominent localization of MT1-MMP at perinuclear regions. MDA-MB-231 cells thus exhibited less efficient collagen I degradation and invasion in 3D collagen I upon JNKs inhibition. These observations support a signaling network among JNKs, Smads, Snail1, and cortactin to regulate the invasion of MDA-MB-231 cells embedded in 3D collagen I, which may be targeted during screening of anti-invasion reagents.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Collagen Type I/pharmacology , Cortactin/metabolism , Pseudopodia/metabolism , Transcription Factors/metabolism , Tumor Microenvironment/drug effects , Actins/metabolism , Animals , Breast Neoplasms/enzymology , Cattle , Cell Line, Tumor , Cell Membrane/metabolism , Cell Movement , Cell Nucleus/metabolism , Cortactin/genetics , Female , Gels , Humans , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , JNK Mitogen-Activated Protein Kinases/metabolism , Matrix Metalloproteinase 14/metabolism , Neoplasm Invasiveness , Phosphoserine/metabolism , Protein Transport , Proto-Oncogene Proteins c-jun/metabolism , Pseudopodia/drug effects , Signal Transduction , Smad Proteins/metabolism , Snail Family Transcription Factors , Transcription, Genetic , Transforming Growth Factor beta1/metabolism
9.
Brain ; 137(Pt 10): 2811-22, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25100039

ABSTRACT

Humans have the capacity to evaluate the success of cognitive processes, known as metacognition. Convergent evidence supports a role for anterior prefrontal cortex in metacognitive judgements of perceptual processes. However, it is unknown whether metacognition is a global phenomenon, with anterior prefrontal cortex supporting metacognition across domains, or whether it relies on domain-specific neural substrates. To address this question, we measured metacognitive accuracy in patients with lesions to anterior prefrontal cortex (n = 7) in two distinct domains, perception and memory, by assessing the correspondence between objective performance and subjective ratings of performance. Despite performing equivalently to a comparison group with temporal lobe lesions (n = 11) and healthy controls (n = 19), patients with lesions to the anterior prefrontal cortex showed a selective deficit in perceptual metacognitive accuracy (meta-d'/d', 95% confidence interval 0.28-0.64). Crucially, however, the anterior prefrontal cortex lesion group's metacognitive accuracy on an equivalent memory task remained unimpaired (meta-d'/d', 95% confidence interval 0.78-1.29). Metacognitive accuracy in the temporal lobe group was intact in both domains. Our results support a causal role for anterior prefrontal cortex in perceptual metacognition, and indicate that the neural architecture of metacognition, while often considered global and domain-general, comprises domain-specific components that may be differentially affected by neurological insult.


Subject(s)
Cognition/physiology , Prefrontal Cortex/injuries , Psychomotor Performance/physiology , Adult , Algorithms , Attention/physiology , Brain Neoplasms/surgery , Epilepsy/surgery , Female , Humans , Image Processing, Computer-Assisted , Intelligence Tests , Magnetic Resonance Imaging , Male , Memory/physiology , Neuropsychological Tests , Perception/physiology , Photic Stimulation , Signal Detection, Psychological , Temporal Lobe/injuries
10.
Biochem J ; 462(1): 89-101, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24897542

ABSTRACT

TM4SF5 (transmembrane 4 L six family member 5) is involved in EMT (epithelial-mesenchymal transition) for liver fibrosis and cancer metastasis; however, the function(s) of TM4SF5 during embryogenesis remains unknown. In the present study the effects of TM4SF5 on embryogenesis of zebrafish were investigated. tm4sf5 mRNA was expressed in the posterior somites during somitogenesis and in whole myotome 1 dpf (day post-fertilization). tm4sf5 suppression impaired development of the trunk with aberrant morphology of muscle fibres and altered expression of integrin α5. The arrangement and adhesion of muscle cells were abnormally disorganized in tm4sf5 morphants with reduced muscle fibre masses, where integrin α5-related signalling molecules, including fibronectin, FAK (focal adhesion kinase), vinculin and actin were aberrantly localized, compared with those in control fish. Aberrant muscle developments in tm4sf5 morphants were recovered by additional tm4sf5 or integrin α5 mRNA injection. Such a role for TM4SF5 was observed in the differentiation of C2C12 mouse myoblast cells to multinuclear muscle cells. Taken together, the results show that TM4SF5 controls muscle differentiation via co-operation with integrin α5-related signalling.


