Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Nature ; 622(7983): 627-636, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37821702

ABSTRACT

Senescent cells drive age-related tissue dysfunction partially through the induction of a chronic senescence-associated secretory phenotype (SASP)1. Mitochondria are major regulators of the SASP; however, the underlying mechanisms have not been elucidated2. Mitochondria are often essential for apoptosis, a cell fate distinct from cellular senescence. During apoptosis, widespread mitochondrial outer membrane permeabilization (MOMP) commits a cell to die3. Here we find that MOMP occurring in a subset of mitochondria is a feature of cellular senescence. This process, called minority MOMP (miMOMP), requires BAX and BAK macropores enabling the release of mitochondrial DNA (mtDNA) into the cytosol. Cytosolic mtDNA in turn activates the cGAS-STING pathway, a major regulator of the SASP. We find that inhibition of MOMP in vivo decreases inflammatory markers and improves healthspan in aged mice. Our results reveal that apoptosis and senescence are regulated by similar mitochondria-dependent mechanisms and that sublethal mitochondrial apoptotic stress is a major driver of the SASP. We provide proof-of-concept that inhibition of miMOMP-induced inflammation may be a therapeutic route to improve healthspan.


Subject(s)
Apoptosis , Cellular Senescence , Cytosol , DNA, Mitochondrial , Mitochondria , Animals , Mice , Cytosol/metabolism , DNA, Mitochondrial/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Transmembrane Permeability-Driven Necrosis , Proof of Concept Study , Inflammation/metabolism , Phenotype , Longevity , Healthy Aging
2.
Trends Biochem Sci ; 46(10): 812-821, 2021 10.
Article in English | MEDLINE | ID: mdl-34088564

ABSTRACT

High copy number, damage prone, and lean on repair mechanisms are unique features of mitochondrial DNA (mtDNA) that are hard to reconcile with its essentiality for oxidative phosphorylation, the primary function ascribed to this maternally inherited component of our genome. We propose that mtDNA is also a genotoxic stress sentinel, as well as a direct second messenger of this type of cellular stress. Here, we discuss existing evidence for this sentinel/effector role through the ability of mtDNA to escape the confines of the mitochondrial matrix and activate nuclear DNA damage/repair responses via interferon-stimulated gene products and other downstream effectors. However, this arrangement may come at a cost, leading to cancer chemoresistance and contributing to inflammation, disease pathology, and aging.


Subject(s)
DNA, Mitochondrial , Mitochondria , Cell Nucleus/metabolism , DNA Damage , DNA Repair , DNA, Mitochondrial/genetics , Mitochondria/metabolism , Oxidative Stress
4.
Am J Physiol Lung Cell Mol Physiol ; 323(1): L84-L92, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35699291

ABSTRACT

Increased plasma mitochondrial DNA concentrations are associated with poor outcomes in multiple critical illnesses, including COVID-19. However, current methods of cell-free mitochondrial DNA quantification in plasma are time-consuming and lack reproducibility. Here, we used next-generation sequencing to characterize the size and genome location of circulating mitochondrial DNA in critically ill subjects with COVID-19 to develop a facile and optimal method of quantification by droplet digital PCR. Sequencing revealed a large percentage of small mitochondrial DNA fragments in plasma with wide variability in coverage by genome location. We identified probes for the mitochondrial DNA genes, cytochrome B and NADH dehydrogenase 1, in regions of relatively high coverage that target small sequences potentially missed by other methods. Serial assessments of absolute mitochondrial DNA concentrations were then determined in plasma from 20 critically ill subjects with COVID-19 without a DNA isolation step. Mitochondrial DNA concentrations on the day of enrollment were increased significantly in patients with moderate or severe acute respiratory distress syndrome (ARDS) compared with those with no or mild ARDS. Comparisons of mitochondrial DNA concentrations over time between patients with no/mild ARDS who survived, patients with moderate/severe ARDS who survived, and nonsurvivors showed the highest concentrations in patients with more severe disease. Absolute mitochondrial DNA quantification by droplet digital PCR is time-efficient and reproducible; thus, we provide a valuable tool and rationale for future studies evaluating mitochondrial DNA as a real-time biomarker to guide clinical decision-making in critically ill subjects with COVID-19.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , COVID-19/diagnosis , COVID-19/genetics , Critical Illness , DNA, Mitochondrial/genetics , Humans , Intensive Care Units , Polymerase Chain Reaction , Reproducibility of Results , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/genetics
5.
Science ; 381(6664): 1316-1323, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37733872

ABSTRACT

Although tumor growth requires the mitochondrial electron transport chain (ETC), the relative contribution of complex I (CI) and complex II (CII), the gatekeepers for initiating electron flow, remains unclear. In this work, we report that the loss of CII, but not that of CI, reduces melanoma tumor growth by increasing antigen presentation and T cell-mediated killing. This is driven by succinate-mediated transcriptional and epigenetic activation of major histocompatibility complex-antigen processing and presentation (MHC-APP) genes independent of interferon signaling. Furthermore, knockout of methylation-controlled J protein (MCJ), to promote electron entry preferentially through CI, provides proof of concept of ETC rewiring to achieve antitumor responses without side effects associated with an overall reduction in mitochondrial respiration in noncancer cells. Our results may hold therapeutic potential for tumors that have reduced MHC-APP expression, a common mechanism of cancer immunoevasion.


Subject(s)
Antigens, Neoplasm , Electron Transport Complex II , Electron Transport Complex I , Mitochondria , Neoplasms , Humans , Antigen Presentation , Antigens, Neoplasm/immunology , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Electron Transport Complex II/genetics , Electron Transport Complex II/metabolism , Electrons , Gene Knockout Techniques , Histones/metabolism , HSP40 Heat-Shock Proteins/genetics , Melanoma/immunology , Melanoma/pathology , Methylation , Mitochondria/enzymology , Neoplasms/immunology , Neoplasms/pathology , Cell Line, Tumor
6.
Oncogene ; 40(32): 5142-5152, 2021 08.
Article in English | MEDLINE | ID: mdl-34211090

ABSTRACT

Angiogenesis is essential for the sustained growth of solid tumors. Hypoxia-inducible factor 1 (HIF-1) is a master regulator of angiogenesis and constitutive activation of HIF-1 is frequently observed in human cancers. Therefore, understanding the mechanisms governing the activation of HIF-1 is critical for successful therapeutic targeting of tumor angiogenesis. Herein, we establish a new regulatory mechanism responsible for the constitutive activation of HIF-1α in cancer, irrespective of oxygen tension. PIM1 kinase directly phosphorylates HIF-1α at threonine 455, a previously uncharacterized site within its oxygen-dependent degradation domain. This phosphorylation event disrupts the ability of prolyl hydroxylases to bind and hydroxylate HIF-1α, interrupting its canonical degradation pathway and promoting constitutive transcription of HIF-1 target genes. Moreover, phosphorylation of the analogous site in HIF-2α (S435) stabilizes the protein through the same mechanism, indicating post-translational modification within the oxygen-dependent degradation domain as a mechanism of regulating the HIF-α subunits. In vitro and in vivo models demonstrate that expression of PIM1 is sufficient to stabilize HIF-1α and HIF-2α in normoxia and stimulate angiogenesis in a HIF-1-dependent manner. CRISPR mutants of HIF-1α (Thr455D) promoted increased tumor growth, proliferation, and angiogenesis. Moreover, HIF-1α-T455D xenograft tumors were refractory to the anti-angiogenic and cytotoxic effects of PIM inhibitors. These data identify a new signaling axis responsible for hypoxia-independent activation of HIF-1 and expand our understanding of the tumorigenic role of PIM1 in solid tumors.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Neoplasms/etiology , Neoplasms/metabolism , Neovascularization, Pathologic/etiology , Neovascularization, Pathologic/metabolism , Proto-Oncogene Proteins c-pim-1/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Line, Tumor , Disease Models, Animal , Gene Expression Regulation, Neoplastic , Heterografts , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mice , Mutation , Neoplasms/pathology , Phosphorylation , Protein Binding , Protein Stability , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Proto-Oncogene Proteins c-pim-1/genetics
7.
Nat Metab ; 1(12): 1209-1218, 2019 12.
Article in English | MEDLINE | ID: mdl-32395698

ABSTRACT

The mammalian genome comprises nuclear DNA (nDNA) derived from both parents and mitochondrial DNA (mtDNA) that is maternally inherited and encodes essential proteins required for oxidative phosphorylation. Thousands of copies of the circular mtDNA are present in most cell types that are packaged by TFAM into higher-order structures called nucleoids1. Mitochondria are also platforms for antiviral signalling2 and, due to their bacterial origin, mtDNA and other mitochondrial components trigger innate immune responses and inflammatory pathology2,3. We showed previously that instability and cytoplasmic release of mtDNA activates the cGAS-STING-TBK1 pathway resulting in interferon stimulated gene (ISG) expression that promotes antiviral immunity4. Here, we find that persistent mtDNA stress is not associated with basally activated NF-κB signalling or interferon gene expression typical of an acute antiviral response. Instead, a specific subset of ISGs, that includes Parp9, remains activated by the unphosphorylated form of ISGF3 (U-ISGF3) that enhances nDNA damage and repair responses. In cultured primary fibroblasts and cancer cells, the chemotherapeutic drug doxorubicin causes mtDNA damage and release, which leads to cGAS-STING-dependent ISG activation. In addition, mtDNA stress in TFAM-deficient mouse melanoma cells produces tumours that are more resistant to doxorubicin in vivo. Finally, Tfam +/- mice exposed to ionizing radiation exhibit enhanced nDNA repair responses in spleen. Therefore, we propose that damage to and subsequent release of mtDNA elicits a protective signalling response that enhances nDNA repair in cells and tissues, suggesting mtDNA is a genotoxic stress sentinel.


Subject(s)
Cell Nucleus/genetics , DNA, Mitochondrial/physiology , Genome/genetics , Animals , Cell Line, Tumor , Cytosol/metabolism , DNA Damage/genetics , DNA-Binding Proteins/genetics , High Mobility Group Proteins/genetics , Interferon-Stimulated Gene Factor 3/genetics , Interferons/biosynthesis , Interferons/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Knockout , Mice, Nude , NF-kappa B/physiology , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/physiology
8.
Clin Cancer Res ; 24(1): 169-180, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29084916

ABSTRACT

Purpose: Patients develop resistance to antiangiogenic drugs, secondary to changes in the tumor microenvironment, including hypoxia. PIM kinases are prosurvival kinases and their expression increases in hypoxia. The goal of this study was to determine whether targeting hypoxia-induced PIM kinase expression is effective in combination with VEGF-targeting agents. The rationale for this therapeutic approach is based on the fact that antiangiogenic drugs can make tumors hypoxic, and thus more sensitive to PIM inhibitors.Experimental Design: Xenograft and orthotopic models of prostate and colon cancer were used to assess the effect of PIM activation on the efficacy of VEGF-targeting agents. IHC and in vivo imaging were used to analyze angiogenesis, apoptosis, proliferation, and metastasis. Biochemical studies were performed to characterize the novel signaling pathway linking PIM and HIF1.Results: PIM was upregulated following treatment with anti-VEGF therapies, and PIM1 overexpression reduced the ability of these drugs to disrupt vasculature and block tumor growth. PIM inhibitors reduced HIF1 activity, opposing the shift to a pro-angiogenic gene signature associated with hypoxia. Combined inhibition of PIM and VEGF produced a synergistic antitumor response characterized by decreased proliferation, reduced tumor vasculature, and decreased metastasis.Conclusions: This study describes PIM kinase expression as a novel mechanism of resistance to antiangiogenic agents. Our data provide justification for combining PIM and VEGF inhibitors to treat solid tumors. The unique ability of PIM inhibitors to concomitantly target HIF1 and selectively kill hypoxic tumor cells addresses two major components of tumor progression and therapeutic resistance. Clin Cancer Res; 24(1); 169-80. ©2017 AACR.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation/drug effects , Hypoxia/genetics , Hypoxia/metabolism , Proto-Oncogene Proteins c-pim-1/genetics , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Disease Models, Animal , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mice , Models, Molecular , Neoplasm Metastasis , Proteolysis , Proteome , Transcription, Genetic , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Xenograft Model Antitumor Assays
9.
Mol Cancer Ther ; 15(7): 1637-47, 2016 07.
Article in English | MEDLINE | ID: mdl-27196781

ABSTRACT

Intratumoral hypoxia is a significant obstacle to the successful treatment of solid tumors, and it is highly correlated with metastasis, therapeutic resistance, and disease recurrence in cancer patients. As a result, there is an urgent need to develop effective therapies that target hypoxic cells within the tumor microenvironment. The Proviral Integration site for Moloney murine leukemia virus (PIM) kinases represent a prosurvival pathway that is upregulated in response to hypoxia, in a HIF-1-independent manner. We demonstrate that pharmacologic or genetic inhibition of PIM kinases is significantly more toxic toward cancer cells in hypoxia as compared with normoxia. Xenograft studies confirm that PIM kinase inhibitors impede tumor growth and selectively kill hypoxic tumor cells in vivo Experiments show that PIM kinases enhance the ability of tumor cells to adapt to hypoxia-induced oxidative stress by increasing the nuclear localization and activity of nuclear factor-erythroid 2 p45-related factor 2 (Nrf2), which functions to increase the expression of antioxidant genes. Small molecule PIM kinase inhibitors prevent Nrf2 from accumulating in the nucleus, reducing the transcription of cytoprotective genes and leading to the build-up of intracellular reactive oxygen species (ROS) to toxic levels in hypoxic tumor cells. This toxic effect of PIM inhibitors can be successfully blocked by ROS scavengers, including N-acetyl cystine and superoxide dismutase. Thus, inhibition of PIM kinases has the potential to oppose hypoxia-mediated therapeutic resistance and induce cell death in the hypoxic tumor microenvironment. Mol Cancer Ther; 15(7); 1637-47. ©2016 AACR.


Subject(s)
Hypoxia/metabolism , NF-E2-Related Factor 2/metabolism , Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Animals , Biphenyl Compounds/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Disease Models, Animal , Humans , Hypoxia/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Male , Mice , Models, Biological , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Protein Binding , Protein Transport , Thiazolidines/pharmacology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL