ABSTRACT
Complex diseases such as Multiple Sclerosis (MS) cover a wide range of biological scales, from genes and proteins to cells and tissues, up to the full organism. In fact, any phenotype for an organism is dictated by the interplay among these scales. We conducted a multilayer network analysis and deep phenotyping with multi-omics data (genomics, phosphoproteomics and cytomics), brain and retinal imaging, and clinical data, obtained from a multicenter prospective cohort of 328 patients and 90 healthy controls. Multilayer networks were constructed using mutual information for topological analysis, and Boolean simulations were constructed using Pearson correlation to identified paths within and among all layers. The path more commonly found from the Boolean simulations connects protein MK03, with total T cells, the thickness of the retinal nerve fiber layer (RNFL), and the walking speed. This path contains nodes involved in protein phosphorylation, glial cell differentiation, and regulation of stress-activated MAPK cascade, among others. Specific paths identified were subsequently analyzed by flow cytometry at the single-cell level. Combinations of several proteins (GSK3AB, HSBP1 or RS6) and immune cells (Th17, Th1 non-classic, CD8, CD8 Treg, CD56 neg, and B memory) were part of the paths explaining the clinical phenotype. The advantage of the path identified from the Boolean simulations is that it connects information about these known biological pathways with the layers at higher scales (retina damage and disability). Overall, the identified paths provide a means to connect the molecular aspects of MS with the overall phenotype.
Subject(s)
Multiple Sclerosis , Humans , Prospective Studies , Tomography, Optical Coherence/methods , Retina , Brain , Heat-Shock ProteinsABSTRACT
The potential of combining serum neurofilament light chain (sNfL) and glial fibrillary acidic protein (sGFAP) levels to predict disability worsening in multiple sclerosis (MS) remains underexplored. We aimed to investigate whether sNfL and sGFAP values identify distinct subgroups of patients according to the risk of disability worsening and their response to disease-modifying treatments (DMTs). This multicentre study, conducted across thirteen European hospitals, spanned from July 15, 1994, to August 18, 2022, with follow-up until September 26, 2023. We enrolled MS patients who had serum samples collected within 12 months from disease onset and before initiating DMTs. Multivariable regression models were used to estimate the risk of relapse-associated worsening (RAW), progression independent of relapse activity (PIRA), and Expanded Disability Status Scale (EDSS) score of 3. Of the 725 patients included, median age was 34.2 years (IQR, 27.6-42.4), and 509 patients (70.2%) were female. Median follow-up duration was 6.43 years (IQR, 4.65-9.81). Higher sNfL values associated with an elevated risk of RAW (HR of 1.45; 95% CI 1.19-1.76; P < 0.001), PIRA (HR of 1.43; 95% CI 1.13-1.81; P = 0.003), and reaching an EDSS of 3 (HR of 1.55; 95% CI 1.29-1.85; P < 0.001). Moreover, higher sGFAP levels were linked to a higher risk of achieving an EDSS score of 3 (HR of 1.36; 95% CI 1.06-1.74; P = 0.02) and, in patients with low sNfL values, to PIRA (HR of 1.86; 95% CI 1.01-3.45; P = 0.04). We further examined the combined effect of sNfL and sGFAP levels. Patients with low sNfL and sGFAP values (NLGL) exhibited a low risk of all outcomes and served as reference. Untreated patients with high sNfL levels showed a higher risk of RAW, PIRA, and reaching an EDSS of 3. Injectable or oral DMTs reduced the risk of RAW in these patients but failed to mitigate the risk of PIRA and reaching an EDSS of 3. Conversely, high-efficacy DMTs counteracted the heightened risk of these outcomes, except for the risk of PIRA in patients with high sNfL and sGFAP levels. Patients with low sNfL and high sGFAP values (NLGH) showed an increased risk of PIRA and achieving an EDSS of 3, which remained unchanged with either high-efficacy or other DMTs. In conclusion, evaluating sNfL and sGFAP levels at disease onset in MS may identify distinct phenotypes associated with diverse immunological pathways of disability acquisition and therapeutic response.
ABSTRACT
Multiple sclerosis (MS) is a complex and demyelinating disease of the central nervous system. One of the challenges of the post-genome-wide association studies (GWAS) era is to understand the molecular basis of statistical associations to reveal gene networks and potential therapeutic targets. The L3MBTL3 locus has been associated with MS risk by GWAS. To identify the causal variant of the locus, we performed fine mapping in a cohort of 3440 MS patients and 1688 healthy controls. The variant that best explained the association was rs6569648 (P = 4.13E-10, odds ratio = 0.71, 95% confidence interval (CI) = 0.64-0.79), which tagged rs7740107, located in intron 7 of L3MBTL3. The rs7740107 (A/T) variant has been reported to be the best expression and splice quantitative trait locus (eQTL and sQTL) of the region in up to 35 human genotype-tissue expression (GTEx) tissues. By sequencing RNA from blood of 17 MS patients and quantification by digital qPCR, we determined that this eQTL/sQTL originated from the expression of a novel short transcript starting in intron 7 near rs7740107. The short transcript was translated into three proteins starting at different translation initiation codons. These N-terminal truncated proteins lacked the region where L3MBTL3 interacts with the transcriptional regulator Recombination Signal Binding Protein for Immunoglobulin Kappa J Region which, in turn, regulates the Notch signalling pathway. Our data and other functional studies suggest that the genetic mechanism underlying the MS association of rs7740107 affects not only the expression of L3MBTL3 isoforms, but might also involve the Notch signalling pathway.
Subject(s)
Genome-Wide Association Study , Multiple Sclerosis , DNA-Binding Proteins/genetics , Genetic Predisposition to Disease , Humans , Multiple Sclerosis/genetics , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/geneticsABSTRACT
PURPOSE OF REVIEW: To describe relevant advances in nonparaneoplastic autoimmune cerebellar ataxias (ACA) with neuronal antibodies. RECENT FINDINGS: Apart from metabotropic glutamate receptor 1(mGluR1) antibodies, in recent years, the number of neuronal antibodies against surface antigens in ACA has increased with the description of glutamate kainate receptor subunit 2 (GluK2) antibodies in young patients with cerebellitis. Around 20% of patients with contactin-associated protein-like 2 (CASPR2) encephalitis also present prominent cerebellar ataxia. However, isolate cerebellar ataxia is unusual (<4%). Outcome in patients with neuronal antibodies against surface antigens remains suboptimal despite the cerebellar ataxia probably is antibody-mediated.Concerning neuronal antibodies against intracellular antigens, up to 25% of patients with glutamic acid decarboxylase (GAD) antibodies present transient episodes of vertigo or diplopia that antedate the development of the ACA. There is in-vitro evidence that septin-5 is partially exposed to the membrane and the antibodies may interfere with septin-5 function. The clinical significance of the remaining antibodies against intracellular antigens remains unclear. SUMMARY: The number of antibodies against surface antigens is increasing in ACA, but the response to the immunotherapy remains suboptimal. More studies are needed to clarify the role of most of the antibodies against intracellular antigens described in these patients.
Subject(s)
Autoantibodies , Cerebellar Ataxia , Humans , Cerebellar Ataxia/immunology , Autoantibodies/immunology , Autoantibodies/blood , Autoimmune Diseases of the Nervous System/immunology , Neurons/immunology , Autoimmune Diseases/immunology , Nerve Tissue Proteins/immunologyABSTRACT
BACKGROUND: We investigated the association between changes in retinal thickness and cognition in people with MS (PwMS), exploring the predictive value of optical coherence tomography (OCT) markers of neuroaxonal damage for global cognitive decline at different periods of disease. METHOD: We quantified the peripapillary retinal nerve fibre (pRFNL) and ganglion cell-inner plexiform (GCIPL) layers thicknesses of 207 PwMS and performed neuropsychological evaluations. The cohort was divided based on disease duration (≤5 years or >5 years). We studied associations between changes in OCT and cognition over time, and assessed the risk of cognitive decline of a pRFNL≤88 µm or GCIPL≤77 µm and its predictive value. RESULTS: Changes in pRFNL and GCIPL thickness over 3.2 years were associated with evolution of cognitive scores, in the entire cohort and in patients with more than 5 years of disease (p<0.01). Changes in cognition were related to less use of disease-modifying drugs, but not OCT metrics in PwMS within 5 years of onset. A pRFNL≤88 µm was associated with earlier cognitive disability (3.7 vs 9.9 years) and higher risk of cognitive deterioration (HR=1.64, p=0.022). A GCIPL≤77 µm was not associated with a higher risk of cognitive decline, but a trend was observed at ≤91.5 µm in PwMS with longer disease (HR=1.81, p=0.061). CONCLUSIONS: The progressive retinal thinning is related to cognitive decline, indicating that cognitive dysfunction is a late manifestation of accumulated neuroaxonal damage. Quantifying the pRFNL aids in identifying individuals at risk of cognitive dysfunction.
Subject(s)
Cognitive Dysfunction , Multiple Sclerosis , Humans , Multiple Sclerosis/complications , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Retinal Ganglion Cells/pathology , Retina/pathology , Tomography, Optical Coherence/methods , Cognitive Dysfunction/complications , Atrophy/pathologyABSTRACT
Patients with herpes simplex virus (HSV) encephalitis (HSE) often develop neuronal autoantibody-associated encephalitis (AE) post-infection. Risk factors of AE are unknown. We tested the hypotheses that predisposition for AE post-HSE may be involved, including genetic variants at specific loci, human leucocyte (HLA) haplotypes, or the blood innate immune response against HSV, including type I interferon (IFN) immunity. Patients of all ages with HSE diagnosed between 1 January 2014 and 31 December 2021 were included in one of two cohorts depending on whether the recruitment was at HSE onset (Spanish Cohort A) or by the time of new neurological manifestations (international Cohort B). Patients were assessed for the type of neurological syndromes; HLA haplotypes; blood type I-IFN signature [RNA quantification of 6 or 28 IFN-response genes (IRG)] and toll-like receptor (TLR3)-type I IFN-related gene mutations. Overall, 190 patients (52% male) were recruited, 93 in Cohort A and 97 in Cohort B. Thirty-nine (42%) patients from Cohort A developed neuronal autoantibodies, and 21 (54%) of them developed AE. Three syndromes (choreoathetosis, anti-NMDAR-like encephalitis and behavioural-psychiatric) showed a high (≥95% cases) association with neuronal autoantibodies. Patients who developed AE post-HSE were less likely to carry the allele HLA-A*02 (4/21, 19%) than those who did not develop AE (42/65, 65%, P = 0.0003) or the Spanish general population (2005/4335, 46%, P = 0.0145). Blood IFN signatures using 6 or 28 IRG were positive in 19/21 (91%) and 18/21 (86%) patients at HSE onset, and rapidly decreased during follow-up. At Day 21 after HSE onset, patients who later developed AE had higher median IFN signature compared with those who did not develop AE [median Zs-6-IRG 1.4 (0.6; 2.0) versus 0.2 (-0.4; 0.8), P = 0.03]. However, a very high median Zs-6-IRG (>4) or persistently increased IFN signature associated with uncontrolled viral infection. Whole exome sequencing showed that the percentage of TLR3-IFN-related mutations in patients who developed AE was not different from those who did not develop AE [3/37 (8%) versus 2/57 (4%), P = 0.379]. Multivariate logistic regression showed that a moderate increase of the blood IFN signature at Day 21 (median Zs-6-IRG >1.5 but <4) was the most important predictor of AE post-HSE [odds ratio 34.8, interquartile ratio (1.7-691.9)]. Altogether, these findings show that most AE post-HSE manifest with three distinct syndromes, and HLA-A*02, but not TLR3-IFN-related mutations, confer protection from developing AE. In addition to neuronal autoantibodies, the blood IFN signature in the context of HSE may be potentially useful for the diagnosis and monitoring of HSE complications.
Subject(s)
Encephalitis, Herpes Simplex , Interferon Type I , Nervous System Diseases , Humans , Male , Female , Encephalitis, Herpes Simplex/complications , Encephalitis, Herpes Simplex/genetics , Toll-Like Receptor 3/genetics , Autoantibodies , HLA-A AntigensABSTRACT
BACKGROUND: We aimed to describe the severity of the changes in brain diffusion-based connectivity as multiple sclerosis (MS) progresses and the microstructural characteristics of these networks that are associated with distinct MS phenotypes. METHODS: Clinical information and brain MRIs were collected from 221 healthy individuals and 823 people with MS at 8 MAGNIMS centres. The patients were divided into four clinical phenotypes: clinically isolated syndrome, relapsing-remitting, secondary progressive and primary progressive. Advanced tractography methods were used to obtain connectivity matrices. Then, differences in whole-brain and nodal graph-derived measures, and in the fractional anisotropy of connections between groups were analysed. Support vector machine algorithms were used to classify groups. RESULTS: Clinically isolated syndrome and relapsing-remitting patients shared similar network changes relative to controls. However, most global and local network properties differed in secondary progressive patients compared with the other groups, with lower fractional anisotropy in most connections. Primary progressive participants had fewer differences in global and local graph measures compared with clinically isolated syndrome and relapsing-remitting patients, and reductions in fractional anisotropy were only evident for a few connections. The accuracy of support vector machine to discriminate patients from healthy controls based on connection was 81%, and ranged between 64% and 74% in distinguishing among the clinical phenotypes. CONCLUSIONS: In conclusion, brain connectivity is disrupted in MS and has differential patterns according to the phenotype. Secondary progressive is associated with more widespread changes in connectivity. Additionally, classification tasks can distinguish between MS types, with subcortical connections being the most important factor.
Subject(s)
Demyelinating Diseases , Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Humans , Multiple Sclerosis/diagnostic imaging , Brain/diagnostic imaging , Magnetic Resonance Imaging , Brain Mapping/methods , Phenotype , Multiple Sclerosis, Relapsing-Remitting/diagnostic imagingABSTRACT
BACKGROUND: Spasticity is a frequent symptom of multiple sclerosis (MS), which may negatively influence daily living activities (ADL). OBJECTIVES: To (1) explore the feasibility to conduct a structured interview by specialist nurses about limitations in ADL; (2) determine the percentage of people with MS (PwMS) with limitations in ADL related to spasticity; (3) to assess the knowledge about spasticity and describe its clinical features. DESIGN: Observational, cross-sectional, multicentre study in 16 MS units of Catalonia (Spain). Participants were recruited from the outpatient facility and day-care hospital between July 2018 and June 2019 and met the following criteria: (1) age 18 or older, (2) diagnosis of MS according to McDonald criteria 2010 and (3) no clinical relapse in previous 30 days. METHODS: Specialist nurses conducted a structured interview divided in two parts: the assessment of (1) limitations in the ADL and (2) the presence of spasticity and associated symptoms. The usefulness of this intervention was requested. This study met the STROBE reporting guidelines checklist for observational studies. RESULTS: Three hundred sixty eight pwMS (244 women) with a mean age of 46 years and a median Expanded Disability Status Scale score of 2.5 (range, 0-8.5) were included. 262 (71%) pwMS had limitations in the ADL, and spasticity was reported as the most limiting symptom in 59 (23%). As a result of the interview, spasticity was observed in 199 (76%) participants; 47 (24%) of them were unaware that they had spasticity and 102 (51%) would not have reported it spontaneously. The level of the interview satisfaction was high (90%). CONCLUSIONS: Spasticity is a complex and limiting symptom in MS. The structured interview conducted by specialist nurses is feasible and has good acceptance. PATIENT CONTRIBUTION: Specialist nurses can be proactive in MS clinical assessment, which may help to detect symptoms with negative impact on quality of life.
Subject(s)
Multiple Sclerosis , Muscle Spasticity , Nurse Specialists , Multiple Sclerosis/complications , Nurses , Activities of Daily Living , Quality of Life , Humans , Male , Female , Adolescent , Middle Aged , Spain , Adult , Aged , Cross-Sectional StudiesABSTRACT
BACKGROUND: Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune disease of the central nervous system and is associated with autoantibodies to anti-aquaporin-4 (AQP4-IgG) in approximately two thirds of patients. Interleukin-6 is involved in the pathogenesis of the disorder. Satralizumab is a humanized monoclonal antibody targeting the interleukin-6 receptor. The efficacy of satralizumab added to immunosuppressant treatment in patients with NMOSD is unclear. METHODS: In a phase 3, randomized, double-blind, placebo-controlled trial, we randomly assigned, in a 1:1 ratio, patients with NMOSD who were seropositive or seronegative for AQP4-IgG to receive either satralizumab, at a dose of 120 mg, or placebo, administered subcutaneously at weeks 0, 2, and 4 and every 4 weeks thereafter, added to stable immunosuppressant treatment. The primary end point was the first protocol-defined relapse in a time-to-event analysis. Key secondary end points were the change from baseline to week 24 in the visual-analogue scale (VAS) pain score (range, 0 to 100, with higher scores indicating more pain) and the Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-F) score (range, 0 to 52, with lower scores indicating more fatigue). Safety was also assessed. RESULTS: A total of 83 patients were enrolled, with 41 assigned to the satralizumab group and 42 to the placebo group. The median treatment duration with satralizumab in the double-blind period was 107.4 weeks. Relapse occurred in 8 patients (20%) receiving satralizumab and in 18 (43%) receiving placebo (hazard ratio, 0.38; 95% confidence interval [CI], 0.16 to 0.88). Multiple imputation for censored data resulted in hazard ratios ranging from 0.34 to 0.44 (with corresponding P values of 0.01 to 0.04). Among 55 AQP4-IgG-seropositive patients, relapse occurred in 11% of those in the satralizumab group and in 43% of those in the placebo group (hazard ratio, 0.21; 95% CI, 0.06 to 0.75); among 28 AQP4-IgG-seronegative patients, relapse occurred in 36% and 43%, respectively (hazard ratio, 0.66; 95% CI, 0.20 to 2.24). The between-group difference in the change in the mean VAS pain score was 4.08 (95% CI, -8.44 to 16.61); the between-group difference in the change in the mean FACIT-F score was -3.10 (95% CI, -8.38 to 2.18). The rates of serious adverse events and infections did not differ between groups. CONCLUSIONS: Among patients with NMOSD, satralizumab added to immunosuppressant treatment led to a lower risk of relapse than placebo but did not differ from placebo in its effect on pain or fatigue. (Funded by Chugai Pharmaceutical; ClinicalTrials.gov number, NCT02028884.).
Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Neuromyelitis Optica/drug therapy , Receptors, Interleukin-6/antagonists & inhibitors , Adolescent , Adult , Aged , Antibodies, Monoclonal, Humanized/adverse effects , Aquaporin 4/immunology , Autoantibodies/blood , Double-Blind Method , Drug Therapy, Combination , Female , Humans , Immunoglobulin G/blood , Immunosuppressive Agents/therapeutic use , Male , Middle Aged , Neuromyelitis Optica/immunology , Receptors, Interleukin-6/immunology , Recurrence , Young AdultABSTRACT
OBJECTIVE: The objective of this study was to report the identification of antibodies against the glutamate kainate receptor subunit 2 (GluK2-abs) in patients with autoimmune encephalitis, and describe the clinical-immunological features and antibody effects. METHODS: Two sera from 8 patients with similar rat brain immunostaining were used to precipitate the antigen from neuronal cultures. A cell-based assay (CBA) with GluK2-expressing HEK293 cells was used to assess 596 patients with different neurological disorders, and 23 healthy controls. GluK2-ab effects were determined by confocal microscopy in cultured neurons and electrophysiology in GluK2-expressing HEK293 cells. RESULTS: Patients' antibodies precipitated GluK2. GluK2 antibody-specificity was confirmed by CBA, immunoprecipitation, GluK2-immunoabsorption, and GluK2 knockout brain immunohistochemistry. In 2 of 8 samples, antibodies reacted with additional GluK2 epitopes present in GluK1 or GluK3; in both, the reactivity was abrogated after GluK2 immuno-absorption. Six of 8 patients developed acute encephalitis and clinical or magnetic resonance imaging (MRI) features of predominant cerebellar involvement (4 presenting as cerebellitis, which in 2 patients caused obstructive hydrocephalus), and 2 patients had other syndromes (1 with cerebellar symptoms). One of the samples showed mild reactivity with non-kainate receptors (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors [AMPAR] and N-methyl-D-aspartate receptors [NMDAR]) leading to identify 6 additional cases with GluK2-abs among patients with anti-AMPAR (5/71) or anti-NMDAR encephalitis (1/73). GluK2-abs internalized GluK2 in HEK293 cells and neurons; these antibody-effects were reversible in neurons. A significant reduction of GluK2-mediated currents was observed in cells treated with patients' GluK2 serum following the time frame of antibody-mediated GluK2 internalization. INTERPRETATION: GluK2-abs associate with an encephalitis with prominent clinicoradiological cerebellar involvement. The antibody effects are predominantly mediated by internalization of GluK2. ANN NEUROL 2021;90:107-123.
Subject(s)
Autoantibodies/blood , Encephalitis/immunology , Receptors, Kainic Acid/immunology , Animals , Cerebellum/metabolism , Encephalitis/blood , Encephalitis/metabolism , HEK293 Cells , Humans , Neurons/metabolism , Rats , Receptors, Kainic Acid/metabolism , GluK2 Kainate ReceptorABSTRACT
There are adaptive T-cell and antibody autoimmune responses to myelin-derived peptides in multiple sclerosis (MS) and to aquaporin-4 (AQP4) in neuromyelitis optica spectrum disorders (NMOSDs). Strategies aimed at antigen-specific tolerance to these autoantigens are thus indicated for these diseases. One approach involves induction of tolerance with engineered dendritic cells (tolDCs) loaded with specific antigens. We conducted an in-human phase 1b clinical trial testing increasing concentrations of autologous tolDCs loaded with peptides from various myelin proteins and from AQP4. We tested this approach in 12 patients, 8 with MS and 4 with NMOSD. The primary end point was the safety and tolerability, while secondary end points were clinical outcomes (relapses and disability), imaging (MRI and optical coherence tomography), and immunological responses. Therapy with tolDCs was well tolerated, without serious adverse events and with no therapy-related reactions. Patients remained stable clinically in terms of relapse, disability, and in various measurements using imaging. We observed a significant increase in the production of IL-10 levels in PBMCs stimulated with the peptides as well as an increase in the frequency of a regulatory T cell, known as Tr1, by week 12 of follow-up. In this phase 1b trial, we concluded that the i.v. administration of peptide-loaded dendritic cells is safe and feasible. Elicitation of specific IL-10 production by peptide-specific T cells in MS and NMOSD patients indicates that a key element in antigen specific tolerance is activated with this approach. The results warrant further clinical testing in larger trials.
Subject(s)
Cell- and Tissue-Based Therapy/methods , Dendritic Cells , Immune Tolerance , Multiple Sclerosis/therapy , Neuromyelitis Optica/therapy , Adult , Aquaporin 4/genetics , Cell- and Tissue-Based Therapy/adverse effects , Cells, Cultured , Dendritic Cells/metabolism , Dendritic Cells/transplantation , Female , Humans , Immune Tolerance/genetics , Immune Tolerance/immunology , Immune Tolerance/physiology , Immunotherapy , Interleukin-10/metabolism , Male , Middle Aged , Multiple Sclerosis/immunology , Myelin Proteins/genetics , Neuromyelitis Optica/immunology , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , T-Lymphocytes, Regulatory/metabolismABSTRACT
Anti-IgLON5 disease is a neurological disorder characterized by autoantibodies against IgLON5 and pathological evidence of neuronal-specific tau accumulation. Here, we report that patients' IgLON5 IgG, but not other cell-surface antibodies, disrupt the cytoskeletal organization in cultured rat hippocampal neurons, resulting in dystrophic neurites and axonal swelling. Adsorption of IgLON5 IgG with HEK293 cells expressing IgLON5 abrogated the indicated cytoskeletal changes. These findings, along with an increase of levels of neurofilaments in patients' cerebrospinal fluid, suggest that IgLON5 IgG, unlike other cell-surface antibodies, disrupts neuronal cytoskeleton maintenance, providing a link between autoimmunity and neurodegeneration. ANN NEUROL 2020;88:1023-1027.
Subject(s)
Antibodies/pharmacology , Autoimmune Diseases/immunology , Cell Adhesion Molecules, Neuronal/immunology , Cytoskeleton/drug effects , Neurodegenerative Diseases/immunology , Neurons/drug effects , Animals , Axons/pathology , Cells, Cultured , HEK293 Cells , Hippocampus/cytology , Humans , Immunoglobulin G/immunology , Neurites/pathology , Neurofilament Proteins/cerebrospinal fluid , RatsABSTRACT
BACKGROUND: Prognostic markers are needed to guide multiple sclerosis (MS) management in the context of large availability of disease-modifying drugs (DMDs). OBJECTIVE: To investigate the role of cerebrospinal fluid (CSF) markers to inform long-term MS outcomes. METHODS: Demographic features, IgM index, oligoclonal IgM bands (OCMB), lipid-specific OCMB, CSF neurofilament light chain protein levels, expanded disability status scale (EDSS), relapses and DMD use over the study period and peripapillary retinal nerve fiber layer (pRNFL) and ganglion cell plus inner plexiform layer (GCIPL) thicknesses in non-optic neuritis eyes (end of follow-up) were collected from relapsing MS (RMS) patients with CSF obtained ⩽2 years after MS onset prospectively followed at the Hospital Clinic of Barcelona. We assessed associations between CSF markers and MS outcomes using multivariable models. RESULTS: A total of 89 patients (71 females; median 32.9 years of age) followed over a median of 9.6 years were included. OCMB were associated with a 33% increase in the annualized relapse rate (ARR; p = 0.06), higher odds for high-efficacy DMDs use (OR = 4.8; 95% CI = (1.5, 16.1)), thinner pRNFL (ß = -4.4; 95% CI = (-8.6, -0.2)) and GCIPL (ß = -2.9; 95% CI = (-5.9, +0.05)), and higher rates to EDSS ⩾ 3.0 (HR = 4.4; 95% CI = (1.6, 11.8)) and EDSS ⩾ 4.0 (HR = 5.4; 95% CI = (1.1, 27.1)). No overall associations were found for other CSF markers. CONCLUSION: The presence of OCMB was associated with unfavorable long-term outcomes. OCMB should be determined in RMS to inform long-term prognosis.
Subject(s)
Multiple Sclerosis , Oligoclonal Bands , Blindness , Child , Female , Humans , Recurrence , RetinaABSTRACT
Macular oedema is a rare complication of fingolimod treatment. It usually presents within 3-4 months, but occasionally presents later. It can resolve without treatment despite continuation of fingolimod treatment. Herein we report a case of very late onset macular oedema in a 49-year-old woman with multiple sclerosis treated with fingolimod for 7 years. The patient presented with blurred vision in both eyes with visual acuities of 20/32 in her right eye and 20/25 in her left eye. She had macular oedema, that without discontinuing fingolimod treatment, resolved after 1 month.
ABSTRACT
Although genome-wide association studies have identified a number of common variants associated with multiple sclerosis (MS) susceptibility, little is known about the relevance of rare variants. Here, we aimed to explore the role of rare variants in 14 MS risk genes (FCRL1, RGS1, TIMMDC1, HHEX, CXCR5, LTBR, TSFM, GALC, TRAF3, STAT3, TNFSF14, IFI30, CD40, and CYP24A1) by targeted resequencing in an Iberian population of 524 MS cases and 546 healthy controls. Four rare variants-enriched regions within CYP24A1, FCRL1, RGS1, and TRAF3 were identified as significantly associated with MS. Functional studies revealed significantly decreased regulator of G protein signaling 1 (RGS1) gene expression levels in peripheral blood mononuclear cells from MS patients with RGS1 rare variants compared to noncarriers, whereas no significant differences in gene expression were observed for CYP24A1, FCRL1, and TRAF3 between rare variants carriers and noncarriers. Immunophenotyping showed significant decrease in RGS1 expression in peripheral blood B lymphocytes from MS patients with RGS1 rare variants relative to noncarriers. Lastly, peripheral blood mononuclear cell from MS patients carrying RGS1 rare variants showed significantly lower induction of RGS1 gene expression by interferon-ß compared to MS patients lacking RGS1 variants. The presence of rare variants in RGS1 reinforce the ideas of high genetic heterogeneity and a role of rare variants in MS pathogenesis.
Subject(s)
Genetic Predisposition to Disease , Multiple Sclerosis/genetics , B-Lymphocytes , Case-Control Studies , DNA Mutational Analysis , Humans , Leukocytes, Mononuclear , Membrane Proteins/genetics , RGS Proteins/genetics , Spain , TNF Receptor-Associated Factor 3/genetics , Vitamin D3 24-Hydroxylase/geneticsABSTRACT
OBJECTIVE: To explore levels of astrocytopathy in neuromyelitis optica spectrum disorder (NMOSD) by measuring levels of the astrocytic enzyme glutamine synthetase (GS) and glial fibrillary acidic protein (GFAP), an established astrocytic biomarker known to be associated with disease activity in multiple sclerosis. METHODS: Cerebrospinal fluid concentrations of GS and GFAP were measured by ELISA in patients with NMOSD (n=39, 28 aquaporin-4 (AQP4)-Ab-seropositive, 3 double-Ab-seronegative, 4 myelin oligodendrocyte glycoprotein (MOG)-Ab-seropositive and 4 AQP4-Ab-seronegative with unknown MOG-Ab-serostatus), multiple sclerosis (MS) (n=69), optic neuritis (n=5) and non-neurological controls (n=37). RESULTS: GFAP and GS concentrations differed significantly across groups (both p<0.001), showing a similar pattern of elevation in patients with AQP4-Ab-seropositive NMOSD. GS and GFAP were significantly correlated, particularly in patients with AQP4-Ab-seropositive NMOSD (rs=0.70, p<0.001). Interestingly, GFAP levels in some patients with double-Ab-seronegative NMOSD were markedly increased. CONCLUSIONS: Our data indicate astrocytic injury occurs in some patients with double-Ab-seronegative NMOSD, which hints at the possible existence of yet undiscovered astrocytic autoimmune targets. We hypothesise that elevated GS and GFAP levels could identify those double-Ab-seronegative patients suitable to undergo in-depth autoimmune screening for astrocytic antibodies.
Subject(s)
Astrocytes , Glial Fibrillary Acidic Protein/cerebrospinal fluid , Glutamate-Ammonia Ligase/cerebrospinal fluid , Neuromyelitis Optica/cerebrospinal fluid , Adolescent , Adult , Aged , Female , Humans , Male , Middle Aged , Retrospective Studies , Young AdultABSTRACT
BACKGROUND: Myelin oligodendrocyte glycoprotein antibodies (MOG-Ab) are related to several acquired demyelinating syndromes in adults, but the therapeutic approach is currently unclear. We aimed to describe the response to different therapeutic strategies in adult patients with relapsing MOG-Ab-associated disease. METHODS: This is a retrospective study conducted in France and Spain including 125 relapsing MOG-Ab patients aged ≥ 18 years. First, we performed a survival analysis to investigate the relapse risk between treated and non-treated patients, performing a propensity score method based on the inverse probability of treatment weighting. Second, we assessed the annualised relapse rates (ARR), Expanded Disability Status Scale (EDSS) and visual acuity pre-treatment and on/end-treatment. RESULTS: Median age at onset was 34.1 years (range 18.0-67.1), the female to male ratio was 1.2:1, and 96% were Caucasian. At 5 years, 84% (95% confidence interval [CI], 77.1-89.8) patients relapsed. At the last follow-up, 66 (52.8%) received maintenance therapy. Patients initiating immunosuppressants (azathioprine, mycophenolate mophetil [MMF], rituximab) were at lower risk of new relapse in comparison to non-treated patients (HR, 0.41; 95CI%, 0.20-0.82; p = 0.011). Mean ARR (standard deviation) was reduced from 1.05(1.20) to 0.43(0.79) with azathioprine (n = 11; p = 0.041), from 1.20(1.11) to 0.23(0.60) with MMF (n = 11; p = 0.033), and from 1.08(0.98) to 0.43(0.89) with rituximab (n = 26; p = 0.012). Other immunosuppressants (methotrexate/mitoxantrone/cyclophosphamide; n = 5), or multiple sclerosis disease-modifying drugs (MS-DMD; n = 9), were not associated with significantly reduced ARR. Higher rates of freedom of EDSS progression were observed with azathioprine, MMF or rituximab. CONCLUSION: In adults with relapsing MOG-Ab-associated disease, immunosuppressant therapy (azathioprine, MMF and rituximab) is associated with reduced risk of relapse and better disability outcomes. Such an effect was not found in the few patients treated with MS-DMD.
Subject(s)
Autoantibodies/blood , Immunosuppressive Agents/therapeutic use , Myelin-Oligodendrocyte Glycoprotein/blood , Neuromyelitis Optica/blood , Neuromyelitis Optica/drug therapy , Adolescent , Adult , Aged , Cohort Studies , Female , Humans , Male , Middle Aged , Multiple Sclerosis, Relapsing-Remitting/blood , Multiple Sclerosis, Relapsing-Remitting/diagnosis , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Neuromyelitis Optica/diagnosis , Retrospective Studies , Rituximab/therapeutic use , Treatment Outcome , Young AdultABSTRACT
The prognostic role of cerebrospinal fluid molecular biomarkers determined in early pathogenic stages of multiple sclerosis has yet to be defined. In the present study, we aimed to investigate the prognostic value of chitinase 3 like 1 (CHI3L1), neurofilament light chain, and oligoclonal bands for conversion to clinically isolated syndrome and to multiple sclerosis in 75 patients with radiologically isolated syndrome. Cerebrospinal fluid levels of CHI3L1 and neurofilament light chain were measured by enzyme-linked immunosorbent assay. Uni- and multivariable Cox regression models including as covariates age at diagnosis of radiologically isolated syndrome, number of brain lesions, sex and treatment were used to investigate associations between cerebrospinal fluid CHI3L1 and neurofilament light chain levels and time to conversion to clinically isolated syndrome and multiple sclerosis. Neurofilament light chain levels and oligoclonal bands were independent risk factors for the development of clinically isolated syndrome (hazard ratio = 1.02, P = 0.019, and hazard ratio = 14.7, P = 0.012, respectively) and multiple sclerosis (hazard ratio = 1.03, P = 0.003, and hazard ratio = 8.9, P = 0.046, respectively). The best cut-off to classify cerebrospinal fluid neurofilament light chain levels into high and low was 619 ng/l, and high neurofilament light chain levels were associated with a trend to shorter time to clinically isolated syndrome (P = 0.079) and significant shorter time to multiple sclerosis (P = 0.017). Similarly, patients with radiologically isolated syndrome presenting positive oligoclonal bands converted faster to clinically isolated syndrome and multiple sclerosis (P = 0.005 and P = 0.008, respectively). The effects of high neurofilament light chain levels shortening time to clinically isolated syndrome and multiple sclerosis were more pronounced in radiologically isolated syndrome patients with ≥37 years compared to younger patients. Cerebrospinal fluid CHI3L1 levels did not influence conversion to clinically isolated syndrome and multiple sclerosis in radiologically isolated syndrome patients. Overall, these findings suggest that cerebrospinal neurofilament light chain levels and oligoclonal bands are independent predictors of clinical conversion in patients with radiologically isolated syndrome. The association with a faster development of multiple sclerosis reinforces the importance of cerebrospinal fluid analysis in patients with radiologically isolated syndrome.
Subject(s)
Biomarkers/cerebrospinal fluid , Chitinase-3-Like Protein 1/cerebrospinal fluid , Demyelinating Diseases/cerebrospinal fluid , Demyelinating Diseases/diagnosis , Neurofilament Proteins/cerebrospinal fluid , Oligoclonal Bands/cerebrospinal fluid , Adult , Cohort Studies , Europe , Female , Humans , Male , Middle Aged , Prognosis , Statistics, NonparametricABSTRACT
Multiple sclerosis (MS) is caused by T cells that are reactive for brain antigens. In experimental autoimmune encephalomyelitis, the animal model for MS, myelin-reactive T cells initiate the autoimmune process when entering the nervous tissue and become reactivated upon local encounter of their cognate CNS antigen. Thereby, the strength of the T-cellular reactivation process within the CNS tissue is crucial for the manifestation and the severity of the clinical disease. Recently, B cells were found to participate in the pathogenesis of CNS autoimmunity, with several diverse underlying mechanisms being under discussion. We here report that B cells play an important role in promoting the initiation process of CNS autoimmunity. Myelin-specific antibodies produced by autoreactive B cells after activation in the periphery diffused into the CNS together with the first invading pathogenic T cells. The antibodies accumulated in resident antigen-presenting phagocytes and significantly enhanced the activation of the incoming effector T cells. The ensuing strong blood-brain barrier disruption and immune cell recruitment resulted in rapid manifestation of clinical disease. Therefore, myelin oligodendrocyte glycoprotein (MOG)-specific autoantibodies can initiate disease bouts by cooperating with the autoreactive T cells in helping them to recognize their autoantigen and become efficiently reactivated within the immune-deprived nervous tissue.
Subject(s)
Autoantibodies/immunology , Autoimmune Diseases/immunology , Central Nervous System Diseases/immunology , Lymphocyte Activation/immunology , T-Lymphocytes/immunology , Cell Differentiation , Humans , T-Lymphocytes/pathologyABSTRACT
BACKGROUND: It remains unclear whether disease course in multiple sclerosis (MS) is influenced by genetic polymorphisms. Here, we aimed to identify genetic variants associated with benign and aggressive disease courses in MS patients. METHODS: MS patients were classified into benign and aggressive phenotypes according to clinical criteria. We performed exome sequencing in a discovery cohort, which included 20 MS patients, 10 with benign and 10 with aggressive disease course, and genotyping in 2 independent validation cohorts. The first validation cohort encompassed 194 MS patients, 107 with benign and 87 with aggressive phenotypes. The second validation cohort comprised 257 patients, of whom 224 patients had benign phenotypes and 33 aggressive disease courses. Brain immunohistochemistries were performed using disease course associated genes antibodies. RESULTS: By means of single-nucleotide polymorphism (SNP) detection and comparison of allele frequencies between patients with benign and aggressive phenotypes, a total of 16 SNPs were selected for validation from the exome sequencing data in the discovery cohort. Meta-analysis of genotyping results in two validation cohorts revealed two polymorphisms, rs28469012 and rs10894768, significantly associated with disease course. SNP rs28469012 is located in CPXM2 (carboxypeptidase X, M14 family, member 2) and was associated with aggressive disease course (uncorrected p value < 0.05). SNP rs10894768, which is positioned in IGSF9B (immunoglobulin superfamily member 9B) was associated with benign phenotype (uncorrected p value < 0.05). In addition, a trend for association with benign phenotype was observed for a third SNP, rs10423927, in NLRP9 (NLR family pyrin domain containing 9). Brain immunohistochemistries in chronic active lesions from MS patients revealed expression of IGSF9B in astrocytes and macrophages/microglial cells, and expression of CPXM2 and NLRP9 restricted to brain macrophages/microglia. CONCLUSIONS: Genetic variants located in CPXM2, IGSF9B, and NLRP9 have the potential to modulate disease course in MS patients and may be used as disease activity biomarkers to identify patients with divergent disease courses. Altogether, the reported results from this study support the influence of genetic factors in MS disease course and may help to better understand the complex molecular mechanisms underlying disease pathogenesis.