Subject(s)
Integrin alpha5/physiology , Membrane Proteins/genetics , Muscle Development/physiology , Animals , Cell Differentiation , Cell Movement , Cells, Cultured , Epithelial-Mesenchymal Transition , Integrin alpha5/biosynthesis , Membrane Proteins/biosynthesis , Mice , Signal Transduction/physiology , Somites/metabolism , Zebrafish/embryology
11.
Biochem Genet ; 53(4-6): 72-8, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25962326

ABSTRACT

We examined the promoter activity of an association signal in an upstream region of the gene encoding fucosyltransferae 6 (FUT6) identified from a recent genomewide association study for the N-glycan level. The luciferase assay using reporter constructs with T and C alleles at rs3760776 revealed differential promoter activity. The amount of luciferin expressed with the C allele corresponded to that without the reporter construct (P > 0.05). On the other hand, the expression was dramatically reduced with the T allele (P < 0.05). The difference in transcriptional activity between the two alleles was confirmed by an electrophoretic mobility shift assay. It demonstrated that the promoter with a T allele had a stronger binding affinity to nuclear factors than that with the C allele. We concluded that the T allele of rs3760776 might repress the transcription of the FUT6 gene. Further studies are warranted to understand its underlying mechanism and its influence on susceptibility to potential diseases.


Subject(s)
Down-Regulation , Fucosyltransferases/genetics , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Transcription, Genetic , Alleles , Humans , Nucleotides/metabolism
12.
Biochim Biophys Acta ; 1833(3): 629-42, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23220047

ABSTRACT

Transmembrane 4 L six family member 5 (TM4SF5) enhances cell migration and invasion, although how TM4SF5 mechanistically mediates these effects remains unknown. In the study, during efforts to understand TM4SF5-mediated signal transduction, TM4SF5 was shown to bind c-Src and thus hepatoma cell lines expressing TM4SF5 were analyzed for the significance of the interaction in cell invasion. The C-terminus of TM4SF5 bound both inactive c-Src that might be sequestered to certain cellular areas and active c-Src that might form invasive protrusions. Wildtype (WT) TM4SF5 expression enhanced migration and invasive protrusion formation in a c-Src-dependent manner, compared with TM4SF5-null control hepatoma cell lines. However, tailless TM4SF5(ΔC) cells were more efficient than WT TM4SF5 cells, suggesting a negative regulatory role by the C-terminus. TM4SF5 WT- or TM4SF5(ΔC)-mediated formation of invasive protrusions was dependent or independent on serum or epidermal growth factor treatment, respectively, although they both were dependent on c-Src. The c-Src activity of TM4SF5 WT- or TM4SF5(ΔC)-expressing cells correlated with enhanced Tyr845 phosphorylation of epidermal growth factor receptor. Y845F EGFR mutation abolished the TM4SF5-mediated invasive protrusions, but not c-Src phosphorylation. Our findings demonstrate that TM4SF5 modulates c-Src activity during TM4SF5-mediated invasion through a TM4SF5/c-Src/EGFR signaling pathway, differentially along the leading protrusive edges of an invasive cancer cell.


