Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
Add more filters

Publication year range
1.
PLoS Genet ; 18(11): e1010442, 2022 11.
Article in English | MEDLINE | ID: mdl-36350833

ABSTRACT

Hsp90 constitutes one of the major chaperone machinery in the cell. The Hsp70 assists Hsp90 in its client maturation though the underlying basis of the Hsp70 role remains to be explored. In the present study, using S. cerevisiae strain expressing Ssa1 as sole Ssa Hsp70, we identified novel mutations in the nucleotide-binding domain of yeast Ssa1 Hsp70 (Ssa1-T175N and Ssa1-D158N) that adversely affect the maturation of Hsp90 clients v-Src and Ste11. The identified Ssa1 amino acids critical for Hsp90 function were also found to be conserved across species such as in E.coli DnaK and the constitutive Hsp70 isoform (HspA8) in humans. These mutations are distal to the C-terminus of Hsp70, that primarily mediates Hsp90 interaction through the bridge protein Sti1, and proximal to Ydj1 (Hsp40 co-chaperone of Hsp70 family) binding region. Intriguingly, we found that the bridge protein Sti1 is critical for cellular viability in cells expressing Ssa1-T175N (A1-T175N) or Ssa1-D158N (A1-D158N) as sole Ssa Hsp70. The growth defect was specific for sti1Δ, as deletion of none of the other Hsp90 co-chaperones showed lethality in A1-T175N or A1-D158N. Mass-spectrometry based whole proteome analysis of A1-T175N cells lacking Sti1 showed an altered abundance of various kinases and transcription factors suggesting compromised Hsp90 activity. Further proteomic analysis showed that pathways involved in signaling, signal transduction, and protein phosphorylation are markedly downregulated in the A1-T175N upon repressing Sti1 expression using doxycycline regulatable promoter. In contrast to Ssa1, the homologous mutations in Ssa4 (Ssa4-T175N/D158N), the stress inducible Hsp70 isoform, supported cell growth even in the absence of Sti1. Overall, our data suggest that Ydj1 competes with Hsp90 for binding to Hsp70, and thus regulates Hsp90 interaction with the nucleotide-binding domain of Hsp70. The study thus provides new insight into the Hsp70-mediated regulation of Hsp90 and broadens our understanding of the intricate complexities of the Hsp70-Hsp90 network.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Humans , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Proteomics , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/metabolism , Molecular Chaperones/genetics , Nucleotides/metabolism , Protein Binding , Adenosine Triphosphatases/metabolism , MAP Kinase Kinase Kinases/metabolism
2.
Eur J Immunol ; 51(5): 1206-1217, 2021 05.
Article in English | MEDLINE | ID: mdl-33555624

ABSTRACT

Plasticity between Th17 and Treg cells is regarded as a crucial determinant of tumor-associated immunosuppression. Classically Th17 cells mediate inflammatory responses through production of cytokine IL17. Recently, Th17 cells have also been shown to acquire suppressive phenotypes in tumor microenvironment. However, the mechanism by which they acquire such immunosuppressive properties is still elusive. Here, we report that in tumor microenvironment Th17 cell acquires immunosuppressive properties by expressing Treg lineage-specific transcription factor FOXP3 and ectonucleotidase CD73. We designate this cell as Th17reg cell and perceive that such immunosuppressive property is dependent on CD73. It was observed that in classical Th17 cell, GFI1 recruits HDAC1 to change the euchromatin into tightly-packed heterochromatin at the proximal-promoter region of CD73 to repress its expression. Whereas in Th17reg cells GFI1 cannot get access to CD73-promoter due to heterochromatin state at its binding site and, thus, cannot recruit HDAC1, failing to suppress the expression of CD73.


Subject(s)
DNA-Binding Proteins/metabolism , Histone Deacetylase 1/metabolism , Immunomodulation , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Transcription Factors/metabolism , 5'-Nucleotidase/metabolism , Cytokines/metabolism , Forkhead Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic , Humans , Promoter Regions, Genetic , Signal Transduction , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
3.
Microbiology (Reading) ; 168(8)2022 08.
Article in English | MEDLINE | ID: mdl-35980355

