Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Environ Sci Technol ; 57(44): 17132-17143, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37870911

ABSTRACT

Point-of-use treatment technologies can increase access to safe drinking water in rural areas. Sustained use of these technologies is uncommon due to oversight of community needs, user-perceived risks, long-term maintenance, and conflict with traditional practices. Nanosilver-enabled ceramic water filters are unique due to the use of locally sourced materials available at or near the target community; however, technical limitations persist (e.g., nanosilver's uncontrolled release and passivation from sulfide or chloride). This work aims to overcome these limitations by impregnating nanosilver onto ceramics with a Navajo pottery rosin, collected from pinyon trees with a third-generation artisan. Here, we investigate this sustainable and novel material for drinking water treatment; the study ranges from a proof of concept to testing under realistic conditions. Results show that when embedded in a thin film, the biopolymer controlled ionic silver dissolution and prevented silver passivation from sulfide and chloride. When applied to ceramic filters, the biopolymer effectively immobilized nanosilver in a range of waters. Over a 25 day study to emulate household-use conditions, this coating method sustained disinfection of a coculture of Gram-positive and Gram-negative bacteria while controlling biofouling. Overall, the use of this Navajo pottery material can facilitate adoption while providing the needed technological advancement to these widely used treatment devices.


Subject(s)
Drinking Water , Metal Nanoparticles , Water Purification , Disinfection/methods , Silver , Anti-Bacterial Agents , Chlorides , Gram-Negative Bacteria , Gram-Positive Bacteria , Ceramics , Water Purification/methods , Biopolymers , Sulfides , Filtration/methods
2.
Environ Sci Technol ; 57(40): 14871-14880, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37756220

ABSTRACT

Opportunistic pathogens (OPs) are of concern in drinking water distribution systems because they persist despite disinfectant residuals. While many OPs garner protection from disinfectants via a biofilm lifestyle, Legionella pneumophila (Lp) also gains disinfection resistance by being harbored within free-living amoebae (FLA). It has been long established, but poorly understood, that Lp grown within FLA show increased infectivity toward subsequent FLA or human cells (i.e., macrophage), via a process we previously coined "protozoan-priming". The objectives of this study are (i) to identify in Lp a key genetic determinant of how protozoan-priming increases its infectivity, (ii) to determine the chemical stimulus within FLA to which Lp responds during protozoan-priming, and (iii) to determine if more infectious forms of Lp also exhibit enhanced disinfectant resistance. Using Acanthamoeba castellanii as a FLA host, the priming effect was isolated to Lp's sidGV locus, which is activated upon sensing elevated magnesium concentrations. Supplementing growth medium with 8 mM magnesium is sufficient to produce Lp grown in vitro with an infectivity equivalent to that of Lp grown via the protozoan-primed route. Both Lp forms with increased infectivity (FLA-grown and Mg2+-supplemented) exhibit greater monochloramine resistance than Lp grown in standard media, indicating that passage through FLA not only increases Lp's infectivity but also enhances its monochloramine resistance. Therefore, laboratory-based testing of disinfection strategies should employ conditions that simulate or replicate intracellular growth to accurately assess disinfectant resistance.


Subject(s)
Amoeba , Disinfectants , Legionella pneumophila , Humans , Legionella pneumophila/genetics , Magnesium/pharmacology , Water Microbiology , Disinfectants/pharmacology
3.
Environ Sci Technol ; 55(9): 5608-5619, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33881842

ABSTRACT

Extensive use of per- and polyfluoroalkyl substances (PFAS) has caused their ubiquitous presence in natural waters. One of the standard practices for PFAS removal from water is adsorption onto granular activated carbon (GAC); however, this approach generates a new waste stream, i.e., PFAS-laden GAC. Considering the recalcitrance of PFAS molecules in the environment, inadequate disposal (e.g., landfill or incineration) of PFAS-laden GAC may let PFAS back into the aquatic cycle. Therefore, developing approaches for PFAS-laden GAC management present unique opportunities to break its forever circulation within the aqueous environment. This comprehensive review evaluates the past two decades of research on conventional thermal regeneration of GAC and critically analyzes and summarizes the literature on regeneration of PFAS-laden GACs. Optimized thermal regeneration of PFAS-