Subject(s)
Carcinoma, Hepatocellular/pathology , Cell Movement , ErbB Receptors/metabolism , Liver Neoplasms/pathology , Membrane Proteins/metabolism , Proto-Oncogene Proteins pp60(c-src)/metabolism , Tyrosine/metabolism , Blotting, Western , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Cell Adhesion , Cell Proliferation , ErbB Receptors/genetics , Fluorescent Antibody Technique , Humans , Immunoprecipitation , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Membrane Proteins/genetics , Neoplasm Invasiveness , Phosphorylation , Protein Structure, Tertiary , Proto-Oncogene Proteins pp60(c-src)/genetics , RNA, Messenger/genetics , Signal Transduction , Tumor Cells, Cultured
13.
J Cell Sci ; 125(Pt 24): 5960-73, 2012 Dec 15.
Article in English | MEDLINE | ID: mdl-23077174

ABSTRACT

Transmembrane 4 L six family member 5 (TM4SF5) plays an important role in cell migration, and focal adhesion kinase (FAK) activity is essential for homeostatic and pathological migration of adherent cells. However, it is unclear how TM4SF5 signaling mediates the activation of cellular migration machinery, and how FAK is activated during cell adhesion. Here, we showed that direct and adhesion-dependent binding of TM4SF5 to FAK causes a structural alteration that may release the inhibitory intramolecular interaction in FAK. In turn, this may activate FAK at the cell's leading edge, to promote migration/invasion and in vivo metastasis. TM4SF5-mediated FAK activation occurred during integrin-mediated cell adhesion. TM4SF5 was localized at the leading edge of the cells, together with FAK and actin-organizing molecules, indicating a signaling link between TM4SF5/FAK and actin reorganization machinery. Impaired interactions between TM4SF5 and FAK resulted in an attenuated FAK phosphorylation (the signaling link to actin organization machinery) and the metastatic potential. Our findings demonstrate that TM4SF5 directly binds to and activates FAK in an adhesion-dependent manner, to regulate cell migration and invasion, suggesting that TM4SF5 is a promising target in the treatment of metastatic cancer.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Focal Adhesion Kinase 1/metabolism , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Tetraspanins/genetics , Amino Acid Sequence , Animals , Carcinoma, Hepatocellular/enzymology , Cell Adhesion/physiology , Cell Movement/physiology , Enzyme Activation , Female , Heterografts , Humans , Liver Neoplasms/enzymology , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Neoplasm Metastasis , Phosphorylation , Signal Transduction , Tetraspanins/metabolism
14.
Bioorg Med Chem ; 22(8): 2571-5, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24650699

ABSTRACT

Glycosyltransferases catalyze the transfer of a monosaccharide unit from a nucleotide or lipid sugar donor to polysaccharides, lipids, and proteins in a stereospecific manner. Considerable effort has been invested in engineering glycosyltransferases to diversify sugar-containing drugs. An important requirement for glycosyltransferase engineering is the availability of a glycosyltransferase assay system for high-throughput screening of glycosyltransferase mutants. In this study, a general glycosyltransferase assay system was developed based on an ATP sensor. This system showed submicromolar sensitivity and compatibility with both purified enzymes and crude cell extracts. The assay system will be useful for glycosyltransferase engineering based on high-throughput screening, as well as for general glycosyltransferase assays and kinetics.


Subject(s)
Fluorescent Dyes/metabolism , Glycosyltransferases/metabolism , Fluorescent Dyes/chemistry , High-Throughput Screening Assays , Kinetics , Spectrometry, Fluorescence
15.
Anim Genet ; 45(6): 765-70, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25179770

ABSTRACT

Positive selection not only increases beneficial allele frequency but also causes augmentation of allele frequencies of sequence variants in close proximity. Signals for positive selection were detected by the statistical differences in subsequent allele frequencies. To identify selection signatures in Korean cattle, we applied a composite log-likelihood (CLL)-based method, which calculates a composite likelihood of the allelic frequencies observed across sliding windows of five adjacent loci and compares the value with the critical statistic estimated by 50,000 permutations. Data for a total of 11,799 nucleotide polymorphisms were used with 71 Korean cattle and 209 foreign beef cattle. As a result, 147 signals were identified for Korean cattle based on CLL estimates (P < 0.01). The signals might be candidate genetic factors for meat quality by which the Korean cattle have been selected. Further genetic association analysis with 41 intragenic variants in the selection signatures with the greatest CLL for each chromosome revealed that marbling score was associated with five variants. Intensive association studies with all the selection signatures identified in this study are required to exclude signals associated with other phenotypes or signals falsely detected and thus to identify genetic markers for meat quality.


Subject(s)
Cattle/genetics , Genetic Markers , Meat/analysis , Selection, Genetic , Animals , Breeding , Gene Frequency , Genetic Association Studies , Phenotype , Polymorphism, Single Nucleotide , Republic of Korea
16.
Asian-Australas J Anim Sci ; 27(11): 1521-5, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25358309

ABSTRACT

This study investigated heritability for bovine growth estimated with genomewide single nucleotide polymorphism (SNP) information obtained from a DNA microarray chip. Three hundred sixty seven Korean cattle were genotyped with the Illumina BovineSNP50 BeadChip, and 39,112 SNPs of 364 animals filtered by quality assurance were analyzed to estimate heritability of body weights at 6, 9, 12, 15, 18, 21, and 24 months of age. Restricted maximum likelihood estimate of heritability was obtained using covariance structure of genomic relationships among animals in a mixed model framework. Heritability estimates ranged from 0.58 to 0.76 for body weights at different ages. The heritability estimates using genomic information in this study were larger than those which had been estimated previously using pedigree information. The results revealed a trend that the heritability for body weight increased at a younger age (6 months). This suggests an early genetic evaluation for bovine growth using genomic information to increase genetic merits of animals.

17.
Front Biosci (Landmark Ed) ; 29(5): 185, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38812329

ABSTRACT

Accurate gene expression is fundamental for sustaining life, enabling adaptive responses to routine tasks and management of urgent cellular environments. RNA polymerases (RNAP I, RNAP II, and RNAP III) and ribosomal proteins (RPs) play pivotal roles in the precise synthesis of proteins from DNA sequences. In this review, we briefly examined the structure and function of their constituent proteins and explored to characterize these proteins and the genes encoding them, particularly in terms of their expression quantitative trait loci (eQTL) associated with complex human traits. We gathered a comprehensive set of 4007 genome-wide association study (GWAS) signal-eQTL pairs, aligning GWAS Catalog signals with eQTLs across various tissues for the genes involved. These pairs spanned 16 experimental factor ontology (EFO) parent terms defined in European Bioinformatics Institute (EBI). A substantial majority (83.4%) of the pairs were attributed to the genes encoding RPs, especially RPS26 (32.9%). This large proportion was consistent across all tissues (15.5~81.9%), underscoring its extensive impact on complex human traits. Notably, these proportions of EFO terms differed significantly (p < 0.0031) from those for RNAPs. Brain-specific pairs for POLR3H, a component of RNAP III, were implicated in neurological disorders. The largest number of pairs in RNAP I was found for POLR1H, encoding RPA12, a built-in transcription factor essential for high transcriptional efficiency of RNAP I. RNAP II-related pairs were less abundant, with unique structural organization featuring minimal subunits for flexible transcription of a diverse range of genes with customized dissociable subunits. For instance, RPB4 encoded by POLR2D, the RNAP II gene with the most pairs, forms its dissociable stalk module with RPB7. This study provides insightful genetic characteristics of RPs and RNAPs, with a priority emphasis on RPS26, POLR1H, POLR2D, and POLR3H, for future studies on the impact of individual genetic variation on complex human traits.


