Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
Add more filters

Publication year range
1.
Cell ; 171(3): 655-667.e17, 2017 Oct 19.
Article in English | MEDLINE | ID: mdl-29053971

ABSTRACT

The gut microbiota contributes to the development of normal immunity but, when dysregulated, can promote autoimmunity through various non-antigen-specific effects on pathogenic and regulatory lymphocytes. Here, we show that an integrase expressed by several species of the gut microbial genus Bacteroides encodes a low-avidity mimotope of the pancreatic ß cell autoantigen islet-specific glucose-6-phosphatase-catalytic-subunit-related protein (IGRP206-214). Studies in germ-free mice monocolonized with integrase-competent, integrase-deficient, and integrase-transgenic Bacteroides demonstrate that the microbial epitope promotes the recruitment of diabetogenic CD8+ T cells to the gut. There, these effectors suppress colitis by targeting microbial antigen-loaded, antigen-presenting cells in an integrin ß7-, perforin-, and major histocompatibility complex class I-dependent manner. Like their murine counterparts, human peripheral blood T cells also recognize Bacteroides integrase. These data suggest that gut microbial antigen-specific cytotoxic T cells may have therapeutic value in inflammatory bowel disease and unearth molecular mimicry as a novel mechanism by which the gut microbiota can regulate normal immune homeostasis. PAPERCLIP.


Subject(s)
Autoantigens/immunology , Bacteroides/immunology , Colitis/immunology , Gastrointestinal Microbiome , Glucose-6-Phosphatase/immunology , Adult , Animals , Bacteroides/classification , Bacteroides/enzymology , Colitis/microbiology , Female , Glucose-6-Phosphatase/genetics , Humans , Lymphoid Tissue/immunology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Middle Aged , Molecular Mimicry , T-Lymphocytes/immunology
2.
Mediators Inflamm ; 2022: 6049500, 2022.
Article in English | MEDLINE | ID: mdl-35185383

ABSTRACT

Ulcerative colitis (UC) is characterized by a chronic overproduction of proinflammatory cytokines. During an acute phase, the endoplasmic reticulum (ER) is overloaded and the protein folding process is impaired, a condition named ER stress. This state induces a response (unfolded protein response (UPR)), initiated by the activation of IRE1/Xbp-1, PERK/eIF2α, and ATF6 pathways, which has previously been linked to intestinal inflammation in experimental models. ER stress and UPR activation trigger the activation of proinflammatory, autophagy, and apoptosis genes, in addition to promoting protein degradation. Therefore, the goal of this study was to evaluate the activation of ER stress and UPR in colonic mucosa of UC patients. Patient and Methods. Transcriptional analysis of ER stress- and UPR-related genes was performed by qPCR from intestinal mucosa of patients with UC. We also performed in situ hybridization (ISH) and immunohistochemistry (IHQ) of PERK/eIF2α and IRE1/Xbp-1 pathways and UPR-related chaperones. Results. We first evaluated inflammatory genes via qPCR, and we observed that all analyzed proinflammatory transcripts were upregulated in UC patients. ISH and IHQ images showed that ER stress is activated via PERK/eIF2α and IRE1/Xbp-1 pathways not only in intestinal epithelial cells but also in cells of the lamina propria of UC colonic mucosa. Transcriptional analysis confirmed that EIF2AK3 was upregulated in UC patients. UPR-related genes, such as ATF3, STC2, and DDIT3, along with the chaperones and cochaperones DNAJC3, CALR, HSP90B1, and HSPA5, were also upregulated in UC patients. In addition, we observed that proapoptotic and autophagy genes (Bax and ATG6L1, respectively) were also upregulated. Conclusion. Our results suggest that ER stress and UPR are indeed activated in UC patients and this may contribute to the chronic inflammatory process seen in UC. The increased apoptosis and autophagy markers further support the activation of these findings once they are activated to counterbalance tissue damage. These findings provide new insights into the molecular mechanisms that maintain UC activity and open new possibilities to attenuate intestinal inflammation.


Subject(s)
Colitis, Ulcerative , Endoplasmic Reticulum Stress , Endoribonucleases , Protein Serine-Threonine Kinases , eIF-2 Kinase , Colitis, Ulcerative/metabolism , Endoplasmic Reticulum Stress/genetics , Endoribonucleases/genetics , Endoribonucleases/metabolism , Humans , Intestinal Mucosa/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Unfolded Protein Response , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism
3.
Clin Gastroenterol Hepatol ; 18(5): 1142-1151.e10, 2020 05.
Article in English | MEDLINE | ID: mdl-31446181

ABSTRACT

BACKGROUND & AIMS: We aimed to identify biomarkers that might be used to predict responses of patients with inflammatory bowel diseases (IBD) to vedolizumab therapy. METHODS: We obtained biopsies from inflamed colon of patients with IBD who began treatment with vedolizumab (n = 31) or tumor necrosis factor (TNF) antagonists (n = 20) and performed RNA-sequencing analyses. We compared gene expression patterns between patients who did and did not enter endoscopic remission (absence of ulcerations at month 6 for patients with Crohn's disease or Mayo endoscopic subscore ≤1 at week 14 for patients with ulcerative colitis) and performed pathway analysis and cell deconvolution for training (n = 20) and validation (n = 11) datasets. Colon biopsies were also analyzed by immunohistochemistry. We validated a baseline gene expression pattern associated with endoscopic remission after vedolizumab therapy using 3 independent datasets (n = 66). RESULTS: We identified significant differences in expression levels of 44 genes between patients who entered remission after vedolizumab and those who did not; we found significant increases in leukocyte migration in colon tissues from patients who did not enter remission (P < .006). Deconvolution methods identified a significant enrichment of monocytes (P = .005), M1-macrophages (P = .05), and CD4+ T cells (P = .008) in colon tissues from patients who did not enter remission, whereas colon tissues from patients in remission had higher numbers of naïve B cells before treatment (P = .05). Baseline expression levels of PIWIL1, MAATS1, RGS13, and DCHS2 identified patients who did vs did not enter remission with 80% accuracy in the training set and 100% accuracy in validation dataset 1. We validated these findings in the 3 independent datasets by microarray, RNA sequencing and quantitative PCR analysis (P = .003). Expression levels of these 4 genes did not associate with response to anti-TNF agents. We confirmed the presence of proteins encoded by mRNAs using immunohistochemistry. CONCLUSIONS: We identified 4 genes whose baseline expression levels in colon tissues of patients with IBD associate with endoscopic remission after vedolizumab, but not anti-TNF, treatment. We validated this signature in 4 independent datasets and also at the protein level. Studies of these genes might provide insights into the mechanisms of action of vedolizumab.


Subject(s)
Colitis, Ulcerative , Inflammatory Bowel Diseases , RGS Proteins , Antibodies, Monoclonal, Humanized , Argonaute Proteins , Colitis, Ulcerative/drug therapy , Colon , Gastrointestinal Agents/therapeutic use , Humans , Inflammatory Bowel Diseases/drug therapy , Remission Induction , Treatment Outcome , Tumor Necrosis Factor Inhibitors
4.
J Transl Med ; 18(1): 44, 2020 01 30.
Article in English | MEDLINE | ID: mdl-32000799

ABSTRACT

BACKGROUND: Crohn's disease (CD) is a multifactorial disease characterized by chronic intestinal inflammation. The increased visceral adiposity near the affected intestinal area, of which mesenteric adipose tissue (MAT) is the main component, is a feature of CD. Both protective and pathological roles have been attributed to this disease-associated tissue in CD. To understand the contribution of MAT to CD pathophysiology, a molecular and cellular signature of disease-associated MAT in CD patients was provided. METHODS: We performed an observational study with whole transcriptional analysis by RNA sequencing (RNA-seq) of MAT and ileal mucosa from CD patients with active disease and controls. qPCR and immunohistology were performed for validation analysis. RESULTS: RNA-seq identified 17 significantly regulated genes (|FC| > 1.5; FDR < 0.05) in CD-MAT compared to non-IBD controls, with a marked upregulation of plasma cell genes (i.e., IGLL5, MZB1, CD79A, POU2AF1, FCRL5, JCHAIN, DERL3, SDC1, PIM2). A less strict statistical cutoff value (|FC| > 1.5, nominal p ≤ 0.05) yielded a larger list of 651 genes in CD-MAT compared to controls. CD ileum showed the significant regulation compared to control ileum of 849 genes (|FC| > 1.5; FDR < 0.05) or 2654 genes (|FC| > 1.5, nominal p ≤ 0.05). Ingenuity Pathway Analysis revealed the significant regulation of pathways related to T- and B cell functionality in the MAT of CD patients. Despite the differences between the MAT and ileal signatures of CD patients, we identified a subset of 204 genes significantly modulated in both tissues compared to controls. This common signature included genes related to the plasma cell signature. Genes such as S100A8, S100A9 (calprotectin) and IL1B, which are associated with acute inflammatory response, were exclusively regulated in the ileal mucosa of CD disease. In contrast, some genes encoding for lymphocyte receptors such as MS4A1, CD3D and CD79A were exclusively regulated in CD-MAT, exhibiting a different pattern of immune cell activation compared to the ileal mucosa in CD patients. qPCR and immunohistology confirmed the presence of large infiltrates of CD3+ CD20+ lymphocytes and CD138+ plasma cells in CD-MAT. CONCLUSION: Our data strongly supports the role of CD-associated MAT as a site for T-, B- and plasma cell activation, and suggests that it could also act as a reservoir of memory immune responses.


Subject(s)
Crohn Disease , Adipose Tissue , B-Lymphocytes , Crohn Disease/genetics , Humans , Ileum , Intestinal Mucosa , Mesentery , Plasma Cells , Signal Transduction/genetics , T-Lymphocytes
5.
Gut ; 68(11): 1961-1970, 2019 11.
Article in English | MEDLINE | ID: mdl-30792246

ABSTRACT

T cell clonal expansions are present in the inflamed mucosa of patients with Crohn's disease (CD) and may be implicated in postoperative recurrence after ileocolonic resection. METHODS: T cell receptor (TCR) analysis was performed in 57 patients included in a prospective multicentre cohort. Endoscopic recurrence was defined by a Rutgeerts score >i0. DNA and mRNA were extracted from biopsies collected from the surgical specimen and endoscopy, and analysed by high throughput sequencing and microarray, respectively. RESULTS: TCR repertoire in the mucosa of patients with CD displayed diverse clonal expansions. Active smokers at time of surgery had a significantly increased proportion of clonal expansions as compared with non-smokers (25.9%vs17.9%, p=0.02). The percentage of high frequency clones in the surgical specimen was significantly higher in patients with recurrence and correlated with postoperative endoscopic recurrence (area under the curve (AUC) 0.69, 95% CI 0.54 to 0.83). All patients with clonality above 26.8% (18/57) had an endoscopic recurrence. These patients with a high clonality were more frequently smokers than patients with a low clonality (61% vs 23%, p=0.005). The persistence of a similar TCR repertoire at postoperative endoscopy was associated with smoking and disease recurrence. Patients with high clonality showed increased expression of genes associated with CD8 T cells and reduced expression of inflammation-related genes. Expanded clones were found predominantly in the CD8 T cell compartment. CONCLUSION: Clonal T cell expansions are implicated in postoperative endoscopic recurrence. CD patients with increased proportion of clonal T cell expansions in the ileal mucosa represent a subgroup associated with smoking and where pathogenesis appears as T cell driven. TRIAL REGISTRATION NUMBER: NCT03458195.


Subject(s)
Crohn Disease/etiology , Crohn Disease/surgery , Ileitis/etiology , Ileitis/surgery , Receptors, Antigen, T-Cell/metabolism , Smoking , Adult , Aged , Cohort Studies , Crohn Disease/pathology , Female , Humans , Ileitis/pathology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Male , Middle Aged , Postoperative Period , Recurrence , Treatment Outcome , Young Adult
6.
Gut ; 68(12): 2129-2141, 2019 12.
Article in English | MEDLINE | ID: mdl-31366457

ABSTRACT

OBJECTIVE: Chronic inflammation is a risk factor in colorectal cancer (CRC) and reactive oxygen species (ROS) released by the inflamed stroma elicit DNA damage in epithelial cells. We sought to identify new drivers of ulcerative colitis (UC) and inflammatory CRC. DESIGN: The study uses samples from patients with UC, mouse models of colitis and CRC and mice deficient for the epithelial-to-mesenchymal transition factor ZEB1 and the DNA repair glycosylase N-methyl-purine glycosylase (MPG). Samples were analysed by immunostaining, qRT-PCR, chromatin immunoprecipitation assays, microbiota next-generation sequencing and ROS determination. RESULTS: ZEB1 was induced in the colonic epithelium of UC and of mouse models of colitis. Compared with wild-type counterparts, Zeb1-deficient mice were partially protected from experimental colitis and, in a model of inflammatory CRC, they developed fewer tumours and exhibited lower levels of DNA damage (8-oxo-dG) and higher expression of MPG. Knockdown of ZEB1 in CRC cells inhibited 8-oxo-dG induction by oxidative stress (H2O2) and inflammatory cytokines (interleukin (IL)1ß). ZEB1 bound directly to the MPG promoter whose expression inhibited. This molecular mechanism was validated at the genetic level and the crossing of Zeb1-deficient and Mpg-deficient mice reverted the reduced inflammation and tumourigenesis in the former. ZEB1 expression in CRC cells induced ROS and IL1ß production by macrophages that, in turn, lowered MPG in CRC cells thus amplifying a positive loop between both cells to promote DNA damage and inhibit DNA repair. CONCLUSIONS: ZEB1 promotes colitis and inflammatory CRC through the inhibition of MPG in epithelial cells, thus offering new therapeutic strategies to modulate inflammation and inflammatory cancer.


Subject(s)
Colitis, Ulcerative/genetics , Colonic Neoplasms/genetics , DNA Glycosylases/genetics , Epithelial Cells/metabolism , Gene Expression Regulation, Neoplastic , Neoplasms, Experimental , Zinc Finger E-box-Binding Homeobox 1/genetics , Animals , Biopsy , Cells, Cultured , Colitis, Ulcerative/complications , Colitis, Ulcerative/metabolism , Colonic Neoplasms/etiology , Colonic Neoplasms/pathology , DNA Glycosylases/metabolism , DNA Repair , Epithelial Cells/pathology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , RNA, Neoplasm/genetics , Zinc Finger E-box-Binding Homeobox 1/metabolism , Zinc Fingers
8.
Gut ; 71(12): 2375-2376, 2022 12.
Article in English | MEDLINE | ID: mdl-35074905
9.
Gut ; 66(12): 2069-2079, 2017 12.
Article in English | MEDLINE | ID: mdl-27803115

ABSTRACT

OBJECTIVE: UC is a chronic inflammatory disease of the colonic mucosa. Growing evidence supports a role for epithelial cell defects in driving pathology. Moreover, long-lasting changes in the epithelial barrier have been reported in quiescent UC. Our aim was to investigate whether epithelial cell defects could originate from changes in the epithelial compartment imprinted by the disease. DESIGN: Epithelial organoid cultures (EpOCs) were expanded ex vivo from the intestinal crypts of non-IBD controls and patients with UC. EpOCs were induced to differentiate (d-EpOCs), and the total RNA was extracted for microarray and quantitative real-time PCR (qPCR) analyses. Whole intestinal samples were used to determine mRNA expression by qPCR, or protein localisation by immunostaining. RESULTS: EpOCs from patients with UC maintained self-renewal potential and the capability to give rise to differentiated epithelial cell lineages comparable with control EpOCs. Nonetheless, a group of genes was differentially regulated in the EpOCs and d-EpOCs of patients with UC, including genes associated with antimicrobial defence (ie, LYZ, PLA2G2A), with secretory (ie, ZG16, CLCA1) and absorptive (ie, AQP8, MUC12) functions, and with a gastric phenotype (ie, ANXA10, CLDN18 and LYZ). A high rate of concordance was found in the expression profiles of the organoid cultures and whole colonic tissues from patients with UC. CONCLUSIONS: Permanent changes in the colonic epithelium of patients with UC could be promoted by alterations imprinted in the stem cell compartment. These changes may contribute to perpetuation of the disease.


Subject(s)
Colitis, Ulcerative/pathology , Epithelial Cells/pathology , Intestinal Mucosa/pathology , Stem Cells/pathology , Adult , Biopsy , Case-Control Studies , Colitis, Ulcerative/metabolism , Epithelial Cells/metabolism , Female , Humans , Immunohistochemistry , Intestinal Mucosa/metabolism , Male , Middle Aged , RNA/metabolism , Real-Time Polymerase Chain Reaction , Stem Cells/metabolism , Tissue Array Analysis
10.
Gastroenterology ; 151(3): 489-500.e3, 2016 09.
Article in English | MEDLINE | ID: mdl-27267052

ABSTRACT

BACKGROUND & AIMS: Crohn's disease (CD) has been associated with an altered immune response to commensal microbiota, mostly based on increased seroreactivity to microbial proteins. Although T cells are believed to contribute to the development of CD, little is known about the antigens involved. We investigated the antigen-specificity of T cells isolated from patients with CD. METHODS: We isolated peripheral blood mononuclear cells from 65 patients with CD and 45 healthy individuals (controls). We investigated T-cell reactivity to commensal microbial antigens using proliferation assays (based on thymidine incorporation and carboxyfluorescein succinimidyl ester dilution). Gene expression patterns were determined using microarray and real-time polymerase chain reaction analyses. Cytokines, chemokines, and antibodies were measured by enzyme-linked immunosorbent assay, flow cytometry, or multiplex cytokine assays. Intestinal crypts were obtained from surgical resection specimens of 7 individuals without inflammatory bowel disease. We examined the effects of commensal-specific CD4(+) T cells on primary intestinal epithelial cells from these samples. RESULTS: The bacterial proteins FlaX, A4-fla2, and YidX increased proliferation of CD4(+) T cells isolated from peripheral blood of patients with CD compared with controls. In blood samples from controls, CD4(+) T cells specific for FlaX, A4-fla2, or YidX had a T-helper (Th)1 phenotype; a larger proportion of CD4(+) T cells specific for these proteins in patients with CD had a Th17 phenotype or produced Th1 and Th17 cytokines. When supernatants collected from commensal-specific CD4(+) T cells from patients with CD were applied to healthy intestinal epithelial cells, the epithelial cells increased the expression of the chemokine (C-X-C motif) ligand 1 (CXCL1), CXCL8 and the CC chemokine ligand 20 (CCL20). CONCLUSIONS: A larger proportion of commensal-specific CD4(+) T cells from patients with CD have a Th17 phenotype or produce Th1 and Th17 cytokines, compared with T cells from controls; this might contribute to intestinal inflammation in patients with CD. These cells might be targeted for treatment of CD. The transcriptional data of commensal-specific CD4(+) T cells from healthy individuals and CD patients have been deposited in the Gene Expression Omnibus at the National Center for Biotechnology Information (accession no: GSE70469).


Subject(s)
Bacterial Proteins/immunology , CD4-Positive T-Lymphocytes/immunology , Crohn Disease/immunology , Symbiosis/immunology , Th17 Cells/immunology , Adult , Antibodies/blood , CD4-Positive T-Lymphocytes/microbiology , Case-Control Studies , Chemokines/blood , Crohn Disease/microbiology , Cytokines/blood , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Gastrointestinal Microbiome/immunology , Humans , Intestinal Mucosa/immunology , Male , Middle Aged , Real-Time Polymerase Chain Reaction
11.
Gut ; 65(9): 1456-62, 2016 09.
Article in English | MEDLINE | ID: mdl-26585938

ABSTRACT

OBJECTIVE: To evaluate the feasibility and toxicity of autologous haematopoietic stem cell transplantation (HSCT) for the treatment of refractory Crohn's disease (CD). DESIGN: In this prospective study, patients with refractory CD suffering an aggressive disease course despite medical treatment, impaired quality of life and in whom surgery was not an acceptable option underwent HSCT. Toxicity and complications during the procedure and within the first year following transplantation were evaluated, along with the impact of the introduction of supportive measures on safety outcomes. RESULTS: 26 patients were enrolled. During mobilisation, 16 patients (62%) presented febrile neutropaenia, including one bacteraemia and two septic shocks. Neutropaenia median time after mobilisation was 5 days. 5 patients withdrew from the study after mobilisation and 21 patients entered the conditioning phase. Haematopoietic recovery median time for neutrophils (>0.5×10(9)/L) was 11 days and for platelets (>20×10(9)/L) 4 days. Twenty patients (95%) suffered febrile neutropaenia and three patients (27%) presented worsening of the perianal CD activity during conditioning. Among non-infectious complications, 6 patients (28.5%) presented antithymocyte globulin reaction, 12 patients (57%) developed mucositis and 2 patients (9.5%) had haemorrhagic complications. Changes in supportive measures over the study, particularly antibiotic prophylaxis regimes during mobilisation and conditioning, markedly diminished the incidence of severe complications. During the first 12-month follow-up, viral infections were the most commonly observed complications, and one patient died due to systemic cytomegalovirus infection. CONCLUSIONS: Autologous HSCT for patients with refractory CD is feasible, but extraordinary supportive measures need to be implemented. We suggest that this procedure should only be performed in highly experienced centres.


Subject(s)
Antibiotic Prophylaxis/methods , Crohn Disease , Hematopoietic Stem Cell Transplantation , Postoperative Complications , Quality of Life , Transplantation Conditioning/methods , Adolescent , Adult , Crohn Disease/blood , Crohn Disease/diagnosis , Crohn Disease/psychology , Crohn Disease/therapy , Female , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Humans , Male , Monitoring, Physiologic/methods , Patient Acuity , Platelet Count/methods , Postoperative Complications/diagnosis , Postoperative Complications/prevention & control , Prospective Studies , Remission Induction/methods , Severity of Illness Index , Treatment Outcome
13.
Gut ; 64(2): 233-42, 2015 Feb.
Article in English | MEDLINE | ID: mdl-24700437

ABSTRACT

BACKGROUND: Anti-tumour necrosis factor α (TNFα) therapy effectively induces and maintains remission in Crohn's disease (CD). Up to 40% of patients, however, fail to respond to anti-TNFα. OBJECTIVE: To identify the mechanisms underlying the persistence of mucosal lesions in patients who fail to respond to anti-TNFα therapy. DESIGN: An observational study based on whole-genome transcriptional analysis was carried out using intestinal biopsy specimens from patients with CD receiving (n=12) or not (n=10) anti-TNFα therapy. The transcriptional signature of responders was compared with that of non-responders after anti-TNFα therapy. Controls with non-inflammatory bowel disease (non-IBD) (n=17) were used for comparisons. Genes of interest were validated by real-time RT-PCR in an independent cohort of patients with CD receiving (n=17) or not (n=16) anti-TNFα and non-IBD controls (n=7). RESULTS: We confirmed that response to anti-TNFα is accompanied by significant regulation of a large number of genes, including IL1B, S100A8, CXCL1, which correlated with endoscopic activity. Remarkably, patients who failed to respond to anti-TNFα showed a mixed signature, maintaining increased expression of IL1B, IL17A and S100A8, while showing significant modulation of other genes commonly upregulated in active CD, including IL6 and IL23p19. CONCLUSIONS: Our results show that anti-TNFα therapy significantly downregulates a subset of inflammatory genes even in patients who fail to achieve endoscopic remission, suggesting that these genes may not be dominant in driving inflammation in non-responders. On the other hand, we identified IL1B and IL17A as genes that remained altered in non-responders, pointing to potentially more relevant targets for modulating mucosal damage in refractory patients.


Subject(s)
Crohn Disease/drug therapy , Gastrointestinal Agents/therapeutic use , Inflammation Mediators/metabolism , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Adalimumab , Adult , Aged , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Colon/metabolism , Crohn Disease/genetics , Crohn Disease/metabolism , Female , Gene Expression Profiling/methods , Gene Expression Regulation/drug effects , Humans , Infliximab , Interleukin-6/biosynthesis , Interleukin-6/genetics , Intestinal Mucosa/metabolism , Male , Middle Aged , Oligonucleotide Array Sequence Analysis , Transcriptional Activation , Treatment Failure , Young Adult
14.
Lancet ; 384(9940): 309-18, 2014 Jul 26.
Article in English | MEDLINE | ID: mdl-24814090

ABSTRACT

BACKGROUND: Etrolizumab is a humanised monoclonal antibody that selectively binds the ß7 subunit of the heterodimeric integrins α4ß7 and αEß7. We aimed to assess etrolizumab in patients with moderately-to-severely active ulcerative colitis. METHODS: In this double-blind, placebo-controlled, randomised, phase 2 study, patients with moderately-to-severely active ulcerative colitis who had not responded to conventional therapy were recruited from 40 referral centres in 11 countries. Eligible patients (aged 18-75 years; Mayo Clinic Score [MCS] of 5 of higher [or ≥6 in USA]; and disease extending 25 cm or more from anal verge) were randomised (1:1:1) to one of two dose levels of subcutaneous etrolizumab (100 mg at weeks 0, 4, and 8, with placebo at week 2; or 420 mg loading dose [LD] at week 0 followed by 300 mg at weeks 2, 4, and 8), or matching placebo. The primary endpoint was clinical remission at week 10, defined as MCS of 2 or less (with no individual subscore of >1), analysed in the modified intention-to-treat population (mITT; all randomly assigned patients who had received at least one dose of study drug, had at least one post-baseline disease-activity assessment, and had a centrally read screening endoscopic subscore of ≥2). This study is registered with ClinicalTrials.gov, number NCT01336465. FINDINGS: Between Sept 2, 2011, and July 11, 2012, 124 patients were randomly assigned, of whom five had a endoscopic subscore of 0 or 1 and were excluded from the mITT population, leaving 39 patients in the etrolizumab 100 mg group, 39 in the etrolizumab 300 mg plus LD group, and 41 in the placebo group for the primary analyses. No patients in the placebo group had clinical remission at week 10, compared with eight (21% [95% CI 7-36]) patients in the etrolizumab 100 mg group (p=0·0040) and four (10% [0·2-24]) patients in the 300 mg plus LD group (p=0·048). Adverse events occurred in 25 (61%) of 41 patients in the etrolizumab 100 mg group (five [12%] of which were regarded as serious), 19 (48%) of 40 patients in the etrolizumab 300 mg plus LD group (two [5%] serious), and 31 (72%) of 43 patients in the placebo group (five [12%] serious). INTERPRETATION: Etrolizumab was more likely to lead to clinical remission at week 10 than was placebo. Therefore, blockade of both α4ß7 and αEß7 might provide a unique therapeutic approach for the treatment of ulcerative colitis, and phase 3 studies have been planned. FUNDING: Genentech.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal/therapeutic use , Colitis, Ulcerative/drug therapy , Adult , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal, Humanized/administration & dosage , Double-Blind Method , Female , Humans , Male , Remission Induction/methods , Time Factors , Treatment Outcome
15.
J Immunol ; 189(4): 1946-54, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22778395

ABSTRACT

Modulation of macrophage polarization underlies the onset and resolution of inflammatory processes, with polarization-specific molecules being actively sought as potential diagnostic and therapeutic tools. Based on their cytokine profile upon exposure to pathogenic stimuli, human monocyte-derived macrophages generated in the presence of GM-CSF or M-CSF are considered as proinflammatory (M1) or anti-inflammatory (M2) macrophages, respectively. We report in this study that the prolyl hydroxylase PHD3-encoding EGLN3 gene is specifically expressed by in vitro-generated proinflammatory M1(GM-CSF) human macrophages at the mRNA and protein level. Immunohistochemical analysis revealed the expression of PHD3 in CD163(+) lung macrophages under basal homeostatic conditions, whereas PHD3(+) macrophages were abundantly found in tissues undergoing inflammatory responses (e.g., Crohn's disease and ulcerative colitis) and in tumors. In the case of melanoma, PHD3 expression marked a subset of tumor-associated macrophages that exhibit a weak (e.g., CD163) or absent (e.g., FOLR2) expression of typical M2-polarization markers. EGLN3 gene expression in proinflammatory M1(GM-CSF) macrophages was found to be activin A dependent and could be prevented in the presence of an anti-activin A-blocking Ab or inhibitors of activin receptor-like kinase receptors. Moreover, EGLN3 gene expression was upregulated in response to hypoxia only in M2(M-CSF) macrophages, and the hypoxia-mediated upregulation of EGLN3 expression was significantly impaired by activin A neutralization. These results indicate that EGLN3 gene expression in macrophages is dependent on activin A both under basal and hypoxic conditions and that the expression of the EGLN3-encoded PHD3 prolyl hydroxylase identifies proinflammatory macrophages in vivo and in vitro.


Subject(s)
Activins/metabolism , Dioxygenases/metabolism , Gene Expression Regulation/immunology , Inflammation/metabolism , Macrophages/enzymology , Activins/genetics , Activins/immunology , Blotting, Western , Dioxygenases/genetics , Dioxygenases/immunology , Enzyme-Linked Immunosorbent Assay , Humans , Hypoxia-Inducible Factor-Proline Dioxygenases , Immunohistochemistry , Inflammation/genetics , Inflammation/immunology , Macrophages/immunology , Microscopy, Confocal , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
16.
Gut ; 62(7): 967-76, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23135761

ABSTRACT

OBJECTIVE: Ulcerative colitis (UC) is a chronic condition characterised by the relapsing inflammation despite previous endoscopic and histological healing. Our objective was to identify the molecular signature associated with UC remission. DESIGN: We performed whole-genome transcriptional analysis of colonic biopsies from patients with histologically active and inactive UC, and non-inflammatory bowel disease (non-IBD) controls. Real-time reverse transcriptase-PCR and immunostaining were used for validating selected genes in independent cohorts of patients. RESULTS: Microarray analysis (n=43) demonstrates that UC patients in remission present an intestinal transcriptional signature that significantly differs from that of non-IBD controls and active patients. Fifty-four selected genes were validated in an independent cohort of patients (n=30). Twenty-nine of these genes were significantly regulated in UC-in-remission subjects compared with non-IBD controls, including a large number of epithelial cell-expressed genes such as REG4, S100P, SERPINB5, SLC16A1, DEFB1, AQP3 and AQP8, which modulate epithelial cell growth, sensitivity to apoptosis and immune function. Expression of inflammation-related genes such as REG1A and IL8 returned to control levels during remission. REG4, S100P, SERPINB5 and REG1A protein expression was confirmed by immunohistochemistry (n=23). CONCLUSIONS: Analysis of the gene signature associated with remission allowed us to unravel pathways permanently deregulated in UC despite histological recovery. Given the strong link between the regulation of some of these genes and the growth and dissemination of gastrointestinal cancers, we believe their aberrant expression in UC may provide a mechanism for epithelial hyper-proliferation and, in the context of malignant transformation, for tumour growth.


Subject(s)
Colitis, Ulcerative/genetics , Colon/metabolism , Intestinal Mucosa/metabolism , Transcriptome , Adolescent , Adult , Aged , Biopsy , Case-Control Studies , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Colon/pathology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Female , Gene Expression Profiling/methods , Gene Expression Regulation , Humans , Intestinal Mucosa/pathology , Male , Middle Aged , Oligonucleotide Array Sequence Analysis/methods , Remission Induction , Reverse Transcriptase Polymerase Chain Reaction/methods , Young Adult
17.
J Crohns Colitis ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38757210

ABSTRACT

BACKGROUND AND AIM: Autologous haematopoietic stem cell transplantation [AHSCT] is a therapeutic option for refractory Crohn's disease [CD]. However, high adverse event rates related to chemotherapy toxicity and immunosuppression limit its applicability. This study aims to evaluate AHSCT's safety and efficacy using a cyclophosphamide (Cy)-free mobilisation regimen. METHODS: A prospective observational study included 14 refractory CD patients undergoing AHSCT between June 2017 and October 2022. The protocol involved outpatient mobilisation with G-CSF 12-16 µg/kg/daily for 5 days, and optional Plerixafor 240 µg/d (1-2 doses) if the CD34+ cell count target was unmet. Standard conditioning with Cy and anti-thymocyte globulin was administered. Clinical, endoscopic, and radiological assessments were conducted at baseline and during follow-up. RESULTS: All patients achieved successful outpatient mobilisation (7 patients needed Plerixafor) and underwent transplantation. Median follow-up was 106 weeks (IQR 52-348). No mobilisation-related serious adverse events (SAEs) or CD worsening occurred. Clinical and endoscopic remission rates were 71% and 41.7% at 26 weeks, 64% and 25% at 52 weeks, and 71% and 16.7% at the last follow-up. The percentage of patients who restarted CD therapy for clinical relapse and/or endoscopic/radiological activity was 14% at 26 weeks, 57% at 52 weeks, and 86% at the last follow-up. Peripheral blood cell populations and antibody levels post-AHSCT were comparable to Cy-based mobilisation. CONCLUSIONS: Cy-free mobilisation is safe and feasible in refractory CD patients undergoing AHSCT. Although relapse occurs in a significant proportion of patients, clinical and endoscopic responses are achieved upon CD-specific therapy reintroduction.

18.
Genome Biol ; 25(1): 81, 2024 03 29.
Article in English | MEDLINE | ID: mdl-38553769

ABSTRACT

The use of single-cell technologies for clinical applications requires disconnecting sampling from downstream processing steps. Early sample preservation can further increase robustness and reproducibility by avoiding artifacts introduced during specimen handling. We present FixNCut, a methodology for the reversible fixation of tissue followed by dissociation that overcomes current limitations. We applied FixNCut to human and mouse tissues to demonstrate the preservation of RNA integrity, sequencing library complexity, and cellular composition, while diminishing stress-related artifacts. Besides single-cell RNA sequencing, FixNCut is compatible with multiple single-cell and spatial technologies, making it a versatile tool for robust and flexible study designs.


Subject(s)
Genomics , RNA , Humans , Animals , Mice , Tissue Fixation/methods , Reproducibility of Results , Sequence Analysis, RNA/methods , RNA/genetics , Genomics/methods , Single-Cell Analysis/methods
19.
Nat Rev Gastroenterol Hepatol ; 20(7): 433-446, 2023 07.
Article in English | MEDLINE | ID: mdl-37069321

ABSTRACT

Interleukin-12 (IL-12) and interleukin-23 (IL-23), which belong to the IL-12 family of cytokines, have a key role in intestinal homeostasis and inflammation and are implicated in the pathogenesis of inflammatory bowel disease. Upon their secretion by antigen-presenting cells, they exert both pro-inflammatory and anti-inflammatory receptor-mediated effects. An increased understanding of these biological effects, particularly the pro-inflammatory effects mediated by IL-12 and IL-23, has led to the development of monoclonal antibodies that target a subunit common to IL-12 and IL-23 (p40; targeted by ustekinumab and briakinumab), or the IL-23-specific subunit (p19; targeted by risankizumab, guselkumab, brazikumab and mirikizumab). This Review provides a summary of the biology of the IL-12 family cytokines IL-12 and IL-23, discusses the role of these cytokines in intestinal homeostasis and inflammation, and highlights IL-12- and IL-23-directed drug development for the treatment of Crohn's disease and ulcerative colitis.


Subject(s)
Crohn Disease , Interleukin-12 , Humans , Ustekinumab/therapeutic use , Interleukin-23 , Inflammation
20.
Front Mol Biosci ; 10: 1119900, 2023.
Article in English | MEDLINE | ID: mdl-36756361

ABSTRACT

Serrated polyposis syndrome (SPS) is one of the most frequent polyposis syndromes characterized by an increased risk for developing colorectal cancer (CRC). Although SPS etiology has been mainly associated with environmental factors, germline predisposition to SPS could also be relevant for cases with familial aggregation or a family history of SPS/CRC. After whole-exome sequencing of 39 SPS patients from 16 families, we identified a heterozygous germline frameshift variant in the POLD1 gene (c.1941delG, p.(Lys648fs*46)) in a patient with SPS and CRC. Tumor presented an ultra-hypermutated phenotype and microsatellite instability. The POLD1 germline variant segregated in three additional SPS-affected family members. We attempted to create yeast and cellular models for this variant but were no viable. Alternatively, we generated patient-derived organoids (PDOs) from healthy rectal tissue of the index case, as well as from a control donor. Then, we challenged PDOs with a DNA-damaging agent to induce replication stress. No significant differences were observed in the DNA damage response between control and POLD1-Lys648fs PDOs, nor specific mutational signatures were observed. Our results do not support the pathogenicity of the analyzed POLD1 frameshift variant. One possible explanation is that haplosufficiency of the wild-type allele may be compensating for the absence of expression of the frameshift allele. Overall, future work is required to elucidate if functional consequences could be derived from POLD1 alterations different from missense variants in their proofreading domain. To our knowledge, our study presents the first organoid model for germline POLD1 variants and establishes the basis for its use as a model for disease in SPS, CRC and other malignancies.

SELECTION OF CITATIONS
SEARCH DETAIL