ABSTRACT
Parasite identification is crucial in areas where no sanitary inspection is conducted on fish, especially considering that parasitic zoonoses like anisakiasis and gnathostomiasis can pose a risk for human health. In this study, parasites in mullet fish (Mugil curema) from the Chautengo Lagoon, Guerrero, Mexico, were identified by morphological and molecular methods. A total of 122 specimens weighing 317 ± 51.25 g and 19.3 ± 1.14 cm in length were assessed. Their helminthofauna was classified by measuring internal structures, total length, and maximum width; a morphometric index was also calculated for larval stages. The prevalence of parasitosis in these mullets was 91.8%, with a mean infection intensity of 4.1. The acanthocephalan Floridosentis mugilis was identified by its external and internal structures. The nematodes found were of the Anisakidae family in stage 3 (L3), with a morphology consistent with Contracaecum sp. To determine the species, the ITS ribosomal gene and the mitochondrial genes COX2 and rrnS were molecularly characterized by PCR; then, they were aligned by CLUSTAL W, and a phylogenetic tree was obtained. In this analysis, the sequences were compared with those reported in GenBank. A total of 460 parasites were studied, 283 of which were nematodes (61.5%) and 177 were acanthocephalans (38.5%). The sequences of seven nematodes showed 99% homology with each other, and thus they formed an independent branch within the Contracaecum sp. group. This is the first report identifying Contracaecum multipapillatum in mullet fish in the Chautengo Lagoon, Guerrero.
Subject(s)
Ascaridoidea , Fish Diseases , Parasites , Smegmamorpha , Animals , Ascaridoidea/genetics , Fish Diseases/epidemiology , Fish Diseases/parasitology , Fishes/parasitology , Humans , Mexico/epidemiology , Phylogeny , Smegmamorpha/parasitologyABSTRACT
Sialic acids and heparan sulfates make up the outermost part of the cell membrane and the extracellular matrix. Both structures are characterized by being negatively charged, serving as receptors for various pathogens, and are highly expressed in the respiratory and digestive tracts. Numerous viruses use heparan sulfates as receptors to infect cells; in this group are HSV, HPV, and SARS-CoV-2. Other viruses require the cell to express sialic acids, as is the case in influenza A viruses and adenoviruses. This review aims to present, in a general way, the participation of glycoconjugates in viral entry, and therapeutic strategies focused on inhibiting the interaction between the virus and the glycoconjugates. Interestingly, there are few studies that suggest the participation of both glycoconjugates in the viruses addressed here. Considering the biological redundancy that exists between heparan sulfates and sialic acids, we propose that it is important to jointly evaluate and design strategies that contemplate inhibiting the interactions of both glycoconjugates. This approach will allow identifying new receptors and lead to a deeper understanding of interspecies transmission.
Subject(s)
COVID-19 , Viruses , Glycoconjugates/metabolism , Heparitin Sulfate/metabolism , Humans , N-Acetylneuraminic Acid/metabolism , Receptors, Virus/metabolism , SARS-CoV-2 , Sialic Acids/metabolism , Sulfates , Virus Attachment , Viruses/metabolismABSTRACT
Humans and swine are both affected by influenza viruses, and swine are considered a potential source of new influenza viruses. Transmission of influenza viruses across species is well documented. The aim of this study was to evaluate the seroprevalence of different influenza virus subtypes in veterinarians working for the Mexican swine industry, using a hemagglutination inhibition test. All sera tested were collected in July 2011. The data were analysed using a generalized linear model and a linear model to study the possible association of seroprevalence with the age of the veterinarian, vaccination status, and biosecurity level of the farm where they work. The observed seroprevalence was 12.3%, 76.5%, 46.9%, and 11.1% for the human subtypes of pandemic influenza virus (pH1N1), seasonal human influenza virus (hH1N1), the swine subtypes of classical swine influenza virus (swH1N1), and triple-reassortant swine influenza virus (swH3N2), respectively. Statistical analysis indicated that age was associated with hH1N1 seroprevalence (P < 0.05). Similarly, age and vaccination were associated with pH1N1 seroprevalence (P < 0.05). On the other hand, none of the studied factors were associated with swH1N1 and swH3N2 seroprevalence. All of the pH1N1-positive sera were from vaccinated veterinarians, whereas all of those not vaccinated tested negative for this subtype. Our findings suggest that, between the onset of the 2009 pandemic and July 2011, the Mexican veterinarians working in the swine industry did not have immunity to the pH1N1 virus; hence, they would have been at risk for infection with this virus if this subtype had been circulating in swine in Mexico prior to 2011.