Subject(s)
DNA-Directed RNA Polymerases , Genome-Wide Association Study , Quantitative Trait Loci , Ribosomal Proteins , Humans , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism
18.
Heliyon ; 10(4): e26038, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38380047

ABSTRACT

The control that have the greatest influence on comfortable in the office occupants are the heating, ventilation, and air conditioning (HVAC) system operation and the thermal environment. However, comfortable HVAC operation is difficult in the office space characterized by a recommended standard thermal environment or a centralized HVAC system. To consider the occupant's thermal comfort to the greatest possible extent, must establish a method to quantify the variables related to the occupant's thermal comfort. This study aims to group occupants in Thermal sensation vote (TSV) clusters and perform sensitivity analysis (SA) on the relationship between thermal environmental factors in an office building and each cluster's TSV to establish the typology of the control indicators for each cluster. A total of 10 field experiments were conducted in the same office. This field study was carried out 2022. The indoor thermal environmental parameters, the subjective evaluation of the thermal comfort of the resident and the operation pattern of the heating system were monitored at the same time. A total of 4,200 datasets related to indoor thermal environmental parameters and a total of 1,680 datasets related to occupants' thermal comfort were collected and analyzed. The results of this study show that people have different levels of adaptability and sensitivity to a given thermal environment. This study founded distinguishable similarities in their thermal sensation traits and grouped similar TSV values into five clusters that responded differently to the same thermal environment. Each cluster showed different TSV and Thermal comfort vote (TCV) patterns, which allowed us to classify the groups that had sensitive responses to the thermal environment and those that did not. This study was determined different control indicators and guidelines for the divided groups according to thermal sensitivity.

19.
Maxillofac Plast Reconstr Surg ; 46(1): 5, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38376599

ABSTRACT

BACKGROUND: The fibular free flap is considered one of the most valuable options for mandible reconstruction. A perforator flap has gained widespread acceptance in oral and maxillofacial reconstruction. Typically, the fibula flap is obtained primarily with the distal perforator due to its reliable blood supply, with less attention given to the proximal perforators during the harvesting process. Normally, the distal perforator of the fibula exhibits stability and shows limited anatomical variations. However, there have been reported cases in which the distal perforator is absent. At times, these vascular abnormalities remain undetectable through Doppler examination or preoperative angiography evaluation. Therefore, this case details the experience of encountering the rare event of vascular abnormality in oral cancer surgery. CASE PRESENTATION: This article reports the case of a patient who presented with a congenital absence of the distal perforator in the peroneal artery, attributed to a vascular abnormality. Additionally, we provide a review of the concept of utilizing the proximal perforator as an alternative approach in the flap harvesting process. CONCLUSIONS: While the distal perforator of the peroneal artery is typically utilized for fibula free flap procedures, surgeons must remain cognizant of the potential for its absence due to aberrant anatomy. Recognizing an alternative approach in such cases can be pivotal for precise surgical planning and favorable outcomes in oral and maxillofacial reconstruction.

20.
J Korean Assoc Oral Maxillofac Surg ; 50(3): 153-160, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38940652

ABSTRACT

Objectives: This study identifies factors for differential diagnosis among lesions by retrospectively comparing panoramic and cone-beam computed tomography images and analyzing the characteristics of lesions associated with impacted mandibular third molars (IMTs). Materials and Methods: A retrospective cohort study was conducted in patients who simultaneously underwent IMT extraction surgery and related benign tumor resection or cyst enucleation at our institution from 2017 to 2021. To compare the characteristics of each group, two comparative analyses were conducted. The first comparison considered the most frequently observed lesions associated with IMTs: dentigerous cysts, odontogenic keratocysts (OKCs), and ameloblastoma. The second comparison involved placing dentigerous cysts, which have a relatively low recurrence rate, into group A and placing OKC, ameloblastoma, and odontogenic myxoma, which have high recurrence rates, into group B. Results: Significant differences in the size of the lesion were found in the order of ameloblastoma, OKC, and dentigerous cyst (P <0.05). The buccolingual width of ameloblastoma differed significantly from that of the other groups, with no significant difference observed between the OKCs and dentigerous cysts (P=0.083). Conclusion: Patient age and lesion size differed significantly among lesion types associated with IMTs, with younger age and larger lesions for OKCs and odontogenic tumors. OKCs are likely to have a larger mesiodistal width than dentigerous cysts. The buccolingual width of ameloblastomas was larger than those of dentigerous cysts and OKCs.

SELECTION OF CITATIONS
SEARCH DETAIL