ABSTRACT
Positron emission tomography (PET) allows biomolecular tracking but PET monitoring of brain networks has been hampered by a lack of suitable reporters. Here, we take advantage of bacterial dihydrofolate reductase, ecDHFR, and its unique antagonist, TMP, to facilitate in vivo imaging in the brain. Peripheral administration of radiofluorinated and fluorescent TMP analogs enabled PET and intravital microscopy, respectively, of neuronal ecDHFR expression in mice. This technique can be used to the visualize neuronal circuit activity elicited by chemogenetic manipulation in the mouse hippocampus. Notably, ecDHFR-PET allows mapping of neuronal projections in non-human primate brains, demonstrating the applicability of ecDHFR-based tracking technologies for network monitoring. Finally, we demonstrate the utility of TMP analogs for PET studies of turnover and self-assembly of proteins tagged with ecDHFR mutants. These results establish opportunities for a broad spectrum of previously unattainable PET analyses of mammalian brain circuits at the molecular level.
Subject(s)
Brain/diagnostic imaging , Positron-Emission Tomography/methods , Radiopharmaceuticals/chemistry , Tetrahydrofolate Dehydrogenase/genetics , Animals , Brain/cytology , Callithrix , Carbon Radioisotopes/chemistry , Fluorine Radioisotopes/chemistry , Genes, Reporter , HEK293 Cells , Humans , Male , Mice, Inbred C57BL , Molecular Imaging/methods , Nerve Net/diagnostic imaging , Proteins/analysis , Proteins/metabolism , Radiopharmaceuticals/chemical synthesis , Tetrahydrofolate Dehydrogenase/metabolism , Trimethoprim/analogs & derivatives , Trimethoprim/chemistryABSTRACT
The deposition of amyloid ß (Aß) in blood vessels of the brain, known as cerebral amyloid angiopathy (CAA), is observed in most patients with Alzheimer's disease (AD). Compared with the pathology of CAA in humans, the pathology in most mouse models of AD is not as evident, making it difficult to examine the contribution of CAA to the pathogenesis of AD. On the basis of biochemical analyses that showed blood levels of soluble amyloid precursor protein (APP) in rats and mice were markedly lower than those measured in human samples, we hypothesized that endothelial APP expression would be markedly lower in rodents and subsequently generated mice that specifically express human WT APP (APP770) in endothelial cells (ECs). The resulting EC-APP770+ mice exhibited increased levels of serum Aß and soluble APP, indicating that endothelial APP makes a critical contribution to blood Aß levels. Even though aged EC-APP770+ mice did not exhibit Aß deposition in the cortical blood vessels, crossing these animals with APP knock-in mice (AppNL-F/NL-F) led to an expanded CAA pathology, as evidenced by increased amounts of amyloid accumulated in the cortical blood vessels. These results highlight an overlooked interplay between neuronal and endothelial APP in brain vascular Aß deposition. We propose that these EC-APP770+:AppNL-F/NL-F mice may be useful to study the basic molecular mechanisms behind the possible breakdown of the blood-brain barrier upon administration of anti-Aß antibodies.
Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Amyloid beta-Protein Precursor , Brain , Cerebral Amyloid Angiopathy , Endothelial Cells , Aged , Alzheimer Disease/metabolism , Amyloid beta-Peptides/blood , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Brain/metabolism , Brain/pathology , Cerebral Amyloid Angiopathy/genetics , Cerebral Amyloid Angiopathy/physiopathology , Disease Models, Animal , Endothelial Cells/metabolism , Endothelial Cells/pathology , Gene Knock-In Techniques , Humans , Mice , Mice, Transgenic , RatsABSTRACT
PURPOSE: Depositions of tau fibrils are implicated in diverse neurodegenerative disorders, including Alzheimer's disease, and precise assessments of tau pathologies and their impacts on neuronal survival are crucial for pursuing the neurodegenerative tau pathogenesis with and without potential therapies. We aimed to establish an in vivo imaging system to quantify tau accumulations with positron emission tomography (PET) and brain atrophy with volumetric MRI in rTg4510 transgenic mice modeling neurodegenerative tauopathies. METHODS: A total of 91 rTg4510 and non-transgenic control mice underwent PET with a tau radiotracer, 18F-PM-PBB3, and MRI at various ages (1.8-12.3 months). Using the cerebellum as reference, the radiotracer binding in target regions was estimated as standardized uptake value ratio (SUVR) and distribution volume ratio (DVR). Histopathological staining of brain sections derived from scanned animals was also conducted to investigate the imaging-neuropathology correlations. RESULTS: 18F-PM-PBB3 SUVR at 40-60 min in the neocortex, hippocampus, and striatum of rTg4510 mice agreed with DVR, became significantly different from control values around 4-5 months of age, and progressively and negatively correlated with age and local volumes, respectively. Neocortical SUVR also correlated with the abundance of tau inclusions labeled with PM-PBB3 fluorescence, Gallyas-Braak silver impregnation, and anti-phospho-tau antibodies in postmortem assays. The in vivo and ex vivo 18F-PM-PBB3 binding was blocked by non-radioactive PM-PBB3. 18F-PM-PBB3 yielded a 1.6-fold greater dynamic range for tau imaging than its ancestor, 11C-PBB3. CONCLUSION: Our imaging platform has enabled the quantification of tau depositions and consequent neuronal loss and is potentially applicable to the evaluation of candidate anti-tau and neuroprotective drugs.
Subject(s)
Alzheimer Disease , Neocortex , Neuroprotective Agents , Animals , Mice , tau Proteins/metabolism , Silver/metabolism , Tomography, X-Ray Computed , Positron-Emission Tomography/methods , Alzheimer Disease/metabolism , Disease Models, Animal , Brain/metabolism , Mice, Transgenic , Neocortex/pathologyABSTRACT
Synaptic dysfunction provoking dysregulated cortical neural circuits is currently hypothesized as a key pathophysiological process underlying clinical manifestations in Alzheimer's disease and related neurodegenerative tauopathies. Here, we conducted PET along with postmortem assays to investigate time course changes of excitatory and inhibitory synaptic constituents in an rTg4510 mouse model of tauopathy, which develops tau pathologies leading to noticeable brain atrophy at 5-6 months of age. Both male and female mice were analyzed in this study. We observed that radiosignals derived from [11C]flumazenil, a tracer for benzodiazepine receptor, in rTg4510 mice were significantly lower than the levels in nontransgenic littermates at 2-3 months of age. In contrast, retentions of (E)-[11C]ABP688, a tracer for mGluR5, were unaltered relative to controls at 2 months of age but then gradually declined with aging in parallel with progressive brain atrophy. Biochemical and immunohistochemical assessment of postmortem brain tissues demonstrated that inhibitory, but not excitatory, synaptic constituents selectively diminished without overt loss of somas of GABAergic interneurons in the neocortex and hippocampus of rTg4510 mice at 2 months of age, which was concurrent with enhanced immunoreactivity of cFos, a well-characterized immediate early gene, suggesting that impaired inhibitory neurotransmission may cause hyperexcitability of cortical circuits. Our findings indicate that tau-induced disruption of the inhibitory synapse may be a critical trigger of progressive neurodegeneration, resulting in massive neuronal loss, and PET assessments of inhibitory versus excitatory synapses potentially offer in vivo indices for hyperexcitability and excitotoxicity early in the etiologic pathway of neurodegenerative tauopathies.SIGNIFICANCE STATEMENT In this study, we examined the in vivo status of excitatory and inhibitory synapses in the brain of the rTg4510 tauopathy mouse model by PET imaging with (E)-[11C]ABP688 and [11C]flumazenil, respectively. We identified inhibitory synapse as being significantly dysregulated before brain atrophy at 2 months of age, while excitatory synapse stayed relatively intact at this stage. In line with this observation, postmortem assessment of brain tissues demonstrated selective attenuation of inhibitory synaptic constituents accompanied by the upregulation of cFos before the formation of tau pathology in the forebrain at young ages. Our findings indicate that selective degeneration of inhibitory synapse with hyperexcitability in the cortical circuit constitutes the critical early pathophysiology of tauopathy.
Subject(s)
Alzheimer Disease/physiopathology , GABAergic Neurons/physiology , Hippocampus/physiopathology , Neocortex/physiopathology , Synapses/physiology , Tauopathies/physiopathology , tau Proteins/metabolism , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Animals , Disease Models, Animal , Female , Hippocampus/diagnostic imaging , Hippocampus/metabolism , Magnetic Resonance Imaging , Male , Mice , Mice, Transgenic , Neocortex/diagnostic imaging , Neocortex/metabolism , Neural Inhibition/physiology , Positron-Emission Tomography , Tauopathies/diagnostic imaging , Tauopathies/metabolismABSTRACT
BACKGROUND: The translocator protein (TSPO) has been identified as a positron emission tomography (PET)-visible biomarker of inflammation and promising immunotherapeutic target for the treatment of Alzheimer's disease (AD). While TSPO ligands have been shown to reduce the accumulation of the toxic Alzheimer's beta-amyloid peptide, their effect on tau pathology has not yet been investigated. To address this, we analyzed the effects of TSPO ligand, Ro5-4864, on the progression of neuropathology in rTg4510 tau transgenic mice (TauTg). METHODS: Brain atrophy, tau accumulation, and neuroinflammation were assessed longitudinally using volumetric magnetic resonance imaging, tau-PET, and TSPO-PET, respectively. In vivo neuroimaging results were confirmed by immunohistochemistry for markers of neuronal survival (NeuN), tauopathy (AT8), and inflammation (TSPO, ionized calcium-binding adaptor molecule 1 or IBA-1, and complement component 1q or C1q) in brain sections from scanned mice. RESULTS: TSPO ligand treatment attenuated brain atrophy and hippocampal neuronal loss in the absence of any detected effect on tau depositions. Atrophy and neuronal loss were strongly associated with in vivo inflammatory signals measured by TSPO-PET, IBA-1, and levels of C1q, a regulator of the complement cascade. In vitro studies confirmed that the TSPO ligand Ro5-4864 reduces C1q expression in a microglial cell line in response to inflammation, reduction of which has been shown in previous studies to protect synapses and neurons in models of tauopathy. CONCLUSIONS: These findings support a protective role for TSPO ligands in tauopathy, reducing neuroinflammation, neurodegeneration, and brain atrophy.
Subject(s)
Neuroprotective Agents/therapeutic use , Receptors, GABA/therapeutic use , Tauopathies/drug therapy , Amyloid beta-Protein Precursor/metabolism , Atrophy , Brain/diagnostic imaging , Cell Survival , Ligands , Magnetic Resonance Imaging , Positron-Emission Tomography , Tauopathies/diagnostic imaging , tau Proteins/metabolismABSTRACT
Tau and Aß assemblies of Alzheimer's disease (AD) can be visualized in living subjects using positron emission tomography (PET). Tau assemblies comprise paired helical and straight filaments (PHFs and SFs). APN-1607 (PM-PBB3) is a recently described PET ligand for AD and other tau proteinopathies. Since it is not known where in the tau folds PET ligands bind, we used electron cryo-microscopy (cryo-EM) to determine the binding sites of APN-1607 in the Alzheimer fold. We identified two major sites in the ß-helix of PHFs and SFs and a third major site in the C-shaped cavity of SFs. In addition, we report that tau filaments from posterior cortical atrophy (PCA) and primary age-related tauopathy (PART) are identical to those from AD. In support, fluorescence labelling showed binding of APN-1607 to intraneuronal inclusions in AD, PART and PCA. Knowledge of the binding modes of APN-1607 to tau filaments may lead to the development of new ligands with increased specificity and binding activity. We show that cryo-EM can be used to identify the binding sites of small molecules in amyloid filaments.
Subject(s)
Alzheimer Disease/pathology , Benzothiazoles/metabolism , Cryoelectron Microscopy/methods , Positron-Emission Tomography/methods , tau Proteins/ultrastructure , Aged , Aged, 80 and over , Binding Sites , Female , Fluorine Radioisotopes , Humans , Ligands , Male , Middle Aged , Radiopharmaceuticals/metabolism , tau Proteins/metabolismABSTRACT
Tau is a microtubule-associated protein expressed in neuronal axons. Hyperphosphorylated tau is a major component of neurofibrillary tangles, a pathological hallmark of Alzheimer's disease (AD). Hyperphosphorylated tau aggregates are also found in many neurodegenerative diseases, collectively referred to as "tauopathies," and tau mutations are associated with familial frontotemporal lobar degeneration (FTLD). Previous studies have generated transgenic mice with mutant tau as tauopathy models, but nonhuman primates, which are more similar to humans, may be a better model to study tauopathies. For example, the common marmoset is poised as a nonhuman primate model for investigating the etiology of age-related neurodegenerative diseases. However, no biochemical studies of tau have been conducted in marmoset brains. Here, we investigated several important aspects of tau, including expression of different tau isoforms and its phosphorylation status, in the marmoset brain. We found that marmoset tau does not possess the "primate-unique motif" in its N-terminal domain. We also discovered that the tau isoform expression pattern in marmosets is more similar to that of mice than that of humans, with adult marmoset brains expressing only four-repeat tau isoforms as in adult mice but unlike in adult human brains. Of note, tau in brains of marmoset newborns was phosphorylated at several sites associated with AD pathology. However, in adult marmoset brains, much of this phosphorylation was lost, except for Ser-202 and Ser-404 phosphorylation. These results reveal key features of tau expression and phosphorylation in the marmoset brain, a potentially useful nonhuman primate model of neurodegenerative diseases.
Subject(s)
Brain/metabolism , Protein Isoforms/metabolism , tau Proteins/metabolism , Alzheimer Disease/metabolism , Animals , Callithrix , Cells, Cultured , DNA, Complementary/genetics , Humans , Mice , Mice, Transgenic , Phosphorylation , Phylogeny , Protein Isoforms/genetics , tau Proteins/geneticsABSTRACT
Tau deposits is a core feature of neurodegenerative disorder following traumatic brain injury (TBI). Despite ample evidence from post-mortem studies demonstrating exposure to both mild-repetitive and severe TBIs are linked to tau depositions, associations of topology of tau lesions with late-onset psychiatric symptoms due to TBI have not been explored. To address this issue, we assessed tau deposits in long-term survivors of TBI by PET with 11C-PBB3, and evaluated those associations with late-life neuropsychiatric outcomes. PET data were acquired from 27 subjects in the chronic stage following mild-repetitive or severe TBI and 15 healthy control subjects. Among the TBI patients, 14 were diagnosed as having late-onset symptoms based on the criteria of traumatic encephalopathy syndrome. For quantification of tau burden in TBI brains, we calculated 11C-PBB3 binding capacity (cm3), which is a summed voxel value of binding potentials (BP*ND) multiplied by voxel volume. Main outcomes of the present study were differences in 11C-PBB3 binding capacity between groups, and the association of regional 11C-PBB3 binding capacity with neuropsychiatric symptoms. To confirm 11C-PBB3 binding to tau deposits in TBI brains, we conducted in vitro PBB3 fluorescence and phospho-tau antibody immunofluorescence labelling of brain sections of chronic traumatic encephalopathy obtained from the Brain Bank. Our results showed that patients with TBI had higher 11C-PBB3 binding capacities in the neocortical grey and white matter segments than healthy control subjects. Furthermore, TBI patients with traumatic encephalopathy syndrome showed higher 11C-PBB3 binding capacity in the white matter segment than those without traumatic encephalopathy syndrome, and regional assessments revealed that subgroup difference was also significant in the frontal white matter. 11C-PBB3 binding capacity in the white matter segment correlated with the severity of psychosis. In vitro assays demonstrated PBB3-positive tau inclusions at the depth of neocortical sulci, confirming 11C-PBB3 binding to tau lesions. In conclusion, increased 11C-PBB3 binding capacity is associated with late-onset neuropsychiatric symptoms following TBI, and a close correlation was found between psychosis and 11C-PBB3 binding capacity in the white matter.
Subject(s)
Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/pathology , Tauopathies/diagnostic imaging , Adult , Alzheimer Disease/pathology , Brain/pathology , Chronic Traumatic Encephalopathy/pathology , Female , Humans , Male , Mental Disorders/etiology , Mental Disorders/metabolism , Middle Aged , Positron-Emission Tomography/methods , Psychotic Disorders/etiology , Psychotic Disorders/pathology , Tauopathies/metabolism , White Matter/pathology , tau Proteins/metabolismABSTRACT
In recent years, it has been realized that the tau protein is a key player in multiple neurodegenerative diseases. Positron emission tomography (PET) radiotracers that bind to tau filaments in Alzheimer's disease (AD) are in common use, but PET tracers binding to tau filaments of rarer, age-related dementias, such as Pick's disease, have not been widely explored. To design disease-specific and tau-selective PET tracers, it is important to determine where and how PET tracers bind to tau filaments. In this paper, we present the first molecular modelling study on PET probe binding to the structured core of tau filaments from a patient with Pick's disease (TauPiD). We have used docking, molecular dynamics simulations, binding-affinity and tunnel calculations to explore TauPiD binding sites, binding modes, and binding energies of PET probes (AV-1451, MK-6240, PBB3, PM-PBB3, THK-5351 and PiB) with TauPiD. The probes bind to TauPiD at multiple surface binding sites as well as in a cavity binding site. The probes show unique surface binding patterns, and, out of them all, PM-PBB3 proves to bind the strongest. The findings suggest that our computational workflow of structural and dynamic details of the tau filaments has potential for the rational design of TauPiD specific PET tracers.
Subject(s)
Computer Simulation , Pick Disease of the Brain/metabolism , Pick Disease of the Brain/pathology , Positron-Emission Tomography/methods , Radiopharmaceuticals/metabolism , tau Proteins/chemistry , tau Proteins/metabolism , Binding Sites , Humans , Pick Disease of the Brain/diagnostic imagingABSTRACT
BACKGROUND: While mechanistic links between tau abnormalities and neurodegeneration have been proven in frontotemporal dementia and parkinsonism linked to chromosome 17 caused by MAPT mutations, variability of the tau pathogenesis and its relation to clinical progressions in the same MAPT mutation carriers are yet to be clarified. OBJECTIVES: The present study aimed to analyze clinical profiles, tau accumulations, and their correlations in 3 kindreds with frontotemporal dementia and parkinsonism linked to chromosome 17 attributed to the MAPT N279K mutation. METHODS: Four patients with N279K mutant frontotemporal dementia and parkinsonism linked to chromosome 17/MAPT underwent [11 C]PBB3-PET to estimate regional tau loads. RESULTS: Haplotype assays revealed that these kindreds originated from a single founder. Despite homogeneity of the disease-causing MAPT allele, clinical progression was more rapid in 2 kindreds than in the other. The kindred with slow progression showed mild tau depositions, mostly confined to the midbrain and medial temporal areas. In contrast, kindreds with rapid progression showed profoundly increased [11 C]PBB3 binding in widespread regions from an early disease stage. CONCLUSIONS: [11 C]PBB3-PET can capture four-repeat tau pathologies characteristic of N279K mutant frontotemporal dementia and parkinsonism linked to chromosome 17/MAPT. Our findings indicate that, in addition to the mutated MAPT allele, genetic and/or epigenetic modifiers of tau pathologies lead to heterogeneous clinicopathological features. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Subject(s)
Frontotemporal Dementia/genetics , Mutation , Parkinsonian Disorders/genetics , tau Proteins/metabolism , Alleles , Chromosomes, Human, Pair 17 , Female , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/metabolism , Humans , Male , Middle Aged , Neuroimaging , Parkinsonian Disorders/diagnostic imaging , Parkinsonian Disorders/metabolism , Positron-Emission Tomography , tau Proteins/geneticsABSTRACT
BACKGROUND: [11 C]pyridinyl-butadienyl-benzothiazole 3 is a PET imaging agent designed for capturing pathological tau aggregates in diverse neurodegenerative disorders, and would be of clinical utility for neuropathological investigations of PSP. OBJECTIVES: To explore the usefulness of [11 C]pyridinyl-butadienyl-benzothiazole 3/PET in assessing characteristic distributions of tau pathologies and their association with clinical symptoms in the brains of living PSP patients. METHODS: We assessed 13 PSP patients and 13 age-matched healthy control subjects. Individuals negative for amyloid ß PET with [11 C]Pittsburgh compound B underwent clinical scoring, MR scans, and [11 C]pyridinyl-butadienyl-benzothiazole 3/PET. RESULTS: There were significant differences in binding potential for [11 C]pyridinyl-butadienyl-benzothiazole 3 between PSP patients and healthy control subjects (P = 0.02). PSP patients exhibited greater radioligand retention than healthy control subjects in multiple brain regions, including frontoparietal white matter, parietal gray matter, globus pallidus, STN, red nucleus, and cerebellar dentate nucleus. [11 C]pyridinyl-butadienyl-benzothiazole 3 deposition in frontoparietal white matter, but not gray matter, was correlated with general severity of parkinsonian and PSP symptoms, whereas both gray matter and white matter [11 C]pyridinyl-butadienyl-benzothiazole 3 accumulations in the frontoparietal cortices were associated with nonverbal cognitive impairments. Autoradiographic and fluorescence labeling with pyridinyl-butadienyl-benzothiazole 3 was observed in gray matter and white matter of PSP motor cortex tissues. CONCLUSIONS: Our findings support the in vivo detectability of tau fibrils characteristic of PSP by [11 C]pyridinyl-butadienyl-benzothiazole 3/PET, and imply distinct and synergistic contributions of gray matter and white matte tau pathologies to clinical symptoms. [11 C]pyridinyl-butadienyl-benzothiazole 3/PET potentially provides a neuroimaging-based index for the evolution of PSP tau pathologies promoting the deterioration of motor and cognitive functions. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Subject(s)
Brain/diagnostic imaging , Supranuclear Palsy, Progressive/diagnostic imaging , tau Proteins/metabolism , Aged , Aged, 80 and over , Aniline Compounds , Autoradiography , Benzothiazoles , Brain/metabolism , Carbon Radioisotopes , Case-Control Studies , Female , Humans , Male , Middle Aged , Positron-Emission Tomography , ThiazolesABSTRACT
Diverse neurodegenerative disorders are characterized by deposition of tau fibrils composed of conformers (i.e. strains) unique to each illness. The development of tau imaging agents has enabled visualization of tau lesions in tauopathy patients, but the modes of their binding to different tau strains remain elusive. Here we compared binding of tau positron emission tomography ligands, PBB3 and AV-1451, by fluorescence, autoradiography and homogenate binding assays with homologous and heterologous blockades using tauopathy brain samples. Fluorescence microscopy demonstrated intense labelling of non-ghost and ghost tangles with PBB3 and AV-1451, while dystrophic neurites were more clearly detected by PBB3 in brains of Alzheimer's disease and diffuse neurofibrillary tangles with calcification, characterized by accumulation of all six tau isoforms. Correspondingly, partially distinct distributions of autoradiographic labelling of Alzheimer's disease slices with 11C-PBB3 and 18F-AV-1451 were noted. Neuronal and glial tau lesions comprised of 4-repeat isoforms in brains of progressive supranuclear palsy, corticobasal degeneration and familial tauopathy due to N279K tau mutation and 3-repeat isoforms in brains of Pick's disease and familial tauopathy due to G272V tau mutation were sensitively detected by PBB3 fluorescence in contrast to very weak AV-1451 signals. This was in line with moderate 11C-PBB3 versus faint 18F-AV-1451 autoradiographic labelling of these tissues. Radioligand binding to brain homogenates revealed multiple binding components with differential affinities for 11C-PBB3 and 18F-AV-1451, and higher availability of binding sites on progressive supranuclear palsy tau deposits for 11C-PBB3 than 18F-AV-1451. Our data indicate distinct selectivity of PBB3 compared to AV-1451 for diverse tau fibril strains. This highlights the more robust ability of PBB3 to capture wide-range tau pathologies.
Subject(s)
Brain , Carbolines/pharmacokinetics , Neurofibrillary Tangles/pathology , Positron-Emission Tomography , Tauopathies , tau Proteins/metabolism , Autoradiography , Benzothiazoles/chemistry , Benzothiazoles/pharmacokinetics , Brain/diagnostic imaging , Brain/drug effects , Brain/pathology , Butadienes/pharmacokinetics , Diagnosis , Female , Fluorescence , Humans , Male , Phenazopyridine/pharmacokinetics , Radioligand Assay , Radiopharmaceuticals/pharmacokinetics , Tauopathies/diagnostic imaging , Tauopathies/metabolism , Tauopathies/pathology , Thiadiazoles/pharmacokineticsABSTRACT
Neurofibrillary tangles composed of hyperphosphorylated tau protein are primarily neuropathological features of a number of neurodegenerative diseases collectively termed tauopathy. To understand the mechanisms underlying the cause of tauopathy, precise cellular and animal models are required. Recent data suggest that the transient introduction of exogenous tau can accelerate the development of tauopathy in the brains of non-transgenic and transgenic mice expressing wild-type human tau. However, the transmission mechanism leading to tauopathy is not fully understood. In this study, we developed cultured-cell models of tauopathy representing a human tauopathy. Neuro2a (N2a) cells containing propagative tau filaments were generated by introducing purified tau fibrils. These cell lines expressed full-length (2N4R) human tau and the green fluorescent protein (GFP)-fused repeat domain of tau with P301L mutation. Immunocytochemistry and super-resolution microscopic imaging revealed that tau inclusions exhibited filamentous morphology and were composed of both full-length and repeat domain fragment tau. Live-cell imaging analysis revealed that filamentous tau inclusions are transmitted to daughter cells, resulting in yeast-prion-like propagation. By a standard method of tau preparation, both full-length tau and repeat domain fragments were recovered in sarkosyl insoluble fraction. Hyperphosphorylation of full-length tau was confirmed by the immunoreactivity of phospho-Tau antibodies and mobility shifts by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). These properties were similar to the biochemical features of P301L mutated human tau in a mouse model of tauopathy. In addition, filamentous tau aggregates in cells barely co-localized with ubiquitins, suggesting that most tau aggregates were excluded from protein degradation systems, and thus propagated to daughter cells. The present cellular model of tauopathy will provide an advantage for dissecting the mechanisms of tau aggregation and degradation and be a powerful tool for drug screening to prevent tauopathy.
Subject(s)
Neurofibrillary Tangles/metabolism , Tauopathies/etiology , Tauopathies/metabolism , tau Proteins/metabolism , Animals , Biomarkers , Brain/metabolism , Brain/pathology , Cell Line , Disease Models, Animal , Fluorescent Antibody Technique , Humans , Mice , Mice, Transgenic , Neurofibrillary Tangles/pathology , Protein Aggregates , Protein Aggregation, Pathological , Protein Binding , Protein Transport , Tauopathies/pathology , Ubiquitins/metabolismABSTRACT
BACKGROUND: The tau PET ligand 2-((1E,3E)-4-(6-([11 C]methylamino)pyridin-3-yl)buta-1,3-dienyl)benzo[d]thiazol-6-ol ([11 C]PBB3) binds to a wide range of tau pathology; however, binding property of PBB3 to non-tau inclusions remains unknown. To clarify whether [11 C]PBB3 binds to α-synuclein pathology, reactivity of PBB3 was assessed by in vitro fluorescence and autoradiographic labeling of brain sections from α-synucleinopathies patients. METHOD: Of 10 pure Lewy body disease and 120 multiple system atrophy (MSA) cases in the Mayo Clinic brain bank, we selected 3 Lewy body disease and 4 MSA cases with a range of α-synuclein severity based on the quantitative analysis of α-synuclein burden. PBB3 fluorescence labeling, double or single immunostaining for α-synuclein and phospho-tau, Prussian blue staining, and in vitro autoradiography with [11 C]PBB3 were performed for these selected samples. RESULTS: PBB3 fluorescence labeled various α-synuclein lesions including Lewy bodies, Lewy neurites, spheroids, glial cytoplasmic inclusions, and neuronal cytoplasmic inclusions. Meanwhile, autoradiographic labeling with [11 C]PBB3 at 10 nM demonstrated no significant binding in Lewy body disease cases. In contrast, significant autoradiographic binding of [11 C]PBB3 to the striatopallidal fibers was found in 2 MSA cases, which had high densities of glial cytoplasmic inclusions without tau or iron deposits in this region. CONCLUSIONS: Given that the maximum concentration of [11 C]PBB3 in human PET scans is approximately 10 nM, the present data imply that α-synuclein pathology in Lewy body disease is undetectable by [11 C]PBB3-PET, whereas those in a subset of MSA cases with high densities of glial cytoplasmic inclusions could be captured by this radioligand. © 2017 International Parkinson and Movement Disorder Society.
Subject(s)
Amygdala/metabolism , Basal Ganglia/metabolism , Benzothiazoles/metabolism , Hippocampus/metabolism , Lewy Body Disease/metabolism , Multiple System Atrophy/metabolism , Positron-Emission Tomography/methods , Tissue Banks , alpha-Synuclein/metabolism , tau Proteins/metabolism , Aged , Aged, 80 and over , Amygdala/diagnostic imaging , Amygdala/pathology , Autoradiography , Basal Ganglia/diagnostic imaging , Basal Ganglia/pathology , Female , Hippocampus/diagnostic imaging , Hippocampus/pathology , Humans , Lewy Body Disease/diagnostic imaging , Lewy Body Disease/pathology , Male , Microscopy, Fluorescence , Middle Aged , Multiple System Atrophy/diagnostic imaging , Multiple System Atrophy/pathologyABSTRACT
All tauopathies result in various forms of cognitive decline and neuronal loss. Although in some diseases, tau mutations appear to cause neurodegeneration, the toxic "form" of tau remains elusive. Tau is the major protein found within neurofibrillary tangles (NFTs) and therefore it seemed rational to assume that aggregation of tau monomers into NFTs was causal to the disease process. However, the appearance of oligomers rather than NFTs coincides much better with the voluminous neuronal loss in many of these diseases. In this study, we utilized the bigenic mouse line (rTg4510) which conditionally expresses P301L human tau. A novel tau antibody, termed Tau Oligomer Complex 1 (TOC1) was employed to probe mouse brains and assess disease progression. TOC1 selectively recognizes dimers/oligomers and appears to constitute an early stage marker of tau pathology. Its peak reactivity is coincident with other well-known early stage pathological markers such as MC1 and the early-stage phospho-marker CP13. TOC1's reactivity depends on the conformation of the tau species since it does not react with monomer under native conditions, although it does react with monomers under SDS-denaturation. This indicates a conformational change must occur within the tau aggregate to expose its epitope. Tau oligomers preferentially form under oxidizing conditions and within this mouse model, we observe tau oligomers forming at an increased rate and persisting much longer, most likely due to the aggressive P301L mutation. With the help of other novel antibodies, the use of this antibody will aid in providing a better understanding of tau toxicity within Alzheimer's disease and other tauopathies.
Subject(s)
Antibodies, Monoclonal , Brain/metabolism , Disease Progression , Tauopathies/metabolism , tau Proteins/immunology , Animals , Biomarkers , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Phosphorylation , Protein Multimerization , Tauopathies/pathology , tau Proteins/analysis , tau Proteins/chemistry , tau Proteins/metabolismABSTRACT
Tauopathies, characterized by fibrillar tau accumulation in neurons and glial cells, constitute a major neuropathological category of neurodegenerative diseases. Neurofibrillary tau lesions are strongly associated with cognitive deficits in these diseases, but the causal mechanisms underlying tau-induced neuronal dysfunction remain unresolved. Recent advances in cryo-electron microscopy examination have revealed various core structures of tau filaments from different tauopathy patients, which can be used to classify tauopathies. In vivo visualization of tau pathology is now available using several tau positron emission tomography tracers. Among these radioprobes, PM-PBB3 allows high-contrast imaging of tau deposits in the brains of patients with diverse disorders and tauopathy mouse models. Selective degradation of pathological tau species by the ubiquitin-proteasome system or autophagy machinery is a potential therapeutic strategy. Alternatively, the non-cell-autonomous clearance of pathological tau species through neuron-glia networks could be reinforced as a disease-modifying treatment. In addition, the development of neuroinflammatory biomarkers is required for understanding the contribution of immunocompetent cells in the brain to preventing neurodegeneration. This review provides an overview of the current research and development of diagnostic and therapeutic agents targeting divergent tau pathologies.
Subject(s)
Neurodegenerative Diseases , Tauopathies , Mice , Animals , Humans , tau Proteins/metabolism , Cryoelectron Microscopy , Tauopathies/drug therapy , Tauopathies/metabolism , Tauopathies/pathology , Neurodegenerative Diseases/diagnosis , Neurodegenerative Diseases/metabolism , Brain/metabolismABSTRACT
Creating a mouse model that recapitulates human tau pathology is essential for developing strategies to intervene in tau-induced neurodegeneration. However, mimicking the pathological features seen in human pathology often involves a trade-off with artificial effects such as unexpected gene insertion and neurotoxicity from the expression system. To overcome these issues, we developed the rTKhomo mouse model by combining a transgenic CaMKII-tTA system with a P301L mutated 1N4R human tau knock-in at the Rosa26 locus with a C57BL/6J background. This model closely mimics human tau pathology, particularly in the hippocampal CA1 region, showing age-dependent tau accumulation, neuronal loss and neuroinflammation. Notably, whole-brain 3D staining and light-sheet microscopy revealed a spatial gradient of tau deposition from the entorhinal cortex to the hippocampus, similar to the spatial distribution of Braak neurofibrillary tangle staging. Furthermore, [18F]PM-PBB3 positron emission tomography imaging enabled the quantification and live monitoring of tau deposition. The rTKhomo mouse model shows potential as a promising next-generation preclinical tool for exploring the mechanisms of tauopathy and for developing interventions targeting the spatial progression of tau pathology.
ABSTRACT
BACKGROUND: MAPT is a causative gene in frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17), a hereditary degenerative disease with various clinical manifestations, including progressive supranuclear palsy, corticobasal syndrome, Parkinson's disease, and frontotemporal dementia. OBJECTIVES: To analyze genetically, biochemically, and pathologically multiple members of two families who exhibited various phenotypes of the disease. METHODS: Genetic analysis included linkage analysis, homozygosity haplotyping, and exome sequencing. We conducted tau protein microtubule polymerization assay, heparin-induced tau aggregation, and western blotting with brain lysate from an autopsy case. We also evaluated abnormal tau aggregation by using anti-tau antibody and PM-PBB3. RESULTS: We identified a variant, c.896_897insACA, p.K298_H299insQ, in the MAPT gene of affected patients. Similar to previous reports, most patients presented with atypical parkinsonism. Biochemical analysis revealed that the mutant tau protein had a reduced ability to polymerize microtubules and formed abnormal fibrous aggregates. Pathological study revealed frontotemporal lobe atrophy, midbrain atrophy, depigmentation of the substantia nigra, and four-repeat tau-positive inclusions in the hippocampus, brainstem, and spinal cord neurons. The inclusion bodies also stained positively with PM-PBB3. CONCLUSIONS: This study confirmed that the insACA mutation caused FTDP-17. The affected patients showed symptoms resembling Parkinson's disease initially and symptoms of progressive supranuclear palsy later. Despite the initial clinical diagnosis of frontotemporal dementia in the autopsy case, the spread of lesions could explain the process of progressive supranuclear palsy. The study of more cases in the future will help clarify the common pathogenesis of MAPT mutations or specific pathogeneses of each mutation.
Subject(s)
Frontotemporal Dementia , Mutation , tau Proteins , Aged , Female , Humans , Male , Middle Aged , Brain/pathology , Brain/metabolism , Chromosomes, Human, Pair 17/genetics , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/diagnosis , Parkinsonian Disorders/genetics , Parkinsonian Disorders/pathology , Parkinsonian Disorders/metabolism , Pedigree , Supranuclear Palsy, Progressive/genetics , Supranuclear Palsy, Progressive/pathology , tau Proteins/genetics , tau Proteins/metabolismABSTRACT
Despite widespread adoption of tissue clearing techniques in recent years, poor access to suitable light-sheet fluorescence microscopes remains a major obstacle for biomedical end-users. Here, we present descSPIM (desktop-equipped SPIM for cleared specimens), a low-cost ($20,000-50,000), low-expertise (one-day installation by a non-expert), yet practical do-it-yourself light-sheet microscope as a solution for this bottleneck. Even the most fundamental configuration of descSPIM enables multi-color imaging of whole mouse brains and a cancer cell line-derived xenograft tumor mass for the visualization of neurocircuitry, assessment of drug distribution, and pathological examination by false-colored hematoxylin and eosin staining in a three-dimensional manner. Academically open-sourced ( https://github.com/dbsb-juntendo/descSPIM ), descSPIM allows routine three-dimensional imaging of cleared samples in minutes. Thus, the dissemination of descSPIM will accelerate biomedical discoveries driven by tissue clearing technologies.