ABSTRACT

Two-component systems (TCSs) are required for the ability of Mycobacterium tuberculosis to respond to stress. The paired TCS, SenX3-RegX3 is known to respond to phosphate starvation and acid stress. The other stress conditions under which RegX3 is required for M. tuberculosis to mount an appropriate response, remain incompletely understood. Here we have employed genome-wide microarray profiling to compare gene expression in a ΔregX3 mutant with the wild-type under phosphate stress, in order to gain information on the probable RegX3 regulon. We pulled out a set of 128 hypoxia-associated genes, which could potentially be regulated by RegX3, by overlapping the gene set downregulated at least twofold in ΔregX3 with the gene set reported in the literature to be associated with the response to hypoxia. We identified potential RegX3 binding inverted repeats at the loci of 41 of these genes, in silico. We also observed that ΔregX3 was attenuated in terms of its ability to withstand hypoxia, and this was reversed upon complementation with regX3, corroborating a role of RegX3 in the response of M. tuberculosis to hypoxia. We validated the binding of RegX3 at the upstream regions of a selected set of these genes. Electrophoretic mobility shift assays (EMSAs) confirmed that RegX3 binds to the upstream regions of the hypoxia-associated genes Rv3334, whiB7, Rv0195, Rv0196 and Rv1960c. Gene expression analyses showed that the expression of these genes is regulated by RegX3 under hypoxia. We also show that the expression of whiB7, Rv3334 and Rv0195 in macrophage-grown M. tuberculosis, is dependent on RegX3. Finally, we show that attenuation of survival of ΔregX3 under hypoxia is partly reversed upon overexpression of either Rv0195 or Rv3334, suggesting that the RegX3-Rv0195 and the RegX3-Rv3334 axis are involved in the adaptation of M. tuberculosis to a hypoxic environment.


Subject(s)
Bacterial Proteins/metabolism , Mycobacterium tuberculosis , Gene Expression Regulation, Bacterial , Humans , Hypoxia , Mycobacterium tuberculosis/metabolism , Phosphates/metabolism , Phosphotransferases/genetics , Systems Analysis , Transcription Factors/genetics , Transcription Factors/metabolism , Tuberculosis/microbiology
4.
FASEB J ; 34(3): 4329-4347, 2020 03.
Article in English | MEDLINE | ID: mdl-31971297

ABSTRACT

Plasmacytoid dendritic cells (pDCs) express Toll like receptors (TLRs) that modulate the immune response by production of type I interferons. Here, we report that sphingosine kinase 1 (SphK1) which produces the bioactive sphingolipid metabolite, sphingosine 1-phosphate (S1P), plays a critical role in the pDC functions and interferon production. Although dispensable for the pDC development, SphK1 is essential for the pDC activation and production of type I IFN and pro-inflammatory cytokines stimulated by TLR7/9 ligands. SphK1 interacts with TLRs and specific inhibition or deletion of SphK1 in pDCs mitigates uptake of CpG oligonucleotide ligands by TLR9 ligand. In the pristane-induced murine lupus model, pharmacological inhibition of SphK1 or its genetic deletion markedly decreased the IFN signature, pDC activation, and glomerulonephritis. Moreover, increases in the SphK1 expression and S1P levels were observed in human lupus patients. Taken together, our results indicate a pivotal regulatory role for the SphK1/S1P axis in maintaining the balance between immunosurveillance and immunopathology and suggest that specific SphK1 inhibitors might be a new therapeutic avenue for the treatment of type I IFN-linked autoimmune disorders.


Subject(s)
Autoimmunity/physiology , Interferon Type I/metabolism , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 9/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Autoimmunity/genetics , Blotting, Western , HEK293 Cells , Humans , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-7/genetics , Interferon Regulatory Factor-7/metabolism , Interferon Type I/genetics , Mice , Mice, Inbred C57BL , Models, Biological , Toll-Like Receptor 7/genetics , Toll-Like Receptor 9/genetics
5.
J Biol Chem ; 294(52): 19862-19876, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31653701

ABSTRACT

Paired two-component systems (TCSs), having a sensor kinase (SK) and a cognate response regulator (RR), enable the human pathogen Mycobacterium tuberculosis to respond to the external environment and to persist within its host. Here, we inactivated the SK gene of the TCS MtrAB, mtrB, generating the strain ΔmtrB We show that mtrB loss reduces the bacterium's ability to survive in macrophages and increases its association with autophagosomes and autolysosomes. Notably, the ΔmtrB strain was markedly defective in establishing lung infection in mice, with no detectable lung pathology following aerosol challenge. ΔmtrB was less able to withstand hypoxic and acid stresses and to form biofilms and had decreased viability under hypoxia. Transcriptional profiling of ΔmtrB by gene microarray analysis, validated by quantitative RT-PCR, indicated down-regulation of the hypoxia-associated dosR regulon, as well as genes associated with other pathways linked to adaptation of M. tuberculosis to the host environment. Using in vitro biochemical assays, we demonstrate that MtrB interacts with DosR (a noncognate RR) in a phosphorylation-independent manner. Electrophoretic mobility shift assays revealed that MtrB enhances the binding of DosR to the hspX promoter, suggesting an unexpected role of MtrB in DosR-regulated gene expression in M. tuberculosis Taken together, these findings indicate that MtrB functions as a regulator of DosR-dependent gene expression and in the adaptation of M. tuberculosis to hypoxia and the host environment. We propose that MtrB may be exploited as a chemotherapeutic target against tuberculosis.


Subject(s)
Bacterial Proteins/metabolism , Mycobacterium tuberculosis/physiology , RNA-Binding Proteins/metabolism , Transcription Factors/metabolism , Animals , Antigens, Bacterial/genetics , Antigens, Bacterial/metabolism , Autophagosomes/metabolism , Bacterial Proteins/genetics , Biofilms/growth & development , Cytokines/metabolism , DNA-Binding Proteins/metabolism , Gene Regulatory Networks , Host-Pathogen Interactions , Humans , Lung Diseases/microbiology , Lung Diseases/pathology , Lung Diseases/veterinary , Lysosomes/metabolism , Macrophages/cytology , Macrophages/immunology , Macrophages/microbiology , Mice , Mice, Inbred BALB C , Mycobacterium tuberculosis/growth & development , Phosphorylation , Promoter Regions, Genetic , Protein Binding , RNA-Binding Proteins/genetics , Transcription Factors/genetics
6.
BMC Bioinformatics ; 20(1): 230, 2019 May 08.
Article in English | MEDLINE | ID: mdl-31068129

ABSTRACT

BACKGROUND: c-Myc plays an important role in cell proliferation, cell growth and in differentiation, making it a key regulator for carcinogenesis and pluripotency. Tight control of c-myc turnover is required by ubiquitin-mediated degradation. This is achieved in the system by two F-box proteins Skp2 and FBXW7. RESULTS: Dynamic modelling technique was used to build two exclusive models for phosphorylation dependent degradation of Myc by FBXW7 (Model 1) and phosphorylation independent degradation by Skp2 (Model 2). Sensitivity analysis performed on these two models revealed that these models were corroborating experimental studies. It was also seen that Model 1 was more robust and perhaps more efficient in degrading c-Myc. These results questioned the existence of the two models in the system and to answer the question a combined model was hypothesised which had a decision making switch. The combined model had both Skp2 and FBXW7 mediated degradation where again the latter played a more important role. This model was able to achieve the lowest levels of ubiquitylated Myc and therefore functioned most efficiently in degradation of Myc. CONCLUSION: In this report, c-Myc degradation by two F-box proteins was mathematically evaluated based on the importance of c-Myc turnover. The study was performed in a homeostatic system and therefore, prompts the exploration of c-Myc degradation in cancer state and in pluripotent state.


Subject(s)
Computer Simulation/standards , Phosphorylation/physiology , Proto-Oncogene Proteins c-myc/metabolism , Cell Proliferation , Humans
7.
Microbiology (Reading) ; 164(1): 99-110, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29182512

ABSTRACT

Mycobacterium tuberculosis employs two-component systems (TCSs) for survival within its host. The TCS MtrAB is conserved among mycobacteria. The response regulator MtrA is essential in M. tuberculosis. The genome-wide chromatin immunoprecipitation (ChIP) sequencing performed in this study suggested that MtrA binds upstream of at least 45 genes of M. tuberculosis, including those involved in cell wall remodelling, stress responses, persistence and regulation of transcription. It binds to the promoter regions and regulates the peptidoglycan hydrolases rpfA and rpfC, which are required for resuscitation from dormancy. It also regulates the expression of whiB4, a critical regulator of the oxidative stress response, and relF, one-half of the toxin-antitoxin locus relFG. We have identified a new consensus 9 bp loose motif for MtrA binding. Mutational changes in the consensus sequence greatly reduced the binding of MtrA to its newly identified targets. Importantly, we observed that overexpression of a gain-of-function mutant, MtrAY102C, enhanced expression of the aforesaid genes in M. tuberculosis isolated from macrophages, whereas expression of each of these targets was lower in M. tuberculosis overexpressing a phosphorylation-defective mutant, MtrAD56N. This result suggests that phosphorylated MtrA (MtrA-P) is required for the expression of its targets in macrophages. Our data have uncovered new MtrA targets that suggest that MtrA is required for a transcriptional response that likely enables M. tuberculosis to persist within its host and emerge out of dormancy when the conditions are favourable.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Mycobacterium tuberculosis/genetics , ATP-Binding Cassette Transporters/genetics , Binding Sites , Chromatin Immunoprecipitation , Computational Biology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Genome, Bacterial/genetics , Genome-Wide Association Study , Macrophages/microbiology , Mutation , Mycobacterium tuberculosis/metabolism , Nucleotide Motifs , Phosphorylation , Promoter Regions, Genetic , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Transcription Factors , Transcription, Genetic
8.
BMC Bioinformatics ; 18(1): 224, 2017 Apr 28.
Article in English | MEDLINE | ID: mdl-28454513

ABSTRACT

BACKGROUND: Myc is an essential gene having multiple functions such as in cell growth, differentiation, apoptosis, genomic stability, angiogenesis, and disease biology. A large number of researchers dedicated to Myc biology are generating a substantial amount of data in normal and cancer cells/tissues including Burkitt's lymphoma and ovarian cancer. RESULTS: MYCbase ( http://bicresources.jcbose.ac.in/ssaha4/mycbase ) is a collection of experimentally supported functional sites in Myc that can influence the biological cellular processes. The functional sites were compiled according to their role which includes mutation, methylation pattern, post-translational modifications, protein-protein interactions (PPIs), and DNA interactions. In addition, biochemical properties of Myc are also compiled, which includes metabolism/pathway, protein abundance, and modulators of protein-protein interactions. The OMICS data related to Myc- like gene expression, proteomics expression using mass-spectrometry and miRNAs targeting Myc were also compiled in MYCbase. The mutation and pathway data from the MYCbase were analyzed to look at the patterns and distributions across different diseases. There were few proteins/genes found common in Myc-protein interactions and Myc-DNA binding, and these can play a significant role in transcriptional feedback loops. CONCLUSION: In this report, we present a comprehensive integration of relevant information regarding Myc in the form of MYCbase. The data compiled in MYCbase provides a reliable data resource for functional sites at the residue level and biochemical properties of Myc in various cancers.


Subject(s)
Databases, Protein , Neoplasms/genetics , Proto-Oncogene Proteins c-myc/chemistry , Proto-Oncogene Proteins c-myc/genetics , Animals , Breast Neoplasms/genetics , Cell Proliferation , Humans , Mice , MicroRNAs/genetics , Mutation , Protein Processing, Post-Translational , Proto-Oncogene Proteins c-myc/metabolism
9.
J Biol Chem ; 291(34): 18016-29, 2016 08 19.
Article in English | MEDLINE | ID: mdl-27358405

ABSTRACT

Efficacy of allergen-specific immunotherapy is often severely impaired by detrimental IgE-mediated side effects of native allergen during vaccination. Here, we present the molecular determinants for IgE recognition of Rhi o 1 and eventually converting the allergen into a hypoallergenic immunogen to restrain health hazards during desensitization. Rhi o 1 is a respiratory fungal allergen. Despite having cross-reactivity with cockroach allergen, we observed that non-cross-reactive epitope predominantly determined IgE binding to Rhi o 1. Denaturation and refolding behavior of the allergen confirmed that its IgE reactivity was not essentially conformation-dependent. A combinatorial approach consisting of computational prediction and a peptide-based immunoassay identified two peptides ((44)TGEYLTQKYFNSQRNN and (311)GAEKNWAGQYVVDCNK) of Rhi o 1 that frequently reacted with IgE antibodies of sensitized patients. Interestingly, these peptides did not represent purely linear IgE epitopes but were presented in a conformational manner by forming a spatially clustered surface-exposed epitope conferring optimal IgE-binding capacity to the folded allergen. Site-directed alanine substitution identified four residues of the IgE epitope that were crucial for antibody binding. A multiple mutant (T49A/Y52A/K314A/W316A) showing 100-fold lower IgE binding and reduced allergenic activity was generated. The TYKW mutant retained T-cell epitopes, as evident from its lymphoproliferative capacity but down-regulated pro-allergic IL-5 secretion. The TYKW mutant induced enhanced focusing of blocking IgG antibodies specifically toward the IgE epitope of the allergen. Anti-TYKW mutant polyclonal IgG antibodies competitively inhibited binding of IgE antibodies to Rhi o 1 up to 70% and suppressed allergen-mediated histamine release by 10-fold. In conclusion, this is a simple yet rational strategy based on epitope mapping data to develop a genetically modified hypoallergenic variant showing protective antibody response for immunotherapeutic applications.


Subject(s)
Allergens , Epitope Mapping , Epitopes, T-Lymphocyte , Fungal Proteins , Rhizopus , Vaccines , Allergens/chemistry , Allergens/genetics , Allergens/immunology , Animals , Cell Line , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Female , Fungal Proteins/chemistry , Fungal Proteins/genetics , Fungal Proteins/immunology , Humans , Immunoglobulin E/chemistry , Immunoglobulin E/immunology , Immunoglobulin G/chemistry , Immunoglobulin G/immunology , Male , Rhizopus/chemistry , Rhizopus/genetics , Rhizopus/immunology , Vaccines/chemistry , Vaccines/genetics , Vaccines/immunology
10.
Biochim Biophys Acta Gen Subj ; 1861(12): 3190-3200, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28935606

ABSTRACT

Phenotypic screening led to the identification of calcimycin as a potent inhibitor of Mycobacterium bovis BCG (M. bovis BCG) growth in vitro and in THP-1 cells. In the present study, we aim to decipher the mechanism of antimycobacterial activity of calcimycin. We noticed that treatment with calcimycin led to up-regulation of different autophagy markers like Beclin-1, autophagy-related gene (Atg) 7, Atg 3 and enhanced microtubule-associated protein 1A/1B-light chain 3-I (LC3-I) to LC3-II conversion in macrophages. This calcimycin-mediated killing of intracellular M. smegmatis and M. bovis BCG was abrogated in the presence of 3-methyladenine (3-MA). We also demonstrate that calcimycin binding with purinergic receptor P2X7 (P2RX7) led to increase in intracellular calcium level that regulates the extracellular release of ATP. ATP was able to regulate calcimycin-induced autophagy through P2RX7 in an autocrine fashion. Blocking of either P2RX7 expression by 1-[N,O-bis(5-Isoquinolinesulfonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazine (KN-62) or reducing intracellular calcium levels by 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra (acetoxy-methyl) ester (BAPTA-AM) abrogated the antimycobacterial activity of calcimycin. Taken together, these results showed that calcimycin exerts its antimycobacterial effect by regulating intracellular calcium-dependent ATP release that induces autophagy in a P2RX7 dependent manner.


Subject(s)
Anti-Bacterial Agents/pharmacology , Autophagy/drug effects , Calcimycin/pharmacology , Calcium/metabolism , Mycobacterium bovis/drug effects , Receptors, Purinergic P2X7/physiology , Adenosine Triphosphate/physiology , Cells, Cultured , Humans , Mycobacterium bovis/metabolism
12.
J Proteome Res ; 14(3): 1483-94, 2015 Mar 06.
Article in English | MEDLINE | ID: mdl-25686393

ABSTRACT

Little is known regarding how the synthesis and degradation of individual proteins change during the life of an organism. Such knowledge is vital to understanding the aging process. To fill this knowledge gap, we monitored newly synthesized proteins on a proteome scale in Caenorhabditis elegans over time during adulthood using a stable-isotope labeling by amino acids in cell culture (SILAC)-based label-chase approach. For most proteins, the rate of appearance of newly synthesized protein was high during the first 5 days of adulthood, slowed down between the fifth and the 11th days, and then increased again after the 11th day. However, the magnitude of appearance rate differed significantly from protein to protein. For example, the appearance of newly synthesized protein was fast for proteins involved in embryonic development, transcription regulation, and lipid binding/transport, with >70% of these proteins newly synthesized by day 5 of adulthood, whereas it was slow for proteins involved in cellular assembly and motility, such as actin and myosin, with <70% of these proteins newly synthesized even on day 16. The late-life increase of newly synthesized protein was especially high for ribosomal proteins and ATP synthases. We also investigated the effect of RNAi-mediated knockdown of the rpl-9 (ribosomal protein), atp-3 (ATP synthase), and ril-1 (RNAi-induced longevity-1) genes and found that inhibiting the expression of atp-3 and ril-1 beginning in late adulthood is still effective to extend the life span of C. elegans.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Animals , Caenorhabditis elegans/physiology , Longevity
13.
J Biol Chem ; 289(36): 25149-65, 2014 Sep 05.
Article in English | MEDLINE | ID: mdl-25037224

ABSTRACT

The emergence of drug-resistant strains of Mycobacterium tuberculosis makes identification and validation of newer drug targets a global priority. Phosphoserine phosphatase (PSP), a key essential metabolic enzyme involved in conversion of O-phospho-l-serine to l-serine, was characterized in this study. The M. tuberculosis genome harbors all enzymes involved in l-serine biosynthesis including two PSP homologs: Rv0505c (SerB1) and Rv3042c (SerB2). In the present study, we have biochemically characterized SerB2 enzyme and developed malachite green-based high throughput assay system to identify SerB2 inhibitors. We have identified 10 compounds that were structurally different from known PSP inhibitors, and few of these scaffolds were highly specific in their ability to inhibit SerB2 enzyme, were noncytotoxic against mammalian cell lines, and inhibited M. tuberculosis growth in vitro. Surface plasmon resonance experiments demonstrated the relative binding for these inhibitors. The two best hits identified in our screen, clorobiocin and rosaniline, were bactericidal in activity and killed intracellular bacteria in a dose-dependent manner. We have also identified amino acid residues critical for these SerB2-small molecule interactions. This is the first study where we validate that M. tuberculosis SerB2 is a druggable and suitable target to pursue for further high throughput assay system screening.


Subject(s)
Bacterial Proteins/metabolism , Enzyme Inhibitors/pharmacology , High-Throughput Screening Assays/methods , Mycobacterium tuberculosis/enzymology , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Amino Acid Sequence , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cell Line, Tumor , Enzyme Inhibitors/chemistry , Humans , Kinetics , Microbial Sensitivity Tests , Models, Molecular , Molecular Sequence Data , Molecular Structure , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Novobiocin/analogs & derivatives , Novobiocin/chemistry , Novobiocin/pharmacology , Phosphoric Monoester Hydrolases/classification , Phosphoric Monoester Hydrolases/genetics , Phylogeny , Protein Binding , Protein Structure, Tertiary , Rosaniline Dyes/chemistry , Rosaniline Dyes/pharmacology , Sequence Homology, Amino Acid , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
14.
BMC Genomics ; 15: 555, 2014 Jul 04.
Article in English | MEDLINE | ID: mdl-24997126

ABSTRACT

BACKGROUND: PIWI-interacting RNA (piRNA) is a novel and emerging class of small non-coding RNA (sncRNA). Ranging in length from 26-32 nucleotides, this sncRNA is a potent player in guiding the vital regulatory processes within a cellular system. Inspite of having such a wide role within cellular systems, piRNAs are not well organized and classified, so that a researcher can pool out the biologically relevant information concerning this class. DESCRIPTION: Here we present piRNAQuest- a unified and comprehensive database of 41749 human, 890078 mouse and 66758 rat piRNAs obtained from NCBI and different small RNA sequence experiments. This database provides piRNA annotation based on their localization in gene, intron, intergenic, CDS, 5/UTR, 3/UTR and repetitive regions which has not been done so far. We have also annotated piRNA clusters and have elucidated characteristic motifs within them. We have looked for the presence of piRNAs and piRNA clusters in pseudogenes, which are known to regulate the expression of protein coding transcripts by generating small RNAs. All these will help researchers progress towards solving the unanswered queries on piRNA biogenesis and their mode of action. Further, expression profile for piRNA in different tissues and from different developmental stages has been provided. In addition, we have provided several tools like 'homology search', 'dynamic cluster search' and 'pattern search'. Overall, piRNAQuest will serve as a useful resource for exploring human, mouse and rat piRNAome. The database is freely accessible and available at http://bicresources.jcbose.ac.in/zhumur/pirnaquest/. CONCLUSION: piRNAs play a remarkable role in stem cell self-renewal and various vital processes of developmental biology. Although researchers are mining different features on piRNAs, the exact regulatory mechanism is still fuzzy. Thus, understanding the true potential of these small regulatory molecules with respect to their origin, localization and mode of biogenesis is crucial. piRNAQuest will provide us with a better insight on piRNA origin and function which will help to explore the true potential of these sncRNAs.


Subject(s)
Databases, Nucleic Acid , RNA, Small Interfering/genetics , Animals , DNA Transposable Elements , Humans , Mice , Molecular Sequence Annotation , Multigene Family , RNA Interference , RNA, Small Interfering/classification , Rats , Repetitive Sequences, Nucleic Acid , Transcriptome
15.
Mol Cell Proteomics ; 11(10): 1036-47, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22822199

ABSTRACT

Pluripotent stem cells are capable of differentiating into all cell types of the body and therefore hold tremendous promise for regenerative medicine. Despite their widespread use in laboratories across the world, a detailed understanding of the molecular mechanisms that regulate the pluripotent state is currently lacking. Mouse embryonic (mESC) and epiblast (mEpiSC) stem cells are two closely related classes of pluripotent stem cells, derived from distinct embryonic tissues. Although both mESC and mEpiSC are pluripotent, these cell types show important differences in their properties suggesting distinct pluripotent ground states. To understand the molecular basis of pluripotency, we analyzed the nuclear proteomes of mESCs and mEpiSCs to identify protein networks that regulate their respective pluripotent states. Our study used label-free LC-MS/MS to identify and quantify 1597 proteins in embryonic and epiblast stem cell nuclei. Immunoblotting of a selected protein subset was used to confirm that key components of chromatin regulatory networks are differentially expressed in mESCs and mEpiSCs. Specifically, we identify differential expression of DNA methylation, ATP-dependent chromatin remodeling and nucleosome remodeling networks in mESC and mEpiSC nuclei. This study is the first comparative study of protein networks in cells representing the two distinct, pluripotent states, and points to the importance of DNA and chromatin modification processes in regulating pluripotency. In addition, by integrating our data with existing pluripotency networks, we provide detailed maps of protein networks that regulate pluripotency that will further both the fundamental understanding of pluripotency as well as efforts to reliably control the differentiation of these cells into functional cell fates.


Subject(s)
Chromatin/metabolism , Embryonic Stem Cells/metabolism , Gene Expression Regulation, Developmental , Germ Layers/metabolism , Pluripotent Stem Cells/metabolism , Protein Interaction Maps/genetics , Animals , Cell Differentiation , Cell Nucleus/genetics , Cell Nucleus/metabolism , Cells, Cultured , Chromatin/genetics , Chromatin Assembly and Disassembly , Chromatography, Liquid , DNA/genetics , DNA/metabolism , DNA Methylation , Embryo, Mammalian , Embryonic Stem Cells/cytology , Germ Layers/cytology , Mice , Pluripotent Stem Cells/cytology , Tandem Mass Spectrometry
16.
Mitochondrion ; 78: 101927, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38944368

ABSTRACT

Mitochondrial protein/gene mutations and expression variations contribute to the pathogenesis of various diseases, such as neurodegenerative and metabolic diseases. Detailed studies on mitochondrial protein-encoding (MPE) genes across diseases can provide clues for novel therapeutic strategies. Here, we collected, compiled, and manually curated the MPE gene mutation and expression variations data and their association with diseases in a single platform named mitoPADdb. The database contains 810 genes with 18,356 mutations and 1284 qualitative expression variations associated with 1793 diseases, grouped into 15 categories. It allows users to perform a comparative quantitative gene expression analysis for 317 transcriptomic studies across disease categories. Further, it provides information on MPE genes-associated molecular pathways. The mitoPADdb is a valuable resource for investigating mitochondrial dysfunction-related diseases. It can be accessed via http://bicresources.jcbose.ac.in/ssaha4/mitopaddb/index.html.

17.
Comput Biol Med ; 174: 108413, 2024 May.
Article in English | MEDLINE | ID: mdl-38608323

ABSTRACT

BACKGROUND AND OBJECTIVES: Lifestyle-related diseases (LSDs) impose a substantial economic burden on patients and health care services. LSDs are chronic in nature and can directly affect the heart and lungs. Therapeutic interventions only based on symptoms can be crucial for prompt treatment initiation in LSDs, as symptoms are the first information available to clinicians. So, this work aims to apply unsupervised machine learning (ML) techniques for developing models to predict drugs from symptoms for LSDs, with a specific focus on pulmonary and heart diseases. METHODS: The drug-disease and disease-symptom associations of 143 LSDs, 1271 drugs, and 305 symptoms were used to compute direct associations between drugs and symptoms. ML models with four different algorithms - K-Means, Bisecting K-Means, Mean Shift, and Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) - were developed to cluster the drugs using symptoms as features. The optimal model was saved in a server for the development of a web application. A web application was developed to perform the prediction based on the optimal model. RESULTS: The Bisecting K-means model showed the best performance with a silhouette coefficient of 0.647 and generated 138 drug clusters. The drugs within the optimal clusters showed good similarity based on i) gene ontology annotations of the gene targets, ii) chemical ontology annotations, and iii) maximum common substructure of the drugs. In the web application, the model also provides a confidence score for each predicted drug while predicting from a new set of input symptoms. CONCLUSION: In summary, direct associations between drugs and symptoms were computed, and those were used to develop a symptom-based drug prediction tool for LSDs with unsupervised ML models. The ML-based prediction can provide a second opinion to clinicians to aid their decision-making for early treatment of LSD patients. The web application (URL - http://bicresources.jcbose.ac.in/ssaha4/sdldpred) can provide a simple interface for all end-users to perform the ML-based prediction.


Subject(s)
Unsupervised Machine Learning , Humans , Chronic Disease , Life Style , Algorithms
18.
Biophys Chem ; 306: 107157, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38184980

ABSTRACT

Amyloidogenesis, with its multifaceted nature spanning from peptide self-assembly to membrane-mediated structural transitions, presents a significant challenge for the interdisciplinary scientific community. Here, we emphasize on how Singular Value Decomposition (SVD) can be employed to reveal hidden patterns and dominant modes of interaction that govern the complex process of amyloidogenesis. We first utilize SVD analysis on Circular Dichroism (CD) spectral datasets to identify the intermediate structural species emerging during peptide-membrane interactions and to determine binding constants more precisely than conventional methods. We investigate the monomer loss kinetics associated with peptide self-assembly using Nuclear Magnetic Resonance (NMR) dataset and determine the global kinetic parameters through SVD. Furthermore, we explore the seeded growth of amyloid fibrils by analyzing a time-dependent NMR dataset, shedding light on the kinetic intricacies of this process. Our analysis uncovers two distinct states in the aggregation of Aß40 and pinpoints key residues responsible for this seeded growth. To strengthen our findings and enhance their robustness, we validate those using simulated data, thereby highlighting the physical interpretations derived from SVD. Overall, SVD analysis offers a model-free, global kinetic perspective, enabling the selection of optimal kinetic models. This study not only contributes valuable insights into the dynamics but also highlights the versatility of SVD in unravelling complex processes of amyloidogenesis.


Subject(s)
Amyloid , Peptides , Amyloid/chemistry , Circular Dichroism , Kinetics
19.
FEBS J ; 291(10): 2242-2259, 2024 May.
Article in English | MEDLINE | ID: mdl-38414198

ABSTRACT

Ionic homeostasis is essential for the survival and replication of Mycobacterium tuberculosis within its host. Low potassium ion concentrations trigger a transition of M. tuberculosis into dormancy. Our current knowledge of the transcriptional regulation mechanisms governing genes involved in potassium homeostasis remains limited. Potassium transport is regulated by the constitutive Trk system and the inducible Kdp system in M. tuberculosis. The two-component system KdpDE (also known as KdpD/KdpE) activates expression of the kdpFABC operon, encoding the four protein subunits of the Kdp potassium uptake system (KdpFABC). We show that, under potassium deficiency, expression of the two-component system senX3/regX3 is upregulated, and bacterial survival is compromised in a regX3-inactivated mutant, ΔregX3. Electrophoretic mobility shift assays (EMSAs), promoter reporter assays and chromatin immunoprecipitation (ChIP) show that RegX3 binds to the kdpDE promoter and activates it under potassium deficiency, whereas RegX3 (K204A), a DNA binding-deficient mutant, fails to bind to the promoter. Mutation of the RegX3 binding motifs on the kdpDE promoter abrogates RegX3 binding. In addition, EMSAs and ChIP assays show that RegX3 represses Rv0500A, a repressor of kdpFABC, by binding to consensus RegX3 binding motifs on the rv0500A promoter. Our findings provide important insight into two converging pathways regulated by RegX3; one in which it activates an activator of kdpFABC, and the other in which it represses a repressor of kdpFABC, during potassium insufficiency. This culminates in increased expression of the potassium uptake system encoded by kdpFABC, enabling bacterial survival. These results further expand the growing transcriptional network in which RegX3 serves as a central node to enable bacterial survival under stress.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Homeostasis , Mycobacterium tuberculosis , Potassium , Promoter Regions, Genetic , Transcriptional Activation , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Potassium/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Homeostasis/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism
20.
Heliyon ; 10(4): e26370, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38420377

ABSTRACT

Fog causes enhancement of bacterial loading in the atmosphere. Current study represents the impact of occurrences of fog on the alteration of diversity of airborne bacteria and their network computed from metagenomic data of airborne samples collected at Arthauli (25.95°N, 85.10°E) situated at central Indo-Gangetic Plain (IGP) during 1-14 January 2021. A distinct bacterial diversity with a complex network is identified in foggy condition due to the enrichment of unique types of bacteria. Present investigation highlights a statistically significant enrichment of airborne pathogenic bacteria found in a unique ecosystem within air evolved due to the occurrences of fog over central IGP. In the foggy network, Cutibacterium, an opportunistic pathogen, is identified to be interacting maximum (21 edges) with other bacteria with statistically significant copresence relation, which are responsible for various infections for human beings. A 40-60% increase (p < 0.01) in the abundance of pathogenic bacteria for respiratory and skin diseases is noticed in fog period. Among the fog-enriched bacteria, Cutibacterium, Herbaspirillum, Paenibacillus, and Tsukamurella are examples of opportunistic bacteria causing various respiratory diseases, while Paenibacillus can even cause skin cancer and acute lymphoblastic leukemia.

SELECTION OF CITATIONS
SEARCH DETAIL