Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Proc Natl Acad Sci U S A ; 120(12): e2220032120, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36917662

ABSTRACT

Finely controlled flow forces in extrusion-based additive manufacturing can be exploited to program the self-assembly of malleable nanostructures in soft materials by integrating bottom-up design into a top-down processing approach. Here, we leverage the processing parameters offered by direct ink-writing (DIW) to reconfigure the photonic chiral nematic liquid crystalline phase in hydroxypropyl cellulose (HPC) solutions prior to deposition on the writing substrate to direct structural evolution from a particular initial condition. Moreover, we incorporate polyethylene glycol (PEG) into iridescent HPC inks to form a physically cross-linked network capable of inducing kinetic arrest of the cholesteric/chiral pitch at length scales that selectively reflect light throughout the visible spectrum. Based on thorough rheological measurements, we have found that printing the chiral inks at a shear rate where HPC molecules adopt pseudonematic state results in uniform chiral recovery following flow cessation and enhanced optical properties in the solid state. Printing chiral inks at high shear rates, on the other hand, shifts the monochromatic appearance of the extruded filaments to a highly angle-dependent state, suggesting a preferred orientation of the chiral domains. The optical response of these filaments when exposed to mechanical deformation can be used in the development of optical sensors.

2.
Soft Matter ; 2024 Oct 25.
Article in English | MEDLINE | ID: mdl-39449293

ABSTRACT

Platonic-solid-like particles in liquid crystals offer intriguing opportunities for engineering complex materials with tailored properties. Inspired by platonic solids' geometric simplicity and symmetry, these particles possess well-defined shapes such as cubes, tetrahedra, octahedra, dodecahedra, and icosahedra. When dispersed within nematic liquid-crystalline media, these particles interact with the surrounding medium in intricate ways, influencing the local orientational order of liquid crystal molecules. In this work, we implement continuum simulations to study how the combination of particle shape and surface anchoring gives rise to line defects that follow the edges of the particles and how they are affected by the presence of a Poiseuille flow. Platonic-solid-like particles in liquid crystals have shown promise in diverse applications ranging from photonics and metamaterials to colloidal self-assembly and responsive soft materials.

3.
Small ; 19(19): e2206847, 2023 May.
Article in English | MEDLINE | ID: mdl-36732856

ABSTRACT

Architected materials with nano/microscale orders can provide superior mechanical properties; however, reproducing such levels of ordering in complex structures has remained challenging. Inspired by Bouligand structures in nature, here, 3D printing of complex geometries with guided long-order radially twisted chiral hierarchy, using cellulose nanocrystals (CNC)-based inks is presented. Detailed rheological measurements, in situ flow analysis, polarized optical microscopy (POM), and director field analysis are employed to evaluate the chiral assembly over the printing process. It is demonstrated that shear flow forces inside the 3D printer's nozzle orient individual CNC particles forming a pseudo-nematic phase that relaxes to uniformly aligned concentric chiral nematic structures after the flow cessation. Acrylamide, a photo-curable monomer, is incorporated to arrest the concentric chiral arrangements within the printed filaments. The time series POM snapshots show that adding the photo-curable monomer at the optimized concentrations does not interfere with chiral self-assemblies and instead increases the chiral relaxation rate. Due to the liquid-like nature of the as-printed inks, optimized Carbopol microgels are used to support printed filaments before photo-polymerization. By paving the path towards developing bio-inspired materials with nanoscale hierarchies in larger-scale printed constructs, this biomimetic approach expands 3D printing materials beyond what has been realized so far.

4.
Langmuir ; 38(7): 2192-2204, 2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35133841

ABSTRACT

Studying the flow-induced alignment of anisotropic liquid crystalline materials is of major importance in the 3D printing of advanced architectures. However, in situ characterization and quantitative measurements of local orientations during the 3D printing process are challenging. Here, we report a microfluidic strategy integrated with polarized optical microscopy (POM) to perform the in situ characterization of the alignment of cellulose nanocrystals (CNCs) under the shear-flow condition of the 3D printer's nozzle in the direct ink writing process. To quantify the alignment, we exploited birefringence measurements under white and monochromatic light. We show that the flow-induced birefringence patterns are significantly influenced by the initial structure of the aqueous CNC suspensions. Depending on the CNC concentration and sonication treatment, various structures can form in the CNC suspensions, such as isotropic, chiral nematic (cholesteric), and nematic (gel-like) structures. In the chiral nematic phase, in particular, the shear flow in the microfluidic capillary has a distinct effect on the alignment of the CNC particles. Our experimental results, complemented by hydrodynamic simulations, reveal that at high flow rates (Er ≈ 1000), individual CNC particles align with the flow exhibiting a weak chiral structure. In contrast, at lower flow rates (Er ≈ 241), they display the double-twisted cylinder structure. Understanding the flow effect on the alignment of the chiral liquid crystal can pave the way to designing 3D printed architectures with internal chirality for advanced mechanical and smart photonic applications.

5.
Langmuir ; 38(49): 15272-15281, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36454950

ABSTRACT

The growing interest in integrating liquid crystals (LCs) into flexible and miniaturized technologies brings about the need to understand the interplay between spatially curved geometry, surface anchoring, and the order associated with these materials. Here, we integrate experimental methods and computational simulations to explore the competition between surface-induced orientation and the effects of deformable curved boundaries in uniaxially and biaxially stretched nematic and smectic microdroplets. We find that the director field of the nematic LCs upon uniaxial strain reorients and forms a larger twisted defect ring to adjust to the new deformed geometry of the stretched droplet. Upon biaxial extension, the director field initially twists in the now oblate geometry and subsequently transitions into a uniform vertical orientation at high strains. In smectic microdroplets, on the other hand, LC alignment transforms from a radial smectic layering to a quasi-flat layering in a compromise between interfacial and dilatation forces. Upon removing the mechanical strain, the smectic LC recovers its initial radial configuration; however, the oblate geometry traps the nematic LC in the metastable vertical state. These findings offer a basis for the rational design of LC-based flexible devices, including wearable sensors, flexible displays, and smart windows.

6.
Proc Natl Acad Sci U S A ; 114(38): 10011-10016, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28874557

ABSTRACT

Liquid-crystal blue phases (BPs) are highly ordered at two levels. Molecules exhibit orientational order at nanometer length scales, while chirality leads to ordered arrays of double-twisted cylinders over micrometer scales. Past studies of polycrystalline BPs were challenged by the existence of grain boundaries between randomly oriented crystalline nanodomains. Here, the nucleation of BPs is controlled with precision by relying on chemically nanopatterned surfaces, leading to macroscopic single-crystal BP specimens where the dynamics of mesocrystal formation can be directly observed. Theory and experiments show that transitions between two BPs having a different network structure proceed through local reorganization of the crystalline array, without diffusion of the double-twisted cylinders. In solid crystals, martensitic transformations between crystal structures involve the concerted motion of a few atoms, without diffusion. The transformation between BPs, where crystal features arise in the submicron regime, is found to be martensitic in nature when one considers the collective behavior of the double-twist cylinders. Single-crystal BPs are shown to offer fertile grounds for the study of directed crystal nucleation and the controlled growth of soft matter.

7.
J Am Chem Soc ; 139(10): 3841-3850, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28177227

ABSTRACT

Numerous applications of liquid crystals rely on control of molecular orientation at an interface. However, little is known about the precise molecular structure of such interfaces. In this work, synchrotron X-ray reflectivity measurements, accompanied by large-scale atomistic molecular dynamics simulations, are used for the first time to reconstruct the air-liquid crystal interface of a nematic material, namely, 4-pentyl-4'-cyanobiphenyl (5CB). The results are compared to those for 4-octyl-4'-cyanobiphenyl (8CB) which, in addition to adopting isotropic and nematic states, can also form a smectic phase. Our findings indicate that the air interface imprints a highly ordered structure into the material; such a local structure then propagates well into the bulk of the liquid crystal, particularly for nematic and smectic phases.

8.
Soft Matter ; 13(41): 7465-7472, 2017 Oct 25.
Article in English | MEDLINE | ID: mdl-29040343

ABSTRACT

Liquid crystal shells have attracted considerable attention in recent years. In such systems, a combination of confinement and curvature generates topological defect structures that do not exist in the bulk. Past studies, however, have largely focused on perfectly spherical shells, and little attention has been devoted to the impact of core geometry on the configuration and arrangement of topological defects. In this work, a microfluidic glass capillary device is used to encapsulate spherical and prolate ellipsoidal particles in nematic liquid crystal (LC) droplets dispersed in aqueous media. Our experimental studies show that, when trapped inside a radial LC droplet, spherical particles with both homeotropic and planar anchoring are highly localized at the droplet's center. While the radial configuration of the LC droplets is not altered by a homeotropic particle, polystyrene particles with strong planar anchoring disturb the radial ordering, leading to a twisted structure. Experiments indicate that off-center particle positions can also arise, in which defects are displaced towards the vicinity of the droplet's surface. In contrast, when prolate ellipsoidal particles are encapsulated in a thick radial LC shell, the minimum free energy corresponds to configurations where the particle is positioned at the droplet center. In this case, defects arise at the two ends of the prolate ellipsoid, where the curvature of the particle is maximal, leading to the formation of peculiar hybrid and twisted structures.

9.
Soft Matter ; 12(44): 8983-8989, 2016 Nov 09.
Article in English | MEDLINE | ID: mdl-27722420

ABSTRACT

There is considerable interest in understanding and controlling topological defects in nematic liquid crystals (LCs). Confinement, in the form of droplets, has been particularly effective in that regard. Here, we employ a Landau-de Gennes formalism to explore the geometrical frustration of nematic order in shell geometries, and focus on chiral materials. By varying the chirality and thickness in uniform shells, we construct a phase diagram that includes tetravalent structures, bipolar structures (BS), bent structures and radial spherical structures (RSS). It is found that, in uniform shells, the BS-to-RSS structural transition, in response to both chirality and shell geometry, is accompanied by an abrupt change of defect positions, implying a potential use for chiral nematic shells as sensors. Moreover, we investigate thickness heterogeneity in shells and demonstrate that non-chiral and chiral nematic shells exhibit distinct equilibrium positions of their inner core that are governed by shell chirality c.

10.
Nat Mater ; 12(9): 856-63, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23793160

ABSTRACT

As a wound heals, or a body plan forms, or a tumour invades, observed cellular motions within the advancing cell swarm are thought to stem from yet to be observed physical stresses that act in some direct and causal mechanical fashion. Here we show that such a relationship between motion and stress is far from direct. Using monolayer stress microscopy, we probed migration velocities, cellular tractions and intercellular stresses in an epithelial cell sheet advancing towards an island on which cells cannot adhere. We found that cells located near the island exert tractions that pull systematically towards this island regardless of whether the cells approach the island, migrate tangentially along its edge, or paradoxically, recede from it. This unanticipated cell-patterning motif, which we call kenotaxis, represents the robust and systematic mechanical drive of the cellular collective to fill unfilled space.


Subject(s)
Epithelial Cells/cytology , Epithelial Cells/physiology , Animals , Cell Movement , Cells, Cultured , Microscopy, Fluorescence , Models, Biological , Rats , Stress, Mechanical , Stress, Physiological
11.
Differentiation ; 86(3): 121-5, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23791490

ABSTRACT

Our traditional physical picture holds with the intuitive notion that each individual cell comprising the cellular collective senses signals or gradients and then mobilizes physical forces in response. Those forces, in turn, drive local cellular motions from which collective cellular migrations emerge. Although it does not account for spontaneous noisy fluctuations that can be quite large, the tacit assumption has been one of linear causality in which systematic local motions, on average, are the shadow of local forces, and these local forces are the shadow of the local signals. New lines of evidence now suggest a rather different physical picture in which dominant mechanical events may not be local, the cascade of mechanical causality may be not so linear, and, surprisingly, the fluctuations may not be noise as much as they are an essential feature of mechanism. Here we argue for a novel synthesis in which fluctuations and non-local cooperative events that typify the cellular collective might be illuminated by the unifying concept of cell jamming. Jamming has the potential to pull together diverse factors that are already known to contribute but previously had been considered for the most part as acting separately and independently. These include cellular crowding, intercellular force transmission, cadherin-dependent cell-cell adhesion, integrin-dependent cell-substrate adhesion, myosin-dependent motile force and contractility, actin-dependent deformability, proliferation, compression and stretch.


Subject(s)
Cell Movement , Stress, Mechanical , Animals , Cell Adhesion , Humans , Signal Transduction
12.
J Colloid Interface Sci ; 656: 577-586, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38035482

ABSTRACT

HYPOTHESIS: Hetero-aggregation of oppositely charged colloidal particles with controlled architectural and interactional asymmetry allows modifying gel nanostructure and properties. We hypothesize the relative size ratio between cationic nanospheres and varied-size anionic two-dimensional nanoclays will influence the gel formation mechanisms and resulting rheological performance. EXPERIMENTS: Hybrid colloidal gels formed via hetero-aggregation of cationic gelatin nanospheres (∼400 nm diameter) and five types of nanoclays with similar 1 nm thickness but different lateral sizes ranging from âˆ¼ 30 nm to âˆ¼ 3000 nm. Structure-property relationships were elucidated using a suite of techniques. Microscopy and scattering probed gel nanostructure and particle configuration. Rheology quantified linear and non-linear viscoelastic properties and yielding behavior. Birefringence and polarized imaging assessed size-dependent nanoclay alignment during shear flow. FINDINGS: Nanoclay size ratio relative to nanospheres affected the gelation process, network structure, elasticity, yielding, and shear response. Gels with comparably sized components showed maximum elasticity, while yield stress depended on nanoclay rotational mobility. Shear-induced nanoclay alignment was quantified by birefringence, which is more pronounced for larger nanoclay. Varying nanoclay size and interactions with nanospheres controlled dispersion, aggregation, and nematic ordering. These findings indicate that architectural and interactional asymmetry enables more control over gel properties through controlled assembly of anisotropic building blocks.

13.
Chem Commun (Camb) ; 59(82): 12231-12247, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37750291

ABSTRACT

Blue phase (BP) liquid crystals represent a fascinating state of soft matter that showcases unique optical and electro-optical properties. Existing between chiral nematic and isotropic phases, BPs are characterized by a three-dimensional cubic lattice structure resulting in selective Bragg reflections of light and consequent vivid structural colors. However, the practical realization of these material systems is hampered by their narrow thermal stability and multi-domain crystalline nature. This feature article provides an overview of the efforts devoted to stabilizing these phases and creating monodomain structures. In particular, it delves into the complex relationship between geometrical confinement, induced curvature, and the structural stability and photonic features of BPs. Understanding the interaction of curved confinement and structural stability of BPs proves crucially important for the integration of these materials into flexible and miniaturized devices. By shedding light on these critical aspects, this feature review aims to highlight the significance of understanding the coupling effects of physical and mechanical forces on the structural stability of these systems, which can pave the way for the development of efficient and practical devices based on BP liquid crystals.

14.
Nanomicro Lett ; 16(1): 54, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38108930

ABSTRACT

Helical hierarchy found in biomolecules like cellulose, chitin, and collagen underpins the remarkable mechanical strength and vibrant colors observed in living organisms. This study advances the integration of helical/chiral assembly and 3D printing technology, providing precise spatial control over chiral nano/microstructures of rod-shaped colloidal nanoparticles in intricate geometries. We designed reactive chiral inks based on cellulose nanocrystal (CNC) suspensions and acrylamide monomers, enabling the chiral assembly at nano/microscale, beyond the resolution seen in printed materials. We employed a range of complementary techniques including Orthogonal Superposition rheometry and in situ rheo-optic measurements under steady shear rate conditions. These techniques help us to understand the nature of the nonlinear flow behavior of the chiral inks, and directly probe the flow-induced microstructural dynamics and phase transitions at constant shear rates, as well as their post-flow relaxation. Furthermore, we analyzed the photo-curing process to identify key parameters affecting gelation kinetics and structural integrity of the printed object within the supporting bath. These insights into the interplay between the chiral inks self-assembly dynamics, 3D printing flow kinematics and photo-polymerization kinetics provide a roadmap to direct the out-of-equilibrium arrangement of CNC particles in the 3D printed filaments, ranging from uniform nematic to 3D concentric chiral structures with controlled pitch length, as well as random orientation of chiral domains. Our biomimetic approach can pave the way for the creation of materials with superior mechanical properties or programable photonic responses that arise from 3D nano/microstructure and can be translated into larger scale 3D printed designs.

15.
J Colloid Interface Sci ; 627: 40-52, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35841707

ABSTRACT

Colloidal gels based on electrostatic interparticle attractions hold unexploited potential for tailoring their microstructure and properties. Here, we demonstrate that hetero-aggregation between oppositely charged particles with different geometries is a viable strategy for controlling their properties. Specifically, we studied hybrid colloidal gels prepared by the charge-driven assembly of oppositely charged spherical gelatin nanoparticles and two-dimensional (2D) nanosilicates. We show that the asymmetry between the building blocks and the resulting anisotropic interparticle interactions produces a variety of nanostructures and hybrid colloidal gels that exhibit high elasticity at low colloidal volume fractions. Tuning the competition between different attractive interactions in the system by varying the spatial charge heterogeneity on the 2D nanosheets, composition, and ionic strength was found to alter the mechanism of gel formation and their rheological properties. Remarkably, increasing the mass ratio of 2D nanosheets to spherical nanoparticles at a constant total mass fraction affords hybrid gels that exhibit an inverse relationship between elasticity and volume fraction. However, these hybrid gels are easily fluidized and exhibit rapid structural recovery once the stress is removed. These features allow for the engineering of versatile 3D-printable hybrid colloidal gels, whose structure and viscoelastic response are governed by parameters that have not been explored before.


Subject(s)
Gelatin , Nanoparticles , Colloids/chemistry , Elasticity , Gelatin/chemistry , Gels/chemistry , Nanoparticles/chemistry
16.
Biosensors (Basel) ; 12(5)2022 May 09.
Article in English | MEDLINE | ID: mdl-35624614

ABSTRACT

Designing simple, sensitive, fast, and inexpensive readout devices to detect biological molecules and biomarkers is crucial for early diagnosis and treatments. Here, we have studied the interaction of the chiral liquid crystal (CLC) and biomolecules at the liquid crystal (LC)-droplet interface. CLC droplets with high and low chirality were prepared using a microfluidic device. We explored the reconfiguration of the CLC molecules confined in droplets in the presence of 1,2-diauroyl-sn-glycero3-phosphatidylcholine (DLPC) phospholipid. Cross-polarized optical microscopy and spectrometry techniques were employed to monitor the effect of droplet size and DLPC concentration on the structural reorganization of the CLC molecules. Our results showed that in the presence of DLPC, the chiral LC droplets transition from planar to homeotropic ordering through a multistage molecular reorientation. However, this reconfiguration process in the low-chirality droplets happened three times faster than in high-chirality ones. Applying spectrometry and image analysis, we found that the change in the chiral droplets' Bragg reflection can be correlated with the CLC-DLPC interactions.


Subject(s)
Liquid Crystals , Liquid Crystals/chemistry , Microscopy , Phosphatidylcholines , Phospholipids
17.
ACS Appl Mater Interfaces ; 14(43): 49158-49170, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36269799

ABSTRACT

Hybrid materials based on transition metal carbide and nitride (MXene) nanosheets have great potential for electromagnetic interference (EMI) shielding due to their excellent electrical conductivity. However, the performance of final products depends not only on the properties of constituent components but also on the morphology of the assembly. Here, via the controlled diffusion of positively charged poly(allylamine hydrochloride) (PAH) chains into the negatively charged Ti3C2Tx MXene suspension, MXene/PAH hybrids in the forms of thin films, porous structures, and fibers with distinguished internal morphologies are obtained. Our results confirm that PAH chains could effectively enhance the oxidation stability and integrity of wet and dry MXene structures. The flexibility to tune the structures allows for a thorough discussion of the relations between the morphology, electrical conductivity, and EMI shielding mechanism of the hybrids in a wide range of electrical conductivity (2.5 to 3347 S·cm-1) and thickness (7.7 to 1900 µm) values. The analysis of thin films shows the direct impact of the polymer content on the alignment and compactness of MXene nanosheets regulating the films' electrical conductivity/EMI shielding effectiveness. The colloidal behavior of the initial MXene suspension determines the interconnection of MXene nanosheets in MXene/PAH porous assemblies and the final electrical properties. In addition to the internal morphology, examining the laminated MXene/PAH fibers with geometrically different arrangements demonstrates the role of conductive network configuration on EMI shielding performance. These findings provide insights into tuning the EMI shielding effectiveness via the charge-driven bottom-up assembly of electrically conductive MXene/polyelectrolyte hybrids.

18.
ACS Nano ; 16(10): 15894-15906, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36166665

ABSTRACT

Many crystallization processes, including biomineralization and ice-freezing, occur in small and curved volumes, where surface curvature can strain the crystal, leading to unusual configurations and defect formation. The role of curvature on crystallization, however, remains poorly understood. Here, we study the crystallization of blue phase (BP) liquid crystals under curved confinement, which provides insights into the mechanism by which BPs reconfigure their three-dimensional lattice structure to adapt to curvature. BPs are a three-dimensional assembly of high-chirality liquid crystal molecules arranged into body-centered (BPI) or simple cubic (BPII) symmetries. BPs with submicrometer cubic-crystalline lattices exhibit tunable Bragg reflection and submillisecond response time to external stimuli such as an electric field, making them attractive for advanced photonic materials. In this work, we have systematically studied BPs confined in spherical shells with well-defined curvature and boundary conditions. The optical behavior of shells has also been examined at room temperature, where the cholesteric structure forms. In the cholesteric phase, perpendicular anchoring generates focal conic domains on the shell's surface, which transition into stripe patterns as the degree of curvature increases. Our results demonstrate that both higher degrees of curvature and strong spatial confinement destabilize BPI and reconfigure that phase to adopt the structure and optical features of BPII. We also show that the coupling of curvature and confinement nucleates skyrmions at greater thicknesses than those observed for a flat geometry. These findings are particularly important for integrating BPs into miniaturized and curved/flexible devices, including flexible displays, wearable sensors, and smart fabrics.

19.
ACS Nano ; 15(10): 15972-15981, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34597503

ABSTRACT

Liquid crystals are important components of optical technologies. Cuboidal crystals consisting of chiral liquid crystals-the so-called blue phases (BPs), are of particular interest due to their crystalline structures and fast response times, but it is critical that control be gained over their phase behavior as well as the underlying dislocations and grain boundaries that arise in such systems. Blue phases exhibit cubic crystalline symmetries with lattice parameters in the 100 nm range and a network of disclination lines that can be polymerized to widen the range of temperatures over which they occur. Here, we introduce the concept of strain-controlled polymerization of BPs under confinement, which enables formation of strain-correlated stabilized morphologies that, under some circumstances, can adopt perfect single-crystal monodomain structures and undergo reversible crystal-to-crystal transformations, even if their disclination lines are polymerized. We have used super-resolution laser confocal microscopy to reveal the periodic structure and the lattice planes of the strain and polymerization stabilized BPs in 3D real space. Our experimental observations are supported and interpreted by relying on theory and computational simulations in terms of a free energy functional for a tensorial order parameter. Simulations are used to determine the orientation of the lattice planes unambiguously. The findings presented here offer opportunities for engineering optical devices based on single-crystal, polymer-stabilized BPs whose inherent liquid nature, fast dynamics, and long-range crystalline order can be fully exploited.

20.
Sci Adv ; 6(28): eaba6728, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32832603

ABSTRACT

Liquid crystals are known to exhibit intriguing textures and color patterns, with applications in display and optical technologies. This work focuses on chiral materials and examines the palette of morphologies that arises when microdroplets are deformed into nonspherical shapes in a controllable manner. Specifically, geometrical confinement and mechanical strain are used to manipulate orientational order, phase transitions, and topological defects that arise in chiral liquid crystal droplets. Inspired by processes encountered in nature, where insects and animals often rely on strain and temperature to alter the optical appearance of dispersed liquid crystalline elements, chiral droplets are dispersed in polymer films and deformation induced by uniaxial or biaxial stretching. Our measurements are interpreted by resorting to simulations of the corresponding systems, thereby providing an in-depth understanding of the morphologies that arise in these materials. The reported structures and assemblies offer potential for applications in smart coatings, smart fabrics, and wearable sensors.

SELECTION OF CITATIONS
SEARCH DETAIL