Subject(s)
Antibodies, Viral/blood , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza, Human/immunology , Orthomyxoviridae Infections/immunology , Swine Diseases/transmission , Veterinarians , Adult , Animals , Antibodies, Viral/immunology , Farms , Female , Hemagglutination Inhibition Tests , Humans , Influenza A Virus, H1N1 Subtype/classification , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/classification , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza, Human/blood , Influenza, Human/epidemiology , Influenza, Human/virology , Male , Mexico/epidemiology , Middle Aged , Orthomyxoviridae Infections/blood , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/virology , Risk Factors , Seroepidemiologic Studies , Swine , Swine Diseases/epidemiology , Swine Diseases/immunology , Swine Diseases/virology , Young AdultABSTRACT
Ovine gammaherpesvirus 2 (OvHV-2), a member of the genus Macavirus, causes sheep-associated malignant catarrhal fever (SA-MCF), a fatal lymphoproliferative disease affecting a wide variety of ungulates in addition to horses. This study described an outbreak of SA-MCF in Mexico and the identification of the OvHV-2 virus in primary rabbit testis cultures through the generation of intranuclear inclusion bodies, syncytia, immunofluorescence (IF), immunocytochemistry (ICC), immunohistochemistry (IHC), endpoint polymerase chain reaction (PCR), and partial sequencing of the ORF75 gene. The animals involved in this outbreak showed mucogingival ulcers in the vestibule of the mouth and tongue, hypersalivation, corneal opacity, reduced food consumption, and weight loss of variable severity. These clinical signs and the histopathological findings suggested the diagnosis of SA-MCF. Buffy coat fractions from the anticoagulated blood samples of ill animals were collected and analyzed by PCR. Positive buffy coats were used to inoculate the primary cell cultures of rabbit testis to identify the virus. Small clusters of refractile cytomegalic cells, characteristic of viral cytopathic effects, were observed between 48 and 72 h post-infection. Furthermore, intranuclear acidophilic inclusion bodies (IBs) were identified in the inoculated primary culture cells, and the cytoplasm showed immunoreactivity with hyperimmune rabbit serum against OvHV-2. Moreover, in the liver histological sections from sick deer, immunoreactive juxtanuclear IBs were identified with the same rabbit hyperimmune serum. The obtained sequences were aligned with the OvHV-2 sequences reported in GenBank and revealed a nucleotide identity higher than 98%. Based on the evidence provided in this study, we conclude that the outbreak of SA-MCF in the municipality of Tequisquiapan in the state of Queretaro, Mexico, was caused by OvHV-2. This is the second study reporting that horses are susceptible to OvHV-2 infection and can develop SA-MCF. We identified for the first time in Mexico, the presence of OvHV-2 in buffy coats from horses and Artiodactyla.
Subject(s)
Artiodactyla , Deer , Gammaherpesvirinae , Malignant Catarrh , Animals , Cattle , Male , Rabbits , Disease Outbreaks/veterinary , Gammaherpesvirinae/genetics , Horses , Malignant Catarrh/epidemiology , Mexico/epidemiology , SheepABSTRACT
As an emerging disease, the porcine epidemic diarrhoea virus has caused substantial economic losses to the pork industry in Mexico, leading to piglet mortality rates of up to 100%. For detection, sequencing and genetic characterization of the virus, 68 samples of one-week-old piglets from pork farms in 17 states of Mexico were analysed. In total, 53 samples were positive by real-time RT-PCR, confirming the presence of the virus in 15 states. Twenty-eight samples from 10 states were amplified by endpoint RT-PCR, and 20 sequences of the spike gene were obtained. A phylogenetic analysis based on the spike gene demonstrated that all Mexican strains are in Group II and are classified as non-Indel-S emerging variants. Three strains showed amino acid insertions: PEDv/MEX/GTO/LI-DMZC15/2015 and PEDv/MEX/QRO/LI-DMZC45/2016 showed one amino acid insertion (424 Y425 and 447 D448 , respectively), and PEDv/MEX/QRO/LI-DMZC49/2019 showed one and two amino acid insertions (422 C423 and 537 SQ538 ), with the second insertion in the COE region. These results provide evidence of the prevalence of emerging, non-Indel-S strains of the virus are currently circulating in Mexico during 2016-2018, when three of which have amino acid insertions: PEDv/MEX/GTO/IN-DMZC15/2015 and PEDv/MEX/QRO/IN-DMZC45/2016 have one amino acid insertion each (424 Y425 and 447 D448 , respectively), and PEDv/MEX/QRO/IN-DMZC49/2019 has one (422 C423 ) and two amino acid insertions (537 SQ538 ), the latter being in the COE region, which could generate new antigenic variants.
Subject(s)
Coronavirus Infections/veterinary , Genetic Variation , Porcine epidemic diarrhea virus/genetics , Amino Acid Substitution , Animals , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Farms , Geography , Mexico/epidemiology , Phylogeny , Porcine epidemic diarrhea virus/isolation & purification , SwineABSTRACT
Influenza, a zoonosis caused by various influenza A virus subtypes, affects a wide range of species, including humans. Pig cells express both sialyl-α-2,3-Gal and sialyl-α-2,6-Gal receptors, which make them susceptible to infection by avian and human viruses, respectively. To date, it is not known whether wild pigs in Mexico are affected by influenza virus subtypes, nor whether this would make them a potential risk of influenza transmission to humans. In this work, 61 hogs from two municipalities in Campeche, Mexico, were sampled. Hemagglutination inhibition assays were performed in 61 serum samples, and positive results were found for human H1N1 (11.47%), swine H1N1 (8.19%), and avian H5N2 (1.63%) virus variants. qRT-PCR assays were performed on the nasal swab, tracheal, and lung samples, and 19.67% of all hogs were positive to these assays. An avian H5N2 virus, first reported in 1994, was identified by sequencing. Our results demonstrate that wild pigs are participating in the exposure, transmission, maintenance, and possible diversification of influenza viruses in fragmented habitats, highlighting the synanthropic behavior of this species, which has been poorly studied in Mexico.
Subject(s)
Influenza A virus/isolation & purification , Influenza, Human/transmission , Influenza, Human/virology , Orthomyxoviridae Infections/veterinary , Swine Diseases/virology , Animals , Animals, Wild/virology , Hemagglutination Inhibition Tests , Humans , Influenza A Virus, H1N1 Subtype/classification , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H5N2 Subtype/classification , Influenza A Virus, H5N2 Subtype/genetics , Influenza A Virus, H5N2 Subtype/isolation & purification , Influenza A virus/classification , Influenza A virus/genetics , Influenza, Human/epidemiology , Lung/pathology , Lung/virology , Mexico/epidemiology , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/virology , Swine , Swine Diseases/epidemiology , Swine Diseases/pathology , Swine Diseases/transmission , Trachea/pathology , Trachea/virology , Zoonoses/epidemiology , Zoonoses/transmission , Zoonoses/virologyABSTRACT
Swine influenza is a worldwide disease, which causes damage to the respiratory system of pigs. The H1N1 and H3N2 subtypes circulate mainly in the swine population of Mexico. There is evidence that new subtypes of influenza virus have evolved genetically and have been rearranged with human viruses and from other species; therefore, the aim of our study was to identify and characterize the genetic changes that have been generated in the different subtypes of the swine influenza virus in Mexican pigs. By sequencing and analyzing phylogenetically the eight segments that form the virus genome, the following subtypes were identified: H1N1, H3N2, H1N2 and H5N2; of which, a H1N1 subtype had a high genetic relationship with the human influenza virus. In addition, a H1N2 subtype related to the porcine H1N2 virus reported in the United States was identified, as well as, two other viruses of avian origin from the H5N2 subtype. Particularly for the H5N2 subtype, this is the first time that its presence has been reported in Mexican pigs. The analysis of these sequences demonstrates that in the swine population of Mexico, circulate viruses that have suffered punctual-specific mutations and rearrangements of their proteins with different subtypes, which have successfully adapted to the Mexican swine population.
Subject(s)
Genome, Viral , Influenza A virus/genetics , Orthomyxoviridae Infections/virology , Swine Diseases/virology , Viral Proteins/genetics , Animals , Hemagglutinins/genetics , Influenza A virus/classification , Influenza A virus/enzymology , Influenza A virus/isolation & purification , Mexico , Neuraminidase/genetics , Phylogeny , Sequence Analysis, RNA/veterinary , Sus scrofa , SwineABSTRACT
Porcine rubulavirus (PorPV) and swine influenza virus infection causes respiratory disease in pigs. PorPV persistent infection could facilitate the establishment of secondary infections. The aim of this study was to analyse the pathogenicity of classic swine H1N1 influenza virus (swH1N1) in growing pigs persistently infected with porcine rubulavirus. Conventional six-week-old pigs were intranasally inoculated with PorPV, swH1N1, or PorPV/swH1N1. A mock-infected group was included. The co-infection with swH1N1 was at 44 days post-infection (DPI), right after clinical signs of PorPV infection had stopped. The pigs of the co-infection group presented an increase of clinical signs compared to the simple infection groups. In all infected groups, the most recurrent lung lesion was hyperplasia of the bronchiolar-associated lymphoid tissue and interstitial pneumonia. By means of immunohistochemical evaluation it was possible to demonstrate the presence of the two viral agents infecting simultaneously the bronchiolar epithelium. Viral excretion of PorPV in nasal and oral fluid was recorded at 28 and 52 DPI, respectively. PorPV persisted in several samples from respiratory tissues (RT), secondary lymphoid organs (SLO), and bronchoalveolar lavage fluid (BALF). For swH1N1, the viral excretion in nasal fluids was significantly higher in single-infected swH1N1 pigs than in the co-infected group. However, the co-infection group exhibited an increase in the presence of swH1N1 in RT, SLO, and BALF at two days after co-infection. In conclusion, the results obtained confirm an increase in the clinical signs of infection, and PorPV was observed to impact the spread of swH1N1 in analysed tissues in the early stage of co-infection, although viral shedding was not enhanced. In the present study, the interaction of swH1N1 infection is demonstrated in pigs persistently infected with PorPV.
