Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
Add more filters

Publication year range
1.
FASEB J ; 38(17): e70030, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39221499

ABSTRACT

Citicoline, a compound produced naturally in small amounts in the human body, assumes a pivotal role in phosphatidylcholine synthesis, a dynamic constituent of membranes of neurons. Across diverse models of brain injury and neurodegeneration, citicoline has demonstrated its potential through neuroprotective and anti-inflammatory effects. This review aims to elucidate citicoline's anti-inflammatory mechanism and its clinical implications in conditions such as ischemic stroke, head trauma, glaucoma, and age-associated memory impairment. Citicoline's anti-inflammatory prowess is rooted in its ability to stabilize cellular membranes, thereby curbing the excessive release of glutamate-a pro-inflammatory neurotransmitter. Moreover, it actively diminishes free radicals and inflammatory cytokines productions, which could otherwise harm neurons and incite neuroinflammation. It also exhibits the potential to modulate microglia activity, the brain's resident immune cells, and hinder the activation of NF-κB, a transcription factor governing inflammatory genes. Clinical trials have subjected citicoline to rigorous scrutiny in patients grappling with acute ischemic stroke, head trauma, glaucoma, and age-related memory impairment. While findings from these trials are mixed, numerous studies suggest that citicoline could confer improvements in neurological function, disability reduction, expedited recovery, and cognitive decline prevention within these cohorts. Additionally, citicoline boasts a favorable safety profile and high tolerability. In summary, citicoline stands as a promising agent, wielding both neuroprotective and anti-inflammatory potential across a spectrum of neurological conditions. However, further research is imperative to delineate the optimal dosage, treatment duration, and underlying mechanisms. Moreover, identifying specific patient subgroups most likely to reap the benefits of citicoline as a new therapy remains a critical avenue for exploration.


Subject(s)
Cytidine Diphosphate Choline , Neuroinflammatory Diseases , Cytidine Diphosphate Choline/therapeutic use , Cytidine Diphosphate Choline/pharmacology , Humans , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Animals , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/pharmacology , Nootropic Agents/therapeutic use , Nootropic Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Clinical Relevance
2.
FASEB J ; 38(13): e23813, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38976162

ABSTRACT

Beta-blockers are commonly used medications that antagonize ß-adrenoceptors, reducing sympathetic nervous system activity. Emerging evidence suggests that beta-blockers may also have anticancer effects and help overcome drug resistance in cancer treatment. This review summarizes the contribution of different isoforms of beta-adrenoceptors in cancer progression, the current preclinical and clinical data on associations between beta-blockers use and cancer outcomes, as well as their ability to enhance responses to chemotherapy and other standard therapies. We discuss proposed mechanisms, including effects on angiogenesis, metastasis, cancer stem cells, and apoptotic pathways. Overall, results from epidemiological studies and small clinical trials largely indicate the beneficial effects of beta-blockers on cancer progression and drug resistance. However, larger randomized controlled trials are needed to firmly establish their clinical efficacy and optimal utilization as adjuvant agents in cancer therapy.


Subject(s)
Adrenergic beta-Antagonists , Drug Resistance, Neoplasm , Neoplasms , Humans , Adrenergic beta-Antagonists/therapeutic use , Adrenergic beta-Antagonists/pharmacology , Neoplasms/drug therapy , Neoplasms/pathology , Animals , Cardiovascular Diseases/drug therapy , Disease Progression , Receptors, Adrenergic, beta/metabolism , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology
3.
FASEB J ; 38(11): e23734, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38847486

ABSTRACT

The cell cycle is tightly regulated to ensure controlled cell proliferation. Dysregulation of the cell cycle machinery is a hallmark of cancer that leads to unchecked growth. This review comprehensively analyzes key molecular regulators of the cell cycle and how they contribute to carcinogenesis when mutated or overexpressed. It focuses on cyclins, cyclin-dependent kinases (CDKs), CDK inhibitors, checkpoint kinases, and mitotic regulators as therapeutic targets. Promising strategies include CDK4/6 inhibitors like palbociclib, ribociclib, and abemaciclib for breast cancer treatment. Other possible targets include the anaphase-promoting complex/cyclosome (APC/C), Skp2, p21, and aurora kinase inhibitors. However, challenges with resistance have limited clinical successes so far. Future efforts should focus on combinatorial therapies, next-generation inhibitors, and biomarkers for patient selection. Targeting the cell cycle holds promise but further optimization is necessary to fully exploit it as an anti-cancer strategy across diverse malignancies.


Subject(s)
Cell Cycle , Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Animals , Molecular Targeted Therapy/methods
4.
FASEB J ; 38(4): e23480, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38354025

ABSTRACT

Accumulating evidence suggests that dysregulation of FOXO3a plays a significant role in the progression of various malignancies, including hepatocellular carcinoma (HCC). FOXO3a inactivation, driven by oncogenic stimuli, can lead to abnormal cell growth, suppression of apoptosis, and resistance to anticancer drugs. Therefore, FOXO3a emerges as a potential molecular target for the development of innovative treatments in the era of oncology. Linagliptin (LNGTN), a DPP-4 inhibitor known for its safe profile, has exhibited noteworthy anti-inflammatory and anti-oxidative properties in previous in vivo studies. Several potential molecular mechanisms have been proposed to explain these effects. However, the capacity of LNGTN to activate FOXO3a through AMPK activation has not been investigated. In our investigation, we examined the potential repurposing of LNGTN as a hepatoprotective agent against diethylnitrosamine (DENA) intoxication. Additionally, we assessed LNGTN's impact on apoptosis and autophagy. Following a 10-week administration of DENA, the liver underwent damage marked by inflammation and early neoplastic alterations. Our study presents the first experimental evidence demonstrating that LNGTN can reinstate the aberrantly regulated FOXO3a activity by elevating the nuclear fraction of FOXO3a in comparison to the cytosolic fraction, subsequent to AMPK activation. Moreover, noteworthy inactivation of NFκB induced by LNGTN was observed. These effects culminated in the initiation of apoptosis, the activation of autophagy, and the manifestation of anti-inflammatory, antiproliferative, and antiangiogenic outcomes. These effects were concomitant with improved liver function and microstructure. In conclusion, our findings open new avenues for the development of novel therapeutic strategies targeting the AMPK/FOXO3a signaling pathway in the management of chronic liver damage.


Subject(s)
Carcinoma, Hepatocellular , Dipeptidyl-Peptidase IV Inhibitors , Liver Neoplasms , Animals , Rats , Linagliptin/pharmacology , AMP-Activated Protein Kinases , Diethylnitrosamine/toxicity , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/chemically induced , Liver Neoplasms/drug therapy , Hypoglycemic Agents , Protease Inhibitors , Antiviral Agents , Anti-Inflammatory Agents
5.
Toxicol Appl Pharmacol ; 491: 117048, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39102946

ABSTRACT

Cisplatin (CDDP) often leads to kidney impairment, limiting its effectiveness in cancer treatment. The lack of mitophagy in proximal tubules exacerbates this issue. Hence, targeting SIRT-3 and PGC1-α shows promise in mitigating CDDP-induced kidney damage. The potential renoprotective effects of linagliptin, however, remain poorly understood. This study represents the first exploration of linagliptin's impact on CDDP-induced kidney impairment in rats, emphasizing its potential role in mitophagic pathways. The experiment involved four rat groups: Group (I) received saline only, Group (II) received a single intraperitoneal injection of CDDP at 6 mg/kg. Groups (III) and (IV) received linagliptin at 6 and 10 mg/kg p.o., respectively, seven days before CDDP administration, continuing for an additional four days. Various parameters, including renal function tests, oxidative stress, TNF-α, IL-1ß, IL-6, PGC-1α, FOXO-3a, p-ERK1, and the gene expression of SIRT-3 and P62 in renal tissue, were assessed. Linagliptin improved renal function, increased antioxidant enzyme activity, and decreased IL-1ß, TNF-α, and IL-6 expression. Additionally, linagliptin significantly upregulated PGC-1α and PINK-1/Parkin-2 expression while downregulating P62 expression. Moreover, linagliptin activated FOXO-3a and SIRT-3, suggesting a potential enhancement of mitophagy. Linagliptin demonstrated a positive impact on various factors related to kidney health in the context of CDDP-induced impairment. These findings suggest a potential role for linagliptin in improving cancer treatment outcomes. Clinical trials are warranted to further investigate and validate its efficacy in a clinical setting.


Subject(s)
Cisplatin , Linagliptin , Mitophagy , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Ubiquitin-Protein Ligases , Animals , Linagliptin/pharmacology , Cisplatin/toxicity , Mitophagy/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Male , Rats , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Sirtuin 3/metabolism , Sirtuin 3/genetics , Protein Kinases/metabolism , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Rats, Wistar , Antineoplastic Agents/toxicity , Oxidative Stress/drug effects , Kidney Diseases/chemically induced , Kidney Diseases/prevention & control , Kidney Diseases/metabolism , Kidney Diseases/pathology , Sirtuins
6.
Toxicol Appl Pharmacol ; 486: 116943, 2024 May.
Article in English | MEDLINE | ID: mdl-38677600

ABSTRACT

Ulcerative colitis (UC) is an inflammatory condition that affects the colon's lining and increases the risk of colon cancer. Despite ongoing research, there is no identified cure for UC. The recognition of NLRP3 inflammasome activation in the pathogenesis of UC has gained widespread acceptance. Notably, the ketone body ß-hydroxybutyrate inhibits NLRP3 demonstrating its anti-inflammatory properties. Additionally, BD-AcAc 2 is ketone mono ester that increases ß-hydroxybutyrate blood levels. It has the potential to address the constraints associated with exogenous ß-hydroxybutyrate as a therapeutic agent, including issues related to stability and short duration of action. However, the effects of ß-hydroxybutyrate and BD-AcAc 2 on colitis have not been fully investigated. This study found that while both exogenous ß-hydroxybutyrate and BD-AcAc 2 produced the same levels of plasma ß-hydroxybutyrate, BD-AcAc 2 demonstrated superior effectiveness in mitigating dextran sodium sulfate-induced UC in rats. The mechanism of action involves modulating the NF-κB signaling, inhibiting the NLRP3 inflammasome, regulating antioxidant capacity, controlling tight junction protein expression and a potential to inhibit apoptosis and pyroptosis. Certainly, BD-AcAc 2's anti-inflammatory effects require more than just increasing plasma ß-hydroxybutyrate levels and other factors contribute to its efficacy. Local ketone concentrations in the gastrointestinal tract, as well as the combined effect of specific ketone bodies, are likely to have contributed to the stronger protective effect observed with ketone mono ester ingestion in our experiment. As a result, further investigations are necessary to fully understand the mechanisms of BD-AcAc 2 and optimize its use.


Subject(s)
3-Hydroxybutyric Acid , Colitis, Ulcerative , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , 3-Hydroxybutyric Acid/pharmacology , Rats , Male , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Rats, Sprague-Dawley , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammasomes/metabolism , Inflammasomes/drug effects , Dextran Sulfate/toxicity , Colon/drug effects , Colon/pathology , Colon/metabolism , NF-kappa B/metabolism , Disease Models, Animal , Signal Transduction/drug effects , Ketones/pharmacology
7.
Curr Atheroscler Rep ; 26(8): 395-410, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38869707

ABSTRACT

PURPOSE OF REVIEW: To eradicate atherosclerotic diseases, novel biomarkers, and future therapy targets must reveal the burden of early atherosclerosis (AS), which occurs before life-threatening unstable plaques form. The chemical and biological features of microRNAs (miRNAs) make them interesting biomarkers for numerous diseases. We summarized the latest research on miRNA regulatory mechanisms in AS progression studies, which may help us use miRNAs as biomarkers and treatments for difficult-to-treat diseases. RECENT FINDINGS: Recent research has demonstrated that miRNAs have a regulatory function in the observed changes in gene and protein expression during atherogenesis, the process that leads to atherosclerosis. Several miRNAs play a role in the development of atherosclerosis, and these miRNAs could potentially serve as non-invasive biomarkers for atherosclerosis in various regions of the body. These miRNAs have the potential to serve as biomarkers and targets for early treatment of atherosclerosis. The start and development of AS require different miRNAs. It reviews new research on miRNAs affecting endothelium, vascular smooth muscle, vascular inflammation, lipid retention, and cholesterol metabolism in AS. A miRNA gene expression profile circulates with AS everywhere. AS therapies include lipid metabolism, inflammation reduction, and oxidative stress inhibition. Clinical use of miRNAs requires tremendous progress. We think tiny miRNAs can enable personalized treatment.


Subject(s)
Atherosclerosis , Biomarkers , MicroRNAs , Humans , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/diagnosis , Atherosclerosis/therapy , MicroRNAs/genetics , MicroRNAs/metabolism , Biomarkers/metabolism , Prognosis , Animals
8.
FASEB J ; 36(9): e22496, 2022 09.
Article in English | MEDLINE | ID: mdl-35947115

ABSTRACT

Ulcerative colitis (UC) is a chronic inflammatory bowel disease of unknown etiology that increases the risk of developing colorectal cancer and imposes a lifelong healthcare burden on millions of patients worldwide. Current treatment strategies are associated with significant risks and have been shown to be fairly effective. Hence, discovering new therapies that have better efficacy and safety profiles than currently exploited therapeutic strategies is challenging. It has been well delineated that NF-κB/Nrf2 crosstalk is a chief player in the interplay between oxidative stress and inflammation. Ambroxol hydrochloride, a mucolytic agent, has shown antioxidant and anti-inflammatory activity in humans and animals and has not yet been examined for the management of UC. Therefore, our approach was to investigate whether ambroxol could be effective to combat UC using the common acetic acid rat model. Interestingly, a high dose of oral ambroxol (200 mg/kg/day) reasonably improved the microscopic and macroscopic features of the injured colon. This was linked to low disease activity and a reduction in the colonic weight/length ratio. In the context of that, ambroxol boosted Nrf2 activity and upregulated HO-1 and catalase to augment the antioxidant defense against oxidative damage. Besides, ambroxol inactivated NF-κB signaling and its consequent target pro-inflammatory mediators, IL-6 and TNF-α. In contrast, IL-10 is upregulated. Consistent with these results, myeloperoxidase activity is suppressed. Moreover, ambroxol decreased the susceptibility of the injured colon to apoptosis. To conclude, our findings highlight the potential application of ambroxol to modify the progression of UC by its anti-inflammatory, antioxidant, and antiapoptotic properties.


Subject(s)
Ambroxol , Colitis, Ulcerative , Heme Oxygenase-1/metabolism , Ambroxol/pharmacology , Ambroxol/therapeutic use , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Apoptosis , Colitis, Ulcerative/drug therapy , Colon , Expectorants/pharmacology , Expectorants/therapeutic use , Humans , NF-E2-Related Factor 2 , NF-kappa B/pharmacology , Rats
9.
Mol Pharm ; 20(9): 4758-4769, 2023 09 04.
Article in English | MEDLINE | ID: mdl-37585079

ABSTRACT

Hepatocellular carcinoma (HCC) is the leading cause of cancer-related mortality worldwide. Telmisartan (TLM), a BSC class II drug, has been reported to have antiproliferative activity in HCC. However, its therapeutic activity is limited by poor bioavailability and unpredictable distribution. This work aimed to enhance TLM's liver uptake for HCC management through passive and active targeting pathways utilizing chitosan nanoparticles decorated with lactose (LCH NPs) as a delivery system. In vitro cell cytotoxicity and cellular uptake studies indicated that TLM-LCH NPs significantly (p < 0.05) enhanced the antiproliferative activity and cellular uptake percentage of TLM. In vivo bioavailability and liver biodistribution studies indicated that TLM-LCH NPs significantly (p < 0.05) enhanced TLM concentrations in plasma and the liver. The relative liver uptake of TLM from TLM-LCH NPs was 2-fold higher than that of unmodified NPs and 5-fold higher than that of plain TLM suspension. In vivo studies of a N-nitrosodiethylamine-induced HCC model revealed that administration of TLM through LCH NPs improved liver histology and resulted in lower serum alpha-fetoprotein (AFP), matrix metalloproteinase 2 (MMP-2), vascular endothelial growth factor (VEGF) levels, and liver weight index compared to plain TLM and TLM-loaded unmodified NPs. These results reflected the high potentiality of LCH NPs as a liver-targeted delivery system for TLM in the treatment of HCC.


Subject(s)
Carcinoma, Hepatocellular , Chitosan , Liver Neoplasms , Nanoparticles , Animals , Mice , Humans , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/chemically induced , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Telmisartan/therapeutic use , Chitosan/metabolism , Diethylnitrosamine , Matrix Metalloproteinase 2/metabolism , Vascular Endothelial Growth Factor A/metabolism , Tissue Distribution , Hep G2 Cells
10.
Eur Radiol ; 33(2): 1286-1296, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35962816

ABSTRACT

OBJECTIVE: To assess the diagnostic accuracy and agreement of CT and MRI in terms of the Bosniak classification version 2019 (BCv2019). MATERIALS AND METHODS: A prospective multi-institutional study enrolled 63 patients with 67 complicated cystic renal masses (CRMs) discovered during ultrasound examination. All patients underwent CT and MRI scans and histopathology. Three radiologists independently assessed CRMs using BCv2019 and assigned Bosniak class to each CRM using CT and MRI. The final analysis included 60 histopathologically confirmed CRMs (41 were malignant and 19 were benign). RESULTS: Discordance between CT and MRI findings was noticed in 50% (30/60) CRMs when data were analyzed in terms of the Bosniak classes. Of these, 16 (53.3%) were malignant. Based on consensus reviewing, there was no difference in the sensitivity, specificity, and accuracy of the BCv2019 with MRI and BCv2019 with CT (87.8%; 95% CI = 73.8-95.9% versus 75.6%; 95% CI = 59.7-87.6%; p = 0.09, 84.2%; 95% CI = 60.4-96.6% versus 78.9%; 95% CI = 54.4-93.9%; p = 0.5, and 86.7%; 95% CI = 64.0-86.6% versus 76.7%; 95% CI = 75.4-94.1%; p = 0.1, respectively). The number and thickness of septa and the presence of enhanced nodules accounted for the majority of variations in Bosniak classes between CT and MRI. The inter-reader agreement (IRA) was substantial for determining the Bosniak class in CT and MRI (k = 0.66; 95% CI = 0.54-0.76, k = 0.62; 95% CI = 0.50-0.73, respectively). The inter-modality agreement of the BCv219 between CT and MRI was moderate (κ = 0.58). CONCLUSION: In terms of BCv2019, CT and MRI are comparable in the classification of CRMs with no significant difference in diagnostic accuracy and reliability. KEY POINTS: • There is no significant difference in the sensitivity, specificity, and accuracy of the BCv2019 with MRI and BCv2019 with CT. • The number of septa and their thickness and the presence of enhanced nodules accounted for the majority of variations in Bosniak classes between CT and MRI. • The inter-reader agreement was substantial for determining the Bosniak class in CT and MRI and the inter-modality agreement of the BCv219 between CT and MRI was moderate.


Subject(s)
Kidney Diseases, Cystic , Kidney Neoplasms , Humans , Kidney Diseases, Cystic/diagnosis , Reproducibility of Results , Tomography, X-Ray Computed , Magnetic Resonance Imaging , Kidney/pathology , Retrospective Studies
11.
Int J Mol Sci ; 24(7)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37047011

ABSTRACT

The number of diabetic patients has risen dramatically in recent decades, owing mostly to the rising incidence of type 2 diabetes mellitus (T2DM). Several oral antidiabetic medications are used for the treatment of T2DM including, α-glucosidases inhibitors, biguanides, sulfonylureas, meglitinides, GLP-1 receptor agonists, PPAR-γ agonists, DDP4 inhibitors, and SGLT2 inhibitors. In this review we focus on the possible effects of SGLT2 inhibitors on different body systems. Beyond the diabetic state, SGLT2 inhibitors have revealed a demonstrable ability to ameliorate cardiac remodeling, enhance myocardial function, and lower heart failure mortality. Additionally, SGLT2 inhibitors can modify adipocytes and their production of cytokines, such as adipokines and adiponectin, which enhances insulin sensitivity and delays diabetes onset. On the other hand, SGLT2 inhibitors have been linked to decreased total hip bone mineral deposition and increased hip bone resorption in T2DM patients. More data are needed to evaluate the role of SGLT2 inhibitors on cancer. Finally, the effects of SGLT2 inhibitors on neuroprotection appear to be both direct and indirect, according to scientific investigations utilizing various experimental models. SGLT2 inhibitors improve vascular tone, elasticity, and contractility by reducing oxidative stress, inflammation, insulin signaling pathways, and endothelial cell proliferation. They also improve brain function, synaptic plasticity, acetylcholinesterase activity, and reduce amyloid plaque formation, as well as regulation of the mTOR pathway in the brain, which reduces brain damage and cognitive decline.


Subject(s)
Diabetes Mellitus, Type 2 , Sodium-Glucose Transporter 2 Inhibitors , Humans , Acetylcholinesterase , Diabetes Mellitus, Type 2/epidemiology , Glycemic Control , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use
12.
Int J Mol Sci ; 24(5)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36902446

ABSTRACT

Heat-shock proteins are upregulated in cancer and protect several client proteins from degradation. Therefore, they contribute to tumorigenesis and cancer metastasis by reducing apoptosis and enhancing cell survival and proliferation. These client proteins include the estrogen receptor (ER), epidermal growth factor receptor (EGFR), insulin-like growth factor-1 receptor (IGF-1R), human epidermal growth factor receptor 2 (HER-2), and cytokine receptors. The diminution of the degradation of these client proteins activates different signaling pathways, such as the PI3K/Akt/NF-κB, Raf/MEK/ERK, and JAK/STAT3 pathways. These pathways contribute to hallmarks of cancer, such as self-sufficiency in growth signaling, an insensitivity to anti-growth signals, the evasion of apoptosis, persistent angiogenesis, tissue invasion and metastasis, and an unbounded capacity for replication. However, the inhibition of HSP90 activity by ganetespib is believed to be a promising strategy in the treatment of cancer because of its low adverse effects compared to other HSP90 inhibitors. Ganetespib is a potential cancer therapy that has shown promise in preclinical tests against various cancers, including lung cancer, prostate cancer, and leukemia. It has also shown strong activity toward breast cancer, non-small cell lung cancer, gastric cancer, and acute myeloid leukemia. Ganetespib has been found to cause apoptosis and growth arrest in these cancer cells, and it is being tested in phase II clinical trials as a first-line therapy for metastatic breast cancer. In this review, we will highlight the mechanism of action of ganetespib and its role in treating cancer based on recent studies.


Subject(s)
Antineoplastic Agents , HSP90 Heat-Shock Proteins , Neoplasms , Triazoles , Humans , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Phosphatidylinositol 3-Kinases , Neoplasms/drug therapy , Triazoles/pharmacology
13.
Int J Mol Sci ; 24(2)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36675046

ABSTRACT

Phages are highly ubiquitous biological agents, which means they are ideal tools for molecular biology and recombinant DNA technology. The development of a phage display technology was a turning point in the design of phage-based vaccines. Phages are now recognized as universal adjuvant-free nanovaccine platforms. Phages are well-suited for vaccine design owing to their high stability in harsh conditions and simple and inexpensive large-scale production. The aim of this review is to summarize the overall breadth of the antiviral therapeutic perspective of phages contributing to the development of phage-based vaccines for COVID-19. We show that phage vaccines induce a strong and specific humoral response by targeted phage particles carrying the epitopes of SARS-CoV-2. Further, the engineering of the T4 bacteriophage by CRISPR (clustered regularly interspaced short palindromic repeats) presents phage vaccines as a valuable platform with potential capabilities of genetic plasticity, intrinsic immunogenicity, and stability.


Subject(s)
Bacteriophages , COVID-19 , Vaccines , Humans , Bacteriophages/genetics , COVID-19 Vaccines/genetics , COVID-19/therapy , COVID-19/genetics , SARS-CoV-2/genetics , Bacteriophage T4/genetics , Clustered Regularly Interspaced Short Palindromic Repeats
14.
AAPS PharmSciTech ; 24(6): 144, 2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37353643

ABSTRACT

Hepatocellular carcinoma (HCC) has a significant economic impact and a high mortality rate. Telmisartan (TLM) is a potential therapy for HCC, but it has a limited scope in drug delivery due to unpredictable distribution and poor bioavailability. The objective of this study was to prepare, design, and in vitro evaluate lactose-modified chitosan nanoparticles (LCH NPs) as a liver-targeted nanocarrier for TLM with the potential to offer a promising HCC therapy. The combination of chitosan with lactose was successfully attained using the Maillard reaction. TLM-LCH NPs were prepared, characterized, and optimized with the developed 23 full factorial design. The optimized formulation (F1) was in vitro and in vivo characterized. LCH was synthesized with an acceptable yield of 43.8 ± 0.56%, a lactosylation degree of 14.34%, and a significantly higher aqueous solubility (6.28 ± 0.21 g/L) compared to native chitosan (0.25 ± 0.03 g/L). In vitro characterization demonstrated that, F1 had a particle size of 145.46 ± 0.7 nm, an entrapment efficiency of 90.21 ± 0.28%, and a surface charge of + 27.13 ± 0.21 mV. In vitro TLM release from F1 was most consistent with the Higuchi model and demonstrated significantly higher release at pH 5.5. Moreover, a significantly higher ratio of liver to plasma concentration was observed with TLM-LCH NPs compared to plain TLM and unmodified TLM-NPs. The obtained results nominate TLM-LCH NPs as a promising carrier for enhancing liver targeting of TLM in treatment of HCC.


Subject(s)
Carcinoma, Hepatocellular , Chitosan , Liver Neoplasms , Nanoparticles , Humans , Chitosan/chemistry , Drug Carriers/chemistry , Telmisartan , Lactose , Nanoparticles/chemistry , Particle Size
15.
Eur Radiol ; 32(5): 3288-3296, 2022 May.
Article in English | MEDLINE | ID: mdl-34797384

ABSTRACT

OBJECTIVE: To determine the early treatment response after microwave ablation (MWA) of inoperable lung neoplasms using the apparent diffusion coefficient (ADC) value calculated 24 h after the ablation. MATERIALS AND METHODS: This retrospective study included 47 patients with 68 lung lesions, who underwent percutaneous MWA from January 2008 to December 2017. Evaluation of the lesions was done using MRI including DWI sequence with ADC value calculation pre-ablation and 24 h post-ablation. DWI-MR was performed with b values (50, 400, 800 mm2/s). The post-ablation follow-up was performed using chest CT and/or MRI within 24 h following the procedure; after 3, 6, 9, and 12 months; and every 6 months onwards to determine the local tumor response. The post-ablation ADC value changes were compared to the end response of the lesions. RESULTS: Forty-seven patients (mean age: 63.8 ± 14.2 years, 25 women) with 68 lesions having a mean tumor size of 1.5 ± 0.9 cm (range: 0.7-5 cm) were evaluated. Sixty-one lesions (89.7%) showed a complete treatment response, and the remaining 7 lesions (10.3%) showed a local progression (residual activity). There was a statistically significant difference regarding the ADC value measured 24 h after the ablation between the responding (1.7 ± 0.3 × 10-3 mm2/s) and non-responding groups (1.4 ± 0.3 × 10-3 mm2/s) with significantly higher values in the responding group (p = 0.001). A suggested ADC cut-off value of 1.42 could be used as a reference point for the post-ablation response prediction (sensitivity: 66.67%, specificity: 84.21%, PPV: 66.7%, and NPV: 84.2%). No significant difference was reported regarding the ADC value performed before the ablation as a factor for the prognosis of treatment response (p = 0.86). CONCLUSION: ADC value assessment following ablation may allow the early prediction of treatment efficacy after MWA of inoperable lung neoplasms. KEY POINTS: • ADC value calculated 24 h post-treatment may allow the early prediction of MWA efficacy as a treatment of pulmonary tumors and can be used in the early immediate post-ablation imaging follow-up. • The pre-treatment ADC value of lung neoplasms is not different between the responding and non-responding tumors.


Subject(s)
Lung Neoplasms , Microwaves , Aged , Diffusion Magnetic Resonance Imaging/methods , Feasibility Studies , Female , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/surgery , Magnetic Resonance Imaging , Male , Microwaves/therapeutic use , Middle Aged , Retrospective Studies , Tomography, X-Ray Computed
16.
Andrologia ; 54(4): e14359, 2022 May.
Article in English | MEDLINE | ID: mdl-35019157

ABSTRACT

The purpose of this study was to evaluate and anticipate the outcome of daily use of tadalafil in patients with erectile dysfunction using elastography. 183 volunteers and 183 patients with erectile dysfunction were included. Pretreatment SWE readings for our patients were calculated with a linear probe. IIEF score Q was measured once at the start of the study for volunteers and twice for patients, one prior to the start of tadalafil administration and the other on one year of 5 mg daily tadalafil after the second post-washout (one month post-treatment stopped). There was no significant difference between patients and volunteers in mean age or risk factors except in SWE values as mean SWE of volunteers was 14.03 ± 1.54 kpasc, while mean SWE of patients was 21.278 ± 8.228 kpasc. The presence of comorbid diabetes, severe disease and pre-SWE ≥23.635 was significantly associated with poor outcome. We conclude that penile SWE could be useful to select probable good responders for a continuous tadalafil use, thus avoiding the unnecessary cost and time in non-responders.


Subject(s)
Elasticity Imaging Techniques , Erectile Dysfunction , Carbolines/therapeutic use , Erectile Dysfunction/diagnostic imaging , Erectile Dysfunction/drug therapy , Humans , Male , Penis/diagnostic imaging , Tadalafil/therapeutic use , Treatment Outcome
17.
Int J Mol Sci ; 23(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36142208

ABSTRACT

Rheumatoid arthritis is an autoimmune disease that affects joints, leading to swelling, inflammation, and dysfunction in the joints. Recently, research efforts have been focused on finding novel curative approaches for rheumatoid arthritis, as current therapies are associated with adverse effects. Here, we examined the effectiveness of dabigatran, the antithrombotic agent, in treating complete Freund's adjuvant (CFA)-induced arthritis in rats. Subcutaneous injection of a single 0.3 mL dosage of CFA into the rat's hind leg planter surface resulted in articular surface deformities, reduced cartilage thickness, loss of intercellular matrix, and inflammatory cell infiltration. There were also increased levels of the Anti-cyclic citrullinated peptide antibody (ACPA), oxidative stress, and tissue Receptor activator of nuclear factor-kappa B ligand (RANKL). Proteins of the kallikrein-kinin system (KKS) were also elevated. The inhibitory effects of dabigatran on thrombin led to a subsequent inhibition of KKS and reduced Toll-like receptor 4 (TLR4) expression. These effects also decreased RANKL levels and showed anti-inflammatory and antioxidant effects. Therefore, dabigatran could be a novel therapeutic strategy for arthritis.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Animals , Anti-Inflammatory Agents/adverse effects , Antioxidants/metabolism , Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/chemically induced , Arthritis, Rheumatoid/drug therapy , Dabigatran/pharmacology , Dabigatran/therapeutic use , Fibrinolytic Agents/therapeutic use , Freund's Adjuvant/adverse effects , Kallikrein-Kinin System , RANK Ligand/metabolism , Rats , Thrombin/metabolism , Toll-Like Receptor 4/metabolism
18.
Inflammopharmacology ; 29(1): 237-251, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32594364

ABSTRACT

Ulcerative colitis (UC) is a chronic and relapsing inflammatory disorder, which has an increased incidence worldwide. The NLRP3 inflammasome has recently been assigned as a promising target for several inflammatory diseases including bowel inflammation. We aimed to investigate the potential complementary effects of combined therapy of metformin and MCC950 in dextran sodium sulfate (DSS)-induced colitis in rats. Metformin/MCC950 mitigated colon shortening, disease activity index (DAI), and macroscopic damage index (MDI). It also improved the colon histology picture and reduced the inflammation score. In addition, metformin/MCC950 augmented the antioxidant defense machinery and attenuated the myeloperoxidase (MPO) activity. Moreover, the levels of the pro-inflammatory mediators tumor necrosis factor alpha (TNFα) and interleukin-6 (IL-6) were reduced. This pharmacological activity might be attributed to interrupting the priming signal of the NLRP3 inflammasome activation through inactivating Toll-like receptor 4 (TLR4)/nuclear transcription factor kappa-B (NF-κB) signalling (effect of metformin) as well as interrupting the activation signal through potent inhibition of NLRP3 expression and caspase-1 (effect of MCC950). As a result, significant inhibition of the production of the bioactive IL-1ß and IL-18 occurred, and hence the pyroptosis process was inhibited. Moreover, the metformin/MCC950 leads to the induction of autophagy by AMP-activated protein kinase (AMPK)-dependent mechanisms leading to the accumulation of Beclin-1 and a substantial decline in the levels of p62 SQSTM1 (effect of metformin). The observed impeding effect on HSP90 along with inducing autophagy (effect of metformin) suggests that NLRP3 is prone to autophagic degradation. In conclusion, we reveal that the combination of metformin with MCC950 has a protective role in DSS-induced colitis and might become a candidate in a promising approach for the future treatment of human UC.


Subject(s)
Autophagy/drug effects , Colitis/prevention & control , Furans/pharmacology , Indenes/pharmacology , Metformin/pharmacology , Sulfonamides/pharmacology , AMP-Activated Protein Kinases/metabolism , Animals , Antioxidants/metabolism , Dextran Sulfate/toxicity , Disease Models, Animal , Furans/administration & dosage , HSP90 Heat-Shock Proteins/metabolism , Indenes/administration & dosage , Male , Metformin/administration & dosage , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Rats , Rats, Sprague-Dawley , Sulfonamides/administration & dosage
19.
Inflammopharmacology ; 29(4): 1169-1185, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34002329

ABSTRACT

The development of effective treatment strategies has been hindered by the complex pathogenesis of ulcerative colitis (UC). UC patients treated with current therapeutic approaches experienced either treatment failure or suffered excessive adverse reactions. Overactivity of NLRP3 inflammasome enhances inflammation, resulting in aggravation of colonic damage. We were interested in exploring, for the first time, the potential coloprotective effect of dapagliflozin (DPZ) on acetic acid-induced UC in rats in comparison with 5-ASA. DPZ improved histologic and macroscopic features of colon tissues and prolonged survival of UC rats. DPZ also prevented colon shortening and declined disease activity. Additionally, DPZ lessened colon tissue neutrophil content and improved antioxidant defense machinery. Further, DPZ specifically declined the colonic inflammatory marker IL-6 and upregulated the anti-inflammatory cytokine IL-10. The pyroptosis process is constrained in consequence of the repressed caspase-1 activity and caspase-1-dependent release of the bioactive cytokines IL-1ß and IL-18. These protective effects might be attributed to that DPZ on the one hand, prevented the priming step (signal 1) of NLRP3 inflammasome activation as revealed by modulating NFκB/AMPK interplay and on the other hand, inhibited the activation step (signal 2) as indicated by interrupting NLRP3/caspase-1 signaling. Since DPZ was found to be safe and well tolerated by healthy volunteers with no evidence of hypoglycemia, it might show promise in the future management of UC. However, further investigations are warranted to confirm the reversal of injury and that the coloprotective effect is substantial.


Subject(s)
AMP-Activated Protein Kinases/antagonists & inhibitors , Acetic Acid/toxicity , Benzhydryl Compounds/administration & dosage , Colitis/drug therapy , Glucosides/administration & dosage , NF-kappa B/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Sodium-Glucose Transporter 2 Inhibitors/administration & dosage , AMP-Activated Protein Kinases/metabolism , Animals , Colitis/chemically induced , Colitis/metabolism , Dose-Response Relationship, Drug , Drug Delivery Systems/methods , Male , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Rats , Rats, Sprague-Dawley
20.
Toxicol Appl Pharmacol ; 407: 115246, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32956689

ABSTRACT

Mitogen-activated protein kinases (MAPKs) and nuclear factor (NF)-ĸB signaling have been recognized for their causal connection with liver fibrosis. Hence, it is encouraging to discover drugs that can modify the interactions between these signaling cascades. It has been suggested that glucagon-like peptide-1 receptors (GLP-1Rs) might have a role in the observed hepatoprotection of dipeptidyl peptidase-4 inhibitors other than vildagliptin (VLD). Consequently, we aimed to elucidate the mechanisms underlying its potential antifibrotic activity in a CCl4-intoxicated mouse model. VLD increased the percentage of viable CCl4-intoxicated primary rat hepatocytes in vitro. It also attenuated hepatic fibrosis, improved liver function, and prolonged survival of CCl4-intoxicated mice in a dose-dependent manner. This hepatoprotection might be mediated mainly through interference with extracellular signal-regulated protein kinase 1/2 phosphorylation, the most downstream signal of the MAPK pathway. In addition, VLD hepatoprotective activity could be partially mediated through inhibition of p38α phosphorylation and phosphorylation-induced NF-ĸB activation. As a result, VLD downregulated profibrogenic mediators, such as tumor necrosis factor α, transforming growth factor ß, tissue inhibitor of metalloproteinase 1 and platelet-derived growth factor BB. Consequently, decreased expression levels of fibrosis markers, such as hydroxyproline and α smooth muscle actin, were confirmed. VLD showed a strong trend toward increasing the antioxidant defense machinery of fibrotic tissue, and we confirmed that GLP-1Rs were not implicated in the observed hepatoprotection. Since VLD poses little risk of hypoglycemia and is a safe drug for patients with liver injury, it may be a hopeful candidate for adjuvant treatment of liver fibrosis in humans.


Subject(s)
Carbon Tetrachloride Poisoning/drug therapy , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Liver Cirrhosis/drug therapy , Signal Transduction/drug effects , Vildagliptin/pharmacology , Animals , Carbon Tetrachloride Poisoning/pathology , Cell Survival/drug effects , Dipeptidyl-Peptidase IV Inhibitors/administration & dosage , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Dose-Response Relationship, Drug , Inflammation Mediators/metabolism , Liver Cirrhosis/chemically induced , Liver Cirrhosis/pathology , Liver Function Tests , MAP Kinase Signaling System/drug effects , Male , Mice , NF-kappa B/drug effects , Phosphorylation , Primary Cell Culture , Rats , Survival , Vildagliptin/administration & dosage , Vildagliptin/therapeutic use , p38 Mitogen-Activated Protein Kinases/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL