Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Hum Genet ; 136(4): 387-397, 2017 04.
Article in English | MEDLINE | ID: mdl-28197769

ABSTRACT

Crohn's disease (CD) involves chronic inflammation in the gastrointestinal tract due to dysregulation of the host immune response to the gut microbiome. Even though the host-microbiome interactions are likely contributors to the development of CD, a few studies have detected genetic variants that change bacterial compositions and increase CD risk. We focus on one of the well-replicated susceptible genes, tumor necrosis factor superfamily member 15 (TNFSF15), and apply statistical analyses for personal profiles of genotypes and salivary microbiota collected from CD cases and controls in the Ryukyu Islands, southernmost islands of the Japanese archipelago. Our association test confirmed the susceptibility of TNFSF15 in the Ryukyu Islands. We found that the recessive model was supported to fit the observed genotype frequency of risk alleles slightly better than the additive model, defining the genetic effect on CD if a pair of the chromosomes in an individual consists of all risk alleles. The combined analysis of haplotypes and salivary microbiome from a small set of samples showed a significant association of the genetic effect with the increase of Prevotella, which led to a significant increase of CD risk. However, the genetic effect on CD disappeared if the abundance of Prevotella was low, suggesting the genetic contribution to CD is conditionally independent given a fixed amount of Prevotella. Although our statistical power is limited due to the small sample size, these results support an idea that the genetic susceptibility of TNFSF15 to CD may be confounded, in part, by the increase of Prevotella.


Subject(s)
Crohn Disease/genetics , Genetic Predisposition to Disease , Microbiota , TNF-Related Apoptosis-Inducing Ligand/genetics , Case-Control Studies , Confounding Factors, Epidemiologic , Humans , Japan , Logistic Models , Polymorphism, Single Nucleotide , Saliva/microbiology
2.
Antibiotics (Basel) ; 12(3)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36978370

ABSTRACT

The increasing incidence of erythromycin and erythromycin-induced resistance to clindamycin among Staphylococcus aureus (S. aureus) is a serious problem. Patients infected with inducible resistance phenotypes may fail to respond to clindamycin. This study aimed to identify the prevalence of erythromycin and erythromycin-induced resistance and assess for potential inhibitors. A total of 99 isolates were purified from various clinical sources. Phenotypic detection of macrolide-lincosamide-streptogramin B (MLSB)-resistance phenotypes was performed by D-test. MLSB-resistance genes were identified using PCR. Different compounds were tested for their effects on erythromycin and inducible clindamycin resistance by broth microdilution and checkerboard microdilution methods. The obtained data were evaluated using docking analysis. Ninety-one isolates were S. aureus. The prevalence of constitutive MLSB, inducible MLSB, and macrolide-streptogramin (MS) phenotypes was 39.6%, 14.3%, and 2.2%, respectively. Genes including ermC, ermA, ermB, msrA, msrB, lnuA, and mphC were found in 82.6%, 5.8%, 7.7%, 3.8%, 3.8%, 13.5%, and 3.8% of isolates, respectively. Erythromycin resistance was significantly reduced by doxorubicin, neomycin, and omeprazole. Quinine, ketoprofen, and fosfomycin combated and reversed erythromycin/clindamycin-induced resistance. This study highlighted the significance of managing antibiotic resistance and overcoming clindamycin treatment failure. Doxorubicin, neomycin, omeprazole, quinine, ketoprofen, and fosfomycin could be potential inhibitors of erythromycin and inducible clindamycin resistance.

3.
Iran J Pharm Res ; 17(4): 1328-1338, 2018.
Article in English | MEDLINE | ID: mdl-30568691

ABSTRACT

The aim of this study is to investigate the antitumor activity and possible molecular mechanism of Phenethyl isothiocyanate (PEITC) against Ehrlich ascites carcinoma in-vivo and in-vitro. In-vivo, ascetic fluid volume, body weight, serum malondialdehyde (MDA) level and total antioxidant capacity (TAC) were determined using Ehrlich ascites carcinoma (EAC) bearing mice. In-vitro, MTT assay was used. RT-PCR was used to investigate role of PEITC in apoptosis by analyzing the expression of Bax, caspase-9, and Bcl-2 genes. The effect of PEITC on caspase-9 enzyme activity was also tested. PEITC and/or Doxorubicin (Dox) treatment significantly suppressed EAC growth as compared to EAC/oil control mice. PEITC treatment showed a dose-dependent inhibition of EAC cells as indicated by MTT assay. We found that significant increase in MDA level and decrease in TAC caused by Dox treatment were significantly reduced by combination with PEITC treatment. Bax, caspase-9 genes' expression and caspase-9 enzymatic activity were significantly increased, while Bcl-2 gene expression was significantly decreased in PEITC treated mice. PEITC may act as a promising anticancer agent either alone or more effectively in combination with Dox through apoptotic cell death induction.

4.
Science ; 358(6361): 359-365, 2017 10 20.
Article in English | MEDLINE | ID: mdl-29051379

ABSTRACT

Intestinal colonization by bacteria of oral origin has been correlated with several negative health outcomes, including inflammatory bowel disease. However, a causal role of oral bacteria ectopically colonizing the intestine remains unclear. Using gnotobiotic techniques, we show that strains of Klebsiella spp. isolated from the salivary microbiota are strong inducers of T helper 1 (TH1) cells when they colonize in the gut. These Klebsiella strains are resistant to multiple antibiotics, tend to colonize when the intestinal microbiota is dysbiotic, and elicit a severe gut inflammation in the context of a genetically susceptible host. Our findings suggest that the oral cavity may serve as a reservoir for potential intestinal pathobionts that can exacerbate intestinal disease.


Subject(s)
Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/microbiology , Intestines/immunology , Klebsiella/immunology , Microbiota/immunology , Mouth/microbiology , Th1 Cells/immunology , Animals , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Dysbiosis/immunology , Dysbiosis/microbiology , Germ-Free Life , Intestines/microbiology , Klebsiella/drug effects , Klebsiella/isolation & purification , Klebsiella/pathogenicity , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Saliva/microbiology
5.
Life Sci ; 157: 187-199, 2016 Jul 15.
Article in English | MEDLINE | ID: mdl-27266851

ABSTRACT

AIMS: Hyperglycemia leads to elevation of oxidative stress and proinflammatory cytokines which are the main causes of diabetic nephropathy (DN). NLRP3 inflammasome and thioredoxin-interacting protein (TXNIP) are recently assumed to participate in the development of DN. We aimed to investigate the effects of Cepharanthine (CEP), Piperine (Pip) and their combination in streptozotocin (STZ)-induced DN focusing on their role to modulate NLRP3 and TXNIP induced inflammation. MAIN METHODS: Diabetic rats were treated with intraperitoneal (i.p.) injection of CEP (10mg/kg/day), Pip (30mg/kg/day) or their combination for 8weeks. Nuclear factor kappa B (NF-κB), tumor necrosis factor alpha (TNF-α) and interleukin-1ß (IL-1ß) were assessed by ELISA technique. TXNIP and NLRP3 genes expressions were evaluated by real time-PCR. KEY FINDINGS: Diabetic rats showed significant increase in renal TXNIP and NLRP3 expression. CEP, Pip or their combination significantly decreased TXNIP and NLRP3 expression in diabetic kidneys. Hyperglycemia induced NF-κB activation leading to increased IL-1ß and TNF-α levels. CEP, Pip or their combination showed significant inhibition of NF-κB together with decreased IL-1ß and TNF-α levels in diabetic rats. Also, diabetic rats showed significant decrease in creatinine clearance and increase in blood glucose, serum creatinine, blood urea nitrogen, malondialdehyde, proteinuria, and kidney weight to body Weight ratio. All of these changes were reversed by CEP, Pip or their combination. SIGNIFICANCE: The antioxidant and anti-inflammatory effects of CEP and Pip which were accompanied by inhibition of NF-κB and NLRP3 activation might be helpful mechanisms to halt the progression of DN.


Subject(s)
Alkaloids/therapeutic use , Benzodioxoles/therapeutic use , Benzylisoquinolines/therapeutic use , Diabetic Nephropathies/prevention & control , Inflammasomes/metabolism , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Piperidines/therapeutic use , Polyunsaturated Alkamides/therapeutic use , Animals , Diabetic Nephropathies/metabolism , Male , Rats , Rats, Sprague-Dawley
6.
DNA Res ; 21(1): 15-25, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24013298

ABSTRACT

Analysis of microbiota in various biological and environmental samples under a variety of conditions has recently become more practical due to remarkable advances in next-generation sequencing. Changes leading to specific biological states including some of the more complex diseases can now be characterized with relative ease. It is known that gut microbiota is involved in the pathogenesis of inflammatory bowel disease (IBD), mainly Crohn's disease and ulcerative colitis, exhibiting symptoms in the gastrointestinal tract. Recent studies also showed increased frequency of oral manifestations among IBD patients, indicating aberrations in the oral microbiota. Based on these observations, we analyzed the composition of salivary microbiota of 35 IBD patients by 454 pyrosequencing of the bacterial 16S rRNA gene and compared it with that of 24 healthy controls (HCs). The results showed that Bacteroidetes was significantly increased with a concurrent decrease in Proteobacteria in the salivary microbiota of IBD patients. The dominant genera, Streptococcus, Prevotella, Neisseria, Haemophilus, Veillonella, and Gemella, were found to largely contribute to dysbiosis (dysbacteriosis) observed in the salivary microbiota of IBD patients. Analysis of immunological biomarkers in the saliva of IBD patients showed elevated levels of many inflammatory cytokines and immunoglobulin A, and a lower lysozyme level. A strong correlation was shown between lysozyme and IL-1ß levels and the relative abundance of Streptococcus, Prevotella, Haemophilus and Veillonella. Our data demonstrate that dysbiosis of salivary microbiota is associated with inflammatory responses in IBD patients, suggesting that it is possibly linked to dysbiosis of their gut microbiota.


Subject(s)
Dysbiosis/microbiology , Inflammatory Bowel Diseases/microbiology , Microbiota/immunology , Saliva/microbiology , Adult , Biomarkers/analysis , Dysbiosis/immunology , Female , Humans , Inflammatory Bowel Diseases/immunology , Male , Metagenome/immunology , Microbiota/genetics , Middle Aged , RNA, Bacterial/metabolism , RNA, Ribosomal, 16S/metabolism , Saliva/immunology
SELECTION OF CITATIONS
SEARCH DETAIL