Subject(s)
Coinfection/pathology , Influenza A Virus, H1N1 Subtype/pathogenicity , Orthomyxoviridae Infections/veterinary , Rubulavirus Infections/veterinary , Swine Diseases/virology , Animals , Antibodies, Viral/blood , Influenza A Virus, H1N1 Subtype/isolation & purification , Orthomyxoviridae Infections/complications , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/virology , Rubulavirus/isolation & purification , Rubulavirus/physiology , Rubulavirus Infections/complications , Rubulavirus Infections/pathology , Rubulavirus Infections/virology , Swine , Swine Diseases/pathologyABSTRACT
BACKGROUND: The possible transmission of influenza A virus between dogs and humans is important, as in Mexico City there are approximately 1·2 million dogs. We present the first evidence of influenza A virus infection in household dogs in Mexico. OBJECTIVES: The objective of this study was to identify the presence of antibodies against influenza A virus in dogs and their owners, as well as the presence of RNA of influenza A virus in nasal exudates of dogs and, thereby, assess the possible transmission of the virus between humans and dogs. METHODS: Serum samples from household dogs and their owners were analyzed to detect the presence of antibodies against three subtypes of human influenza virus (H1N1pdm09, H1N1, and H3N2), as well as subtype H3N8 of equine influenza. We analyzed dog nasal exudates to detect influenza viral RNA. The relationship between the seropositivity of dogs and various factors (age, sex, constantly at home, and seropositivity of owners) was statistically analyzed. RESULTS: Seroprevalence for human influenza in dogs was 0·9% (1 of 113), and it was 4% (5 of 113) for equine influenza. In humans, seroprevalence was 22% for subtype H1N1pdm09, 20% for subtype H1N1, and 11% for subtype H3N2. No significant association (P>0·05) was found between seropositivity and any of the assessed factors. Furthermore, no viral RNA was detected in the nasal exudate samples. CONCLUSIONS: Results revealed seroprevalence of the influenza virus in household dogs in Mexico City. It can be assumed that dogs are currently becoming infected with different subtypes of influenza viruses.
Subject(s)
Dog Diseases/virology , Influenza A virus/isolation & purification , Influenza, Human/transmission , Orthomyxoviridae Infections/veterinary , Animals , Antibodies, Viral/blood , Bodily Secretions/virology , Dogs , Family Characteristics , Female , Humans , Influenza A virus/classification , Influenza A virus/genetics , Influenza, Human/virology , Male , Mexico , Molecular Sequence Data , Orthomyxoviridae Infections/virology , Risk Factors , Sequence Analysis, DNA , Seroepidemiologic StudiesABSTRACT
BACKGROUND: In the present study, we analyzed the presence of antibodies to four different influenza viruses (pH1N1, hH1N1, swH1N1, and swH3N2) in the sera of 2094 backyard pigs from Mexico City. The sera were obtained between 2000 and 2009. OBJECTIVES: The aim of this study was to perform a retrospective analysis of the 2000-2009 period to determine the seroprevalence of antibodies against pH1N1, hH1N1, swH1N1, and swH3N2 viruses in sera obtained from backyard pigs in Mexico City. METHODS: Antibody detection was conducted with hemagglutination inhibition assay (HI) using four influenza viruses. We used linear regression to analyze the tendency of antibody serum titers throughout the aforementioned span. RESULTS: We observed that the antibody titers for the pH1N1, swH1N1, and swH3N2 viruses tended to diminish over the study period, whereas the antibodies to hH1N1 remained at low prevalence for the duration of the years analyzed in this study. A non-significant correlation (P > 0.05) between antibody titers for pH1N1 and swH1N1 viruses was observed (0.04). It contrasts with the significance of the correlation (0.43) observed between the swH1N1 and swH3N2 viruses (P < 0.01). CONCLUSIONS: Our findings showed no cross-antigenicity in the antibody response against the same subtype. Antibodies against pH1N1 virus were observed throughout the 10-year study span, implying that annual strains shared some common features with the pH1N1 virus since 2000, which would then be capable of supporting the ongoing presence of these antibodies.