Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Chem Biodivers ; : e202400615, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958197

ABSTRACT

Wound healing is a critical process in tissue repair following injury, and traditional herbal therapies have long been utilized to facilitate this process. This review delves into the mechanistic understanding of the significant contribution of pharmacologically demonstrated natural products in wound healing. Natural products, often perceived as complex yet safely consumed compared to synthetic chemicals, play a crucial role in enhancing the wound-healing process. Drawing upon a comprehensive search strategy utilizing databases such as PubMed, Scopus, Web of Science, and Google Scholar, this review synthesizes evidence on the role of natural products in wound healing. While the exact pharmacological mechanisms of secondary metabolites in wound healing remain to be fully elucidated, compounds from alkaloids, phenols, terpenes, and other sources are explored here to delineate their specific roles in wound repair. Each phytochemical group exerts distinct actions in tissue repair, with some displaying multifaceted roles in various pathways, potentially enhancing their therapeutic value, supported by reported safety profiles. Additionally, these compounds exhibit promise in the prevention of keloids and scars. Their potential alongside economic feasibility may propel them towards pharmaceutical product development. Several isolated compounds, from natural sources, are undergoing investigation in clinical trials, with many reaching advanced stages.

2.
Chem Biodivers ; : e202400911, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38923729

ABSTRACT

Genus Berberis is an excellent choice for research due to its history in traditional medicine, diverse pharmacological properties, and it has potential for drug discovery. This review presents information on the ethnobotany, pharmacological activities, and many phytochemicals identified from Berberis species. It examines the existing literature on the genus Berberis, drawn from online databases, including PubMed, Web of Science, Science Direct, Elsevier, and Google Scholar, etc encompassing the data from 1960 to 2023. This review focuses on the structural details of reported phytochemicals of Berberis species and pharmacological actions. Different extraction techniques were evaluated for extracts preparation. According to literature review, phytochemical analysis exhibited the presence of alkaloids, flavonoids, and phenolic compounds. A major bioactive alkaloid, berberine exhibits its main role in treatment of many gastric, infectious, and chronic disorders. This literature indicates that Berberis genus exhibits a variety of biological activities, i.e anti-inflammatory, cytotoxic, hepatoprotective, antimicrobial, antidiabetic and antioxidant activities and utilization of these effects in the treatment and management of various diseases, like diabetes, microbial infections, inflammation, liver disorders, and cancer. However, conventional medicines, validation of traditional uses, and in-depth phytochemical analysis are areas of research in genus Berberis.

3.
Chem Biodivers ; 21(1): e202301375, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38031244

ABSTRACT

Trillium govanianum is a high-value medicinal herb, having multifunctional traditional and culinary uses. The present investigation was carried out to evaluate the phytochemical, biological and toxicological parameters of the T. govanianum Wall. ex D. Don (Family: Trilliaceae) roots collected from Azad Kashmir, Pakistan. Phytochemical profiling was achieved by determining total bioactive contents (total phenolic and flavonoid contents) and UHPLC-MS analysis. For biological evaluation, antioxidant activities (DPPH, ABTS, FRAP, CUPRAC, phosphomolybdenum, and metal chelation assays) and enzyme inhibition activities (against AChE, BChE, glucosidase, amylase, and tyrosinase) were performed. Moreover, cytotoxicity was assessed against three human carcinoma cell lines (MDA-MB-231, CaSki, and DU-145). The tested extract was found to contain higher total phenolics (7.56 mg GAE/g dry extract) as compared to flavonoid contents (0.45 mg RE/g dry extract). Likewise, for the antioxidant activity, higher CUPRAC activity was noted with 39.84 mg TE/g dry extract values. In the case of enzyme assays, higher activity was pointed out against the cholinesterase, glucosidase and tyrosinase enzymes. The plant extract displayed significant cytotoxicity against the cell lines examined. Moreover, the in-silico studies highlighted the interaction between the important phytochemicals and tested enzymes. To conclude, the assessed biological activity and the existence of bioactive phytochemicals in the studied plant extract may pave the way for the development of novel pharmaceuticals.


Subject(s)
Trillium , Humans , Trillium/chemistry , Monophenol Monooxygenase , Antioxidants/pharmacology , Antioxidants/chemistry , Flavonoids/pharmacology , Flavonoids/analysis , Plant Extracts/pharmacology , Plant Extracts/chemistry , Glucosidases , Phytochemicals/chemistry
4.
Crit Rev Food Sci Nutr ; : 1-24, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37255100

ABSTRACT

Enzymes are biologically active complex protein molecules that catalyze most chemical reactions in living organisms, and their inhibitors accelerate biological processes. This review emphasizes medicinal food plants and their isolated chemicals inhibiting clinically important enzymes in common diseases. A mechanistic overview was investigated to explain the mechanism of these food bases enzyme inhibitors. The enzyme inhibition potential of medicinal food plants and their isolated substances was searched in Ovid, PubMed, Science Direct, Scopus, and Google Scholar. Cholinesterase, amylase, glucosidase, xanthine oxidase, tyrosinase, urease, lipoxygenase, and others were inhibited by crude extracts, solvent fractions, or isolated pure chemicals from medicinal food plants. Several natural compounds have shown tyrosinase inhibition potential, including quercetin, glabridin, phloretin-4-O-ß-D-glucopyranoside, lupinalbin, and others. Some of these compounds' inhibitory kinetics and molecular mechanisms are also discussed. Phenolics and flavonoids inhibit enzyme activity best among the secondary metabolites investigated. Several studies showed flavonoids' significant antioxidant and anti-inflammatory activities, highlighting their medicinal potential. Overall, many medicinal food plants, their crude extracts/fractions, and isolated compounds have been studied, and some promising compounds depending on the enzyme have been found. Still, more studies are recommended to derive potential pharmacologically active functional foods.

5.
Saudi Pharm J ; 31(2): 191-206, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36942273

ABSTRACT

Introduction: Ailanthus altissima is an indigenous plant known for various remedial properties. The present study aimed to evaluate the neuroprotective potential of methanolic extract Ailanthus altissima (AA) bark as current scientific trend is searching plant for neurodegenerative diseases, worldwide. Methodology: In in-vitro experiments, the AA was analyzed for phenols, flavonoids, antioxidative and cholinesterase inhibitory properties with subsequent detailed characterization for secondary metabolites. The in-vivo neurological effects were evaluated in rats through behavioral assessment for anxiety and memory after chronic administration (28 days) of 50-200 mg/kg of AA. At the end of behavior studies, isolated brains were biochemically tested to determine antioxidant enzyme activity. Results: AA was found rich in phenols/flavonoids and active in radical scavenging with the presence of 13 secondary metabolites in UHPLC-MS analysis. The AA yielded anxiolytic effects dose-dependently in the open field, light/dark and elevated-plus maze tests as animals significantly (P < 0.05 vs control group) preferred open arena, illuminated zone and exposed arms of maze. Similarly, the animals treated with AA showed significant (P < 0.05 vs amnesic group) increase in spontaneous alternation, discrimination index in y-maze, novel object recognition tests. Further, AA.Cr treated rats showed noticeably shorter escape latencies in Morris water maze tests.In biochemical analysis, the dissected brains AA treated rats showed reduced levels of AChE and malondialdehyde with increased levels of first-line antioxidant enzymes i.e. glutathione peroxidase and superoxide dismutase. These observed biological effects might be attributed to phenols and flavonoids constituents owned by AA. -The in-silico studies showed thatconessine and lophirone J phytocompounds have good blood-brain barrier permeability and interaction with AChE. Conclusion: The outcomes of this study validate that bark of Ailanthus altissima might work as a source of bioactive phytochemicals of neuroprotective potential.

6.
Molecules ; 27(18)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36144585

ABSTRACT

This work was undertaken to explore the phytochemical composition, antioxidant, and enzyme-inhibiting properties of Neurada procumbens L. extracts/fractions of varying polarity (methanol extract and its fractions including n-hexane, chloroform, n-butanol, and aqueous fractions). A preliminary phytochemical study of all extracts/fractions, HPLC-PDA polyphenolic quantification, and GC-MS analysis of the n-hexane fraction were used to identify the phytochemical makeup. Antioxidant (DPPH), enzyme inhibition (against xanthine oxidase, carbonic anhydrase, and urease enzymes), and antibacterial activities against seven bacterial strains were performed for biological investigation. The GC-MS analysis revealed the tentative identification of 22 distinct phytochemicals in the n-hexane fraction, the majority of which belonged to the phenol, flavonoid, sesquiterpenoid, terpene, fatty acid, sterol, and triterpenoid classes of secondary metabolites. HPLC-PDA analysis quantified syringic acid, 3-OH benzoic acid, t-ferullic acid, naringin, and epicatechin in a significant amount. All of the studied extracts/fractions displayed significant antioxidant capability, with methanol extract exhibiting the highest radical-scavenging activity, as measured by an inhibitory percentage of 81.4 ± 0.7 and an IC50 value of 1.3 ± 0.3. For enzyme inhibition experiments, the n-hexane fraction was shown to be highly potent against xanthine oxidase and urease enzymes, with respective IC50 values of 2.3 ± 0.5 and 1.1 ± 0.4 mg/mL. Similarly, the methanol extract demonstrated the strongest activity against the carbonic anhydrase enzyme, with an IC50 value of 2.2 ± 0.4 mg/mL. Moreover, all the studied extracts/fractions presented moderate antibacterial potential against seven bacterial strains. Molecular docking of the five molecules ß-amyrin, campesterol, ergosta-4,6,22-trien-3ß-ol, stigmasterol, and caryophyllene revealed the interaction of these ligands with the investigated enzyme (xanthine oxidase). The results of the present study suggested that the N. procumbens plant may be evaluated as a possible source of bioactive compounds with multifunctional therapeutic applications.


Subject(s)
Carbonic Anhydrases , Catechin , Plants, Medicinal , Triterpenes , 1-Butanol , Anti-Bacterial Agents/pharmacology , Antioxidants/chemistry , Benzoic Acid , Chloroform , Fatty Acids , Flavonoids/analysis , Flavonoids/pharmacology , Hexanes , Ligands , Metabolomics , Methanol/chemistry , Molecular Docking Simulation , Phenols/analysis , Phytochemicals/analysis , Phytochemicals/pharmacology , Plant Extracts/chemistry , Plants, Medicinal/metabolism , Stigmasterol , Terpenes , Trientine , Urease , Xanthine Oxidase
7.
Molecules ; 27(20)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36296481

ABSTRACT

Plants of the genus Strobilanthes have notable use in folklore medicines as well as being used for pharmacological purposes. The present work explored the biological predispositions of Strobilanthes glutinosus and attempted to accomplish a comprehensive chemical profile through GC-MS of different fractions concerning polarity (chloroform and n-butanol) and LC-ESI-MS of methanolic extract by both positive and negative ionization modes. The biological characteristics such as antioxidant potential were assessed by applying six different methods. The potential for clinically relevant enzyme (α-amylase, α-glucosidase, and tyrosinase) inhibition was examined. The DPPH, ABTS, CUPRAC, and FRAP results revealed that the methanol fraction presented efficient results. The phosphomolybdenum assay revealed that the n-hexane fraction showed the most efficient results, while maximum metal chelation potential was observed for the chloroform fraction. The GC-MS profiling of n-butanol and chloroform fractions revealed the existence of several (110) important compounds presenting different classes (fatty acids, phenols, alkanes, monoterpenes, diterpenes, sesquiterpenoids, and sterols), while LC-ESI-MS tentatively identified the presence of 44 clinically important secondary metabolites. The n-hexane fraction exhibited the highest potential against α-amylase (497.98 mm ACAE/g extract) and α-glucosidase (605.85 mm ACAE/g extract). Significant inhibitory activity against tyrosinase enzyme was displayed by fraction. Six of the prevailing compounds from the GC-MS study (lupeol, beta-amyrin, stigmasterol, gamma sitosterol, 9,12-octadecadienoic acid, and n-hexadecanoic acid) were modelled against α-glucosidase and α-amylase enzymes along with a comparison of binding affinity to standard acarbose, while three compounds identified through LC-ESI-MS were docked to the mushroom tyrosinase enzyme and presented with significant biding affinities. Thus, it is assumed that S. glutinosus demonstrated effective antioxidant and enzyme inhibition prospects with effective bioactive molecules, potentially opening the door to a new application in the field of medicine.


Subject(s)
Plants, Medicinal , Plants, Medicinal/chemistry , Antioxidants/chemistry , Monophenol Monooxygenase , Sitosterols , Methanol/chemistry , alpha-Glucosidases , Gas Chromatography-Mass Spectrometry , Chloroform , Acarbose , 1-Butanol , Stigmasterol , Palmitic Acid , Linoleic Acid , Plant Extracts/pharmacology , Plant Extracts/chemistry , Enzyme Inhibitors/chemistry , Phytochemicals/pharmacology , Phytochemicals/chemistry , Phenols/analysis , alpha-Amylases , Monoterpenes , Alkanes
8.
Drug Dev Ind Pharm ; 46(5): 861-868, 2020 May.
Article in English | MEDLINE | ID: mdl-32352878

ABSTRACT

The biological, chemical, and in silico properties of methanol and dichloromethane (DCM) extracts of Alhagi maurorum roots with respect to the antioxidant, enzyme inhibition, and phytochemical composition were evaluated. Total bioactive contents were determined spectrophotometrically, and the individual secondary metabolites composition was assessed via ultra-high-performance liquid chromatography mass spectrometry (UHPLC-MS) analysis. Antioxidant capacities were evaluated using a panoply of assays (2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radical scavenging, ferric reducing antioxidant power (FRAP), cupric reducing antioxidant power (CUPRAC), phosphomolybdenum total antioxidant capacity (TAC), and metal chelating activity (MCA)). The enzyme inhibition potential was studied against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), α-amylase, α-glucosidase, tyrosinase, urease and lipoxygenase (LOX) enzymes. The methanol extract was found to contain higher total phenolic (105.91 mg GAE/g extract) and flavonoid (2.27 mg RE/g extract) contents which can be correlated to its more substantial antioxidant potential as well as AChE, BChE, tyrosinase and α-glucosidase inhibition. However, the DCM extract was the most effective against α-amylase (1.86 mmol ACAE/g extract) enzyme inhibition. The UHPLC-MS analysis of methanol extract identified the tentative presence of a total of 18 secondary metabolites, including flavonoids, saponins, phenolic and terpenoid derivatives. Three compounds named emmotin A, luteolin 5,3'-dimethyl ether, and preferrugone were further investigated for their in silico molecular docking studies against the tested enzymes. The selected compounds were found to have higher binding interaction with AChE followed by BChE, α-glucosidase, α-amylase, and tyrosinase. The results of the present study have demonstrated A. mauroram to be considered as a lead source of natural antioxidant and enzyme inhibitor compounds.


Subject(s)
Computer Simulation , Molecular Docking Simulation/methods , Phytochemicals/analysis , Plant Extracts/analysis , Plant Roots , Plants, Medicinal , Chromatography, High Pressure Liquid/methods , Phytochemicals/chemistry , Plant Extracts/chemistry , Tandem Mass Spectrometry/methods
9.
Pak J Pharm Sci ; 33(4(Supplementary)): 1833-1838, 2020 Jul.
Article in English | MEDLINE | ID: mdl-33612467

ABSTRACT

The aim of this study was the evaluation of diuretic potential of Delphinium brunonianum. Acute diuretic effect in rats was evaluated 8 h after administration of various doses of crude extract, fractions and hydrochlorthiazide. While, prolonged effect of butanolic fraction was assessed after 7days of oral administration in rats. Thereafter, involvement of different pathways in diuretic activity was also appraised. Furthermore, polyphenolic contents in butanolic fraction were assessed using HPLC/UV-VIS technique. All doses of extract and fractions induced a prominent increase in urine and Na+ excretion with no effect on excretion of K+. Prior administration of indomethacin and atropine considerably avoided the diuretic effect of butanolic fraction. Regarding the quantitative chemical analysis the polyphenolic contents were recorded as 28.78 µg/mg. Thus results of present investigation suggested that Delphinium brunonianum possess remarkable diuretic potential.


Subject(s)
Delphinium/chemistry , Diuretics/pharmacology , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Animals , Atropine/pharmacology , Chromatography, High Pressure Liquid/methods , Female , Indomethacin/pharmacology , Male , Models, Animal , Rats , Rats, Sprague-Dawley , Sodium/metabolism
10.
Pak J Pharm Sci ; 33(5(Supplementary)): 2219-2230, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33832894

ABSTRACT

Sorghum halepense L (Poaceae), ordinarily it is known as Johnson grass and locally as baru. This study was designed to find the vascular mechanisms underlying the hypotensive activity of S. halepense. In this study, effect of S. halepense seed extract/fractions on various blood pressure parameters were evaluated in normal and fructose induced hypertensive rats by invasive technique. Possible underlying hypotensive mechanism of active fraction was determined by using various pharmacological inhibitors. S. halepense extract/fractions vasorelaxant effect were also evaluated on rat aorta rings in organ bath and various intracellular signaling pathway inhibitors were used for determination of underlying mechanisms. S. halepense extract/fractions produced blood pressure lowering effect with most significant effect by its aqueous soluble fraction at dose of 10mg/kg. This effect was attenuated by pretreatment of atropine. Aqueous soluble fraction produced endothelium dependent vasorelaxation in rat aortic rings that was inhibited by pretreatment of atropine after phenylephrine induced contraction. The vasorelaxant effect of aqueous soluble fraction was attenuated by potassium channel blockers and also produced inhibitory effect on calcium entry through calcium channels. It also suppressed phenylephrine induced contraction like verapamil. By HPLC analysis found vanillic acid and naringinin in it. In conclusion, aqueous soluble fraction of S.halepense possess phytoconstituents which may be responsible for hypotensive and vasorelaxant effect of Sorghum halepense.


Subject(s)
Antihypertensive Agents/pharmacology , Blood Pressure/drug effects , Hypertension/drug therapy , Plant Extracts/pharmacology , Sorghum , Vasodilation/drug effects , Vasodilator Agents/pharmacology , Animals , Antihypertensive Agents/isolation & purification , Disease Models, Animal , Flavanones/isolation & purification , Flavanones/pharmacology , Fructose , Hypertension/chemically induced , Hypertension/metabolism , Hypertension/physiopathology , Male , Plant Extracts/isolation & purification , Rats, Sprague-Dawley , Sorghum/chemistry , Vanillic Acid/isolation & purification , Vanillic Acid/pharmacology , Vasodilator Agents/isolation & purification
11.
Acta Pol Pharm ; 73(2): 419-23, 2016.
Article in English | MEDLINE | ID: mdl-27180434

ABSTRACT

Inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), which breakdown acetylcholine and butyrylcholine, are considered as a promising strategy in the management of Alzheimer's disease (AD). Traditional accounts of indigenous plant Jatopha gossypyfolia suggest presence of important medicinal activities including improvement of memory functioning. To establish correlation of its use as anti-Alzheimer, AChE and BuChE inhibitory activity of extracts obtained from different parts of plant Jatropha gossypyfolia belonging to the family Euphorbiaceae were tested. Extracts from leaves, stem bark and roots were prepared by maceration. Enzyme inhibitory activity was carried out by using standard in vitro AChE and BuChE inhibition assays (Ellman's assay method) and the percentage inhibition was calculated. The results showed that roots dichloromethane fraction (65.43 ± 0.11), roots methanol fraction (62.79 ± 0.34) and leaves dichloromethane fraction (57.71 ± 0.15) showed significant acetylcholinesterase inhibitory activity compared to other fractions when compared with standard serine (91.29 ± 1.17). Similarly, butyrylcholinesterase enzyme inhibitory results showed that roots dichloromethane fraction (80.46 ± 0.44), JGLE (77.34 ± 0.34) showed significant BuChE enzyme inhibitory activity as compared to other fractions when compared with standard eserine (82.82 ± 1.09). Dichloromethane extracts showed higher enzyme inhibition comparatively. Highest AChE and BuChE inhibition was observed with leaf extracts of ethyl acetate fraction. In conclusion, the plant extracts exhibited presence of bioactive compounds with significant AChE and BuChE inhibition supporting traditional use of this herb in the management of AD. However, further investigation of the plant is required.


Subject(s)
Acetylcholinesterase/metabolism , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Jatropha , Plant Extracts/pharmacology , Cholinesterase Inhibitors/isolation & purification , Jatropha/chemistry , Phytotherapy , Plant Bark , Plant Extracts/isolation & purification , Plant Leaves , Plant Roots , Plant Stems , Plants, Medicinal
12.
Nat Prod Res ; : 1-16, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949575

ABSTRACT

Crotalaria burhia (Family: Fabaceae) is an important medicinal plant widely distributed in arid parts of the world, including Pakistan, India, and Afghanistan. This plant has enormous ethnobotanical values and is used to treat various common ailments such as swelling, infections, cancer, hydrophobia, pain and skin diseases. Moreover, it is also utilised as food for goats, to make sheds for animals and as a suitable soil binder. This review article is an attempt to analyse critically and to provide updated and categorised information about C. burhia including comprehensive knowledge of the botanical description, traditional/folklore uses, phytochemistry, pharmacological/biological potential, and to facilitate scientific basis for future work. The phytochemical studies (qualitative and quantitative) on C. burhia have indicated the presence of important phytochemical classes, namely alkaloids, flavonoids, glycosides, saponins, phenolics, tannins, steroids, and terpenoids. Pharmacological studies such as anti-inflammatory/analgesic, antioxidant, anti-microbial, anti-tumour, anti-nociceptive, enzyme inhibition, and termiticidal activities were reported from different parts of this plant. Most of the bioassays from this plant have been done on the crude extract. Minimal information about the phytochemicals (responsible for biological activities), except a few compounds has been reported. The potential chemical compounds may need to be purified and tested for the biological potential from isolated compounds in future.

13.
J Biomol Struct Dyn ; 42(5): 2242-2256, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37211823

ABSTRACT

Developing highly potent covalent inhibitors of Fibroblast growth factor receptors 1 (FGFR1) has always been a challenging task. In the current study, various computational techniques, such as 3D-QSAR, covalent docking, fingerprinting analysis, MD simulation followed by MMGB/PBSA, and per-residue energy decomposition analysis were used to explore the binding mechanism of pyrazolo[3,4-d]pyridazinone derivatives to FGFR1. The high q2 and r2 values for the CoMFA and CoMSIA models, suggest that the constructed 3D-QSAR models could reliably predict the bioactivities of FGFR1 inhibitors. The structural requirements revealed by the model's contour maps were strategically used to computationally create an in-house library of more than 100 new FGFR1 inhibitors using the R-group exploration technique implemented in the SparkTM software. The compounds from the in-house library were also mapped in the 3D-QSAR model that predicts comparable pIC50 values with the experimental values. A comparison between 3D-QSAR generated contours and molecular docking conformation of ligands was performed to reveal the fundamentals to design potent FGFR1 covalent inhibitors. The estimated binding free energies (MMGB/PBSA) for the selected compounds were in agreement with the experimental value ranking of their binding affinities towards FGFR1. Furthermore, per-residue energy decomposition analysis has identified Arg627 and Glu531 to contribute significantly in improved binding affinity of compound W16. During ADME analysis, the majority of in-house library compounds exhibited pharmacokinetic properties superior to those of experimentally produced compounds. These new compounds may help researchers better understand FGFR1 inhibition and lead to the creation of novel, potent FGFR1 inhibitors.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antineoplastic Agents , Molecular Dynamics Simulation , Pyrazoles , Pyridazines , Receptor, Fibroblast Growth Factor, Type 1 , Antineoplastic Agents/pharmacology , Molecular Docking Simulation , Protein Binding , Quantitative Structure-Activity Relationship , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyridazines/chemistry , Pyridazines/pharmacology , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors
14.
Comput Biol Chem ; 108: 108003, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38159453

ABSTRACT

CDK9 is an emerging target for the development of anticancer drugs. The development of CDK9 inhibitors with significant potency had consistently posed a formidable challenge. In the current research, a number of computational methodologies, such as, 3D-QSAR, molecular docking, fingerprint analysis, molecular dynamic (MD) simulations followed by MMGB/PBSA and ADMET studies were used systemically to uncover the binding mechanism of pyrimidine derivatives against CDK9. The CoMFA and CoMSIA models having high q2 (0.53, 0.54) and r2 values (0.96, 0.93) respectively indicating that model could accurately predict the bioactivities of CDK9 inhibitors. Using the R-group exploration technique implemented by the Spark™ by Cresset group, the structural requirements revealed by the contour maps of model were utilized strategically to create an in-house library of 100 new CDK9 inhibitors. Additionally, the compounds from the in-house library were mapped into 3D-QSAR model which predicted pIC50 values comparable to the experimental values. A comparison between 3D-QSAR generated contours and molecular docking conformation of ligands was performed to elucidate the essentials of CDK9 inhibitor design. MD simulations (100 ns) were performed on the selected docked complexes A21, A14 and D98 which contributed in validating the binding interactions. According to the findings of binding free energy analysis (MMGB/PBSA), It was observed that residues CYS106 and GLU107 had a considerable tendency to facilitate ligand-protein interactions via H-bond interactions. The aforementioned findings have the potential to enhance researchers comprehension of the mechanism underlying CDK9 inhibition and may be utilized in the development of innovative and efficacious CDK9 inhibitors.


Subject(s)
Molecular Dynamics Simulation , Quantitative Structure-Activity Relationship , Molecular Docking Simulation , Protein Binding , Pyrimidines/pharmacology
15.
Chem Biol Interact ; 393: 110940, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38467339

ABSTRACT

Cell division, differentiation, and controlled cell death are all regulated by phosphorylation, a key biological function. This mechanism is controlled by a variety of enzymes, with cyclin-dependent kinases (CDKs) being particularly important in phosphorylating proteins at serine and threonine sites. CDKs, which contain 20 unique components, serve an important role in regulating vital physiological functions such as cell cycle progression and gene transcription. Methodologically, an extensive literature search was performed using reputable databases such as PubMed, Google Scholar, Scopus, and Web of Science. Keywords encompassed "cyclin kinase," "cyclin dependent kinase inhibitors," "CDK inhibitors," "natural products," and "cancer therapy." The inclusion criteria, focused on relevance, publication date, and language, ensured a thorough representation of the most recent research in the field, encompassing articles published from January 2015 to September 2023. Categorization of CDKs into those regulating transcription and those orchestrating cell cycle phases provides a comprehensive understanding of their diverse functions. Ongoing clinical trials featuring CDK inhibitors, notably CDK7 and CDK4/6 inhibitors, illuminate their promising potential in various cancer treatments. This review undertakes a thorough investigation of CDK inhibitors derived from natural (marine, terrestrial, and peptide) sources. The aim of this study is to provide a comprehensive comprehension of the chemical classifications, origins, target CDKs, associated cancer types, and therapeutic applications.


Subject(s)
Cyclin-Dependent Kinases , Neoplasms , Humans , Cell Cycle , Cyclin-Dependent Kinases/metabolism , Cyclins/genetics , Cyclins/metabolism , Cyclins/therapeutic use , Neoplasms/drug therapy , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
16.
J Biomol Struct Dyn ; : 1-16, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38444393

ABSTRACT

Janus kinase 2(JAK2) is a potential target for anticancer drugs in the treatment of numerous myeloproliferative diseases due to its central role in the JAK/STAT signaling cascade. In this study, the binding behavior of 2 amino-pyridine derivatives as JAK2 inhibitors was investigated by using multifaceted strategies including 3D-QSAR, molecular docking, Fingerprint analysis, MD simulations, and MM-PBSA calculations. A credible COMFA (q2 = 0.606 and r2 = 0.919) and COMSIA (q2 = 0.641 and r2 = 0.992) model was developed, where the internal and external validation revealed that the obtained 3D-QSAR models could be capable of predicting bioactivities of JAK2 inhibitors. The structural criteria provided by the contour maps of model were used to computationally develop more potent 100 new JAK2 inhibitors. Docking studies were conducted on the model data set and newly developed compounds (in-house library) to demonstrate their binding mechanism and highlight the key interacting residues within JAK2 active site. The selected docked complexes underwent MD simulation (100 ns), which contributed in the further study of the binding interactions. Binding free energy analyses (MMGB/PBSA) revealed that key residues such as Glu930, Leu932 (hinge region), Asp939 (solvent accessible region), Arg980, Asn981and Asp994 (catalytic site) have a significantly facilitate ligand-protein interactions through H-bonding and van der Waals interactions. The preliminary in-silico ADMET evaluation revealed encouraging results for all the modeled and in-house library compounds. The findings of this research have the potential to offer valuable recommendations for the advancement of novel, potent, and efficacious JAK2 inhibitors. Overall, this work has successfully employed a wide range of computer-based methodologies to understand the interaction dynamics between 2-amino-pyridine derivatives and the JAK2 enzyme, which is a crucial target in myeloproliferative disorders.Communicated by Ramaswamy H. Sarma.

17.
Nat Prod Res ; 37(6): 1023-1029, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35815778

ABSTRACT

In the present research, oleuropein (OLE) contents from two Saudi Arabian wild olive trees (Olea europaea L.) leaves (O1 and O2), were collected from two nearby geographical sites differing in altitudes, and were determined via UHPLC-MS analysis. Moreover, total bioactive contents, antioxidant, and cytotoxicity (against MCF-7 and MDA-MB-231 cells) potential were also evaluated. The sample (O2) was found to contain significantly (p < 0.05) higher OLE content (4.13 ± 1.0 mg/g DW) compared with the sample (O1) having OLE content (3.63 ± 1.1 mg/g DW). A similar trend was observed regarding total bioactive contents and antioxidant potential. However, both samples exhibited low cytotoxicity against tested cell lines. Furthermore, with hierarchical cluster analysis that compared the results of our samples (O1 and O2) to other samples reported in the literature, it was found that the variance in OLE content and biological activities from Al Baha region leaves had a resemblance to other reported superior cultivars.


Subject(s)
Antineoplastic Agents , Olea , Antioxidants/chemistry , Olea/chemistry , Iridoids/chemistry , Saudi Arabia , Iridoid Glucosides , Antineoplastic Agents/chemistry , Plant Extracts/chemistry , Plant Leaves/chemistry , Phytochemicals/pharmacology , Phytochemicals/analysis
18.
J Biomol Struct Dyn ; 41(23): 14358-14371, 2023.
Article in English | MEDLINE | ID: mdl-36898855

ABSTRACT

Fibroblast growth factor receptors 1 (FGFR1) is an emerging target for the development of anticancer drugs. Uncontrolled expression of FGFR1 is strongly associated with a number of different types of cancers. Apart from a few FGFR inhibitors, the FGFR family members have not been thoroughly studied to produce clinically effective anticancer drugs. The application of proper computational techniques may aid in understanding the mechanism of protein-ligand complex formation, which may provide a better notion for developing potent FGFR1 inhibitors. In this study, a variety of computational techniques, including 3D-QSAR, flexible docking and MD simulation followed by MMGB/PBSA, H-bonds and distance analysis, have been performed to systematically explore the binding mechanism of pyrrolo-pyrimidine derivatives against FGFR1. The 3D-QSAR model was generated to deduce the structural determinants of FGFR1 inhibition. The high q2 and r2 values for the CoMFA and CoMSIA models indicated that the created 3D-QSAR models could reliably predict the bioactivities of FGFR1 inhibitors. The computed binding free energies (MMGB/PBSA) for the selected compounds were consistent with the ranking of their experimental binding affinities against FGFR1. Furthermore, per-residue energy decomposition analysis revealed that the residues Lys514 in catalytic region, Asn568, Glu571 in solvent accessible portion and Asp641 in DFG motif exhibited a strong tendency to mediate ligand-protein interactions through the hydrogen bonding and Van Der Waals interactions. These findings may benefit researchers in gaining better knowledge of FGFR1 inhibition and may serve as a guideline for the development of novel and highly effective FGFR1 inhibitors.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antineoplastic Agents , Molecular Dynamics Simulation , Molecular Docking Simulation , Ligands , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Antineoplastic Agents/pharmacology , Quantitative Structure-Activity Relationship
19.
Nat Prod Res ; 36(14): 3750-3755, 2022 Jul.
Article in English | MEDLINE | ID: mdl-33550873

ABSTRACT

Anagallis arvensis L. commonly known as 'Scarlet Pimpernel' has been used in folklore as natural remedy for treating common ailments. The present research is aimed to explore the phytochemical composition and enzyme inhibition potential of methanol and dichloromethane (DCM) extracts of A. arvensis aerial and root parts. The phytochemical composition was established via HPLC-PDA polyphenolic quantification and UHPLC-MS analysis, while the inhibition potential against amylase and tyrosinase enzymes were assessed using standard in vitro protocols. The HPLC-PDA polyphenolic quantification revealed the presence of important compounds including catechin, gallic acid, chlorogenic acid, and ferulic acid, whereas 34 different secondary metabolites were tentatively identified by UHPLC-MS of both the DCM extracts. All the extracts showed moderate tyrosinase and a weak amylase inhibition activity. The aerial-DCM extract showed comparatively higher tyrosinase and amylase enzyme inhibition potential, which may be due to the presence of secondary metabolites as tentatively identified by its UHPLC-MS profiling.


Subject(s)
Anagallis , Monophenol Monooxygenase , Amylases , Anagallis/chemistry , Antioxidants/pharmacology , Enzyme Inhibitors/chemistry , Phytochemicals/analysis , Phytochemicals/pharmacology , Plant Components, Aerial/chemistry , Plant Extracts/chemistry
20.
Front Plant Sci ; 13: 988352, 2022.
Article in English | MEDLINE | ID: mdl-36212347

ABSTRACT

This study was designed to seek the phytochemical analysis, antioxidant, enzyme inhibition, and toxicity potentials of methanol and dichloromethane (DCM) extracts of aerial and root parts of Crotalaria burhia. Total bioactive content, high-performance liquid chromatography-photodiode array detector (HPLC-PDA) polyphenolic quantification, and ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) analysis were utilized to evaluate the phytochemical composition. Antioxidant [including 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH)], 2,2'-azino-bis[3-ethylbenzothiazoline-6-sulfonic acid (ABTS), ferric reducing antioxidant power assay (FRAP), cupric reducing antioxidant capacity CUPRAC, phosphomolybdenum, and metal chelation assays] and enzyme inhibition [against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), α-glucosidase, α-amylase, and tyrosinase] assays were carried out for biological evaluation. The cytotoxicity was tested against MCF-7 and MDA-MB-231 breast cell lines. The root-methanol extract contained the highest levels of phenolics (37.69 mg gallic acid equivalent/g extract) and flavonoids (83.0 mg quercetin equivalent/g extract) contents, and was also the most active for DPPH (50.04 mg Trolox equivalent/g extract) and CUPRAC (139.96 mg Trolox equivalent /g extract) antioxidant assays. Likewise, the aerial-methanol extract exhibited maximum activity for ABTS (94.05 mg Trolox equivalent/g extract) and FRAP (64.23 mg Trolox equivalent/g extract) assays. The aerial-DCM extract was noted to be a convincing cholinesterase (AChE; 4.01 and BChE; 4.28 mg galantamine equivalent/g extract), and α-glucosidase inhibitor (1.92 mmol acarbose equivalent/g extract). All of the extracts exhibited weak to modest toxicity against the tested cell lines. A considerable quantities of gallic acid, catechin, 4-OH benzoic acid, syringic acid, vanillic acid, 3-OH-4-MeO benzaldehyde, epicatechin, p-coumaric acid, rutin, naringenin, and carvacrol were quantified via HPLC-PDA analysis. UHPLC-MS analysis of methanolic extracts from roots and aerial parts revealed the tentative identification of important phytoconstituents such as polyphenols, saponins, flavonoids, and glycoside derivatives. To conclude, this plant could be considered a promising source of origin for bioactive compounds with several therapeutic uses.

SELECTION OF CITATIONS
SEARCH DETAIL