ABSTRACT
Dengue is a major public health concern mainly in tropical and subtropical environments worldwide. Despite several attempts to prevent this disease occurring in tropical regions of Mexico, it has not yet been controlled. This work focused on spatial modeling of confirmed dengue fever cases that occurred during the period 2010-2014 in the Huasteca Potosina region of Mexico. Multivariable Logistic Regression Modeling (MLRM) was used to determine the relationship between explanatory variables and the presence/absence of dengue. Model performance was evaluated using the area under curve (AUC) of the relative operating characteristic (ROC); AUC > 0.95. A high spatial resolution map was created to reveal the most probable patterns of dengue risk. Our results can be used for targeted control and prevention programs at local and regional levels. This methodology can be applied to other major diseases that are spatially distributed in accordance with environmental factors.
Subject(s)
Dengue/epidemiology , Logistic Models , Altitude , Humans , Incidence , Mexico/epidemiology , Population Density , Risk , WeatherABSTRACT
System-of-systems approaches for integrated assessments have become prevalent in recent years. Such approaches integrate a variety of models from different disciplines and modeling paradigms to represent a socio-environmental (or social-ecological) system aiming to holistically inform policy and decision-making processes. Central to the system-of-systems approaches is the representation of systems in a multi-tier framework with nested scales. Current modeling paradigms, however, have disciplinary-specific lineage, leading to inconsistencies in the conceptualization and integration of socio-environmental systems. In this paper, a multidisciplinary team of researchers, from engineering, natural and social sciences, have come together to detail socio-technical practices and challenges that arise in the consideration of scale throughout the socio-environmental modeling process. We identify key paths forward, focused on explicit consideration of scale and uncertainty, strengthening interdisciplinary communication, and improvement of the documentation process. We call for a grand vision (and commensurate funding) for holistic system-of-systems research that engages researchers, stakeholders, and policy makers in a multi-tiered process for the co-creation of knowledge and solutions to major socio-environmental problems.
ABSTRACT
A spatial survival analysis was performed to identify some of the factors that influence the survival of patients with COVID-19 in the states of Guerrero, México, and Chihuahua. The data that we analyzed correspond to the period from 28 February 2020 to 24 November 2021. A Cox proportional hazards frailty model and a Cox proportional hazards model were fitted. For both models, the estimation of the parameters was carried out using the Bayesian approach. According to the DIC, WAIC, and LPML criteria, the spatial model was better. The analysis showed that the spatial effect influences the survival times of patients with COVID-19. The spatial survival analysis also revealed that age, gender, and the presence of comorbidities, which vary between states, and the development of pneumonia increase the risk of death from COVID-19.
ABSTRACT
Fault diagnosis plays a critical role in maintaining and troubleshooting engineered systems. Various diagnosis models, such as Bayesian networks (BNs), have been proposed to deal with this kind of problem in the past. However, the diagnosis results may not be reliable if second-order uncertainty is involved. This article proposes a hierarchical system diagnosis fusion framework that considers the uncertainty based on a belief model, called subjective logic (SL), which explicitly deals with uncertainty representing a lack of evidence. The proposed system diagnosis fusion framework consists of three steps: 1) individual subjective BNs (SBNs) are designed to represent the knowledge architectures of individual experts; 2) experts are clustered as expert groups according to their similarity; and 3) after inferring expert opinions from respective SBNs, the one opinion fusion method was used to combine all opinions to reach a consensus based on the aggregated opinion for system diagnosis. Via extensive simulation experiments, we show that the proposed fusion framework, consisting of two operators, outperforms the state-of-the-art fusion operator counterparts and has stable performance under various scenarios. Our proposed fusion framework is promising for advancing state-of-the-art fault diagnosis of complex engineered systems.
Subject(s)
Expert Testimony , Logic , Bayes Theorem , UncertaintyABSTRACT
The outbreak of the new COVID-19 disease is a serious health problem that has affected a large part of the world population, especially older adults and people who suffer from a previous comorbidity. In this work, we proposed a classifier model that allows for deciding whether or not a patient might suffer from the COVID-19 disease, considering spatio-temporal variables, physical characteristics of the patients and the presence of previous diseases. We used XGBoost to maximize the likelihood function of the multivariate logistic regression model. The estimated and observed values of percentage occurrence of cases were very similar, and indicated that the proposed model was suitable to predict new cases (AUC = 0.75). The main results revealed that patients without comorbidities are less likely to be COVID-19 positive, unlike people with diabetes, obesity and pneumonia. The distribution function by age group showed that, during the first and second wave of COVID-19, young people aged ≤20 were the least affected by the pandemic, while the most affected were people between 20 and 40 years, followed by adults older than 40 years. In the case of the third and fourth wave, there was an increased risk for young individuals (under 20 years), while older adults over 40 years decreased their chances of infection. Estimates of positive COVID cases with both the XGBoost-LR model and the multivariate logistic regression model were used to create maps to visualize the spatial distribution of positive cases across the country. Spatial analysis was carried out to determine, through the data, the main geographical areas where a greater number of positive cases occurred. The results showed that the areas most affected by COVID-19 were in the central and northern regions of Mexico.
Subject(s)
COVID-19 , Adolescent , Aged , COVID-19/epidemiology , Comorbidity , Humans , Logistic Models , Mexico/epidemiology , PandemicsABSTRACT
We implemented a spatial model for analysing PM 10 maxima across the Mexico City metropolitan area during the period 1995-2016. We assumed that these maxima follow a non-identical generalized extreme value (GEV) distribution and modeled the trend by introducing multivariate smoothing spline functions into the probability GEV distribution. A flexible, three-stage hierarchical Bayesian approach was developed to analyse the distribution of the PM 10 maxima in space and time. We evaluated the statistical model's performance by using a simulation study. The results showed strong evidence of a positive correlation between the PM 10 maxima and the longitude and latitude. The relationship between time and the PM 10 maxima was negative, indicating a decreasing trend over time. Finally, a high risk of PM 10 maxima presenting levels above 1000 µ g/m 3 (return period: 25 yr) was observed in the northwestern region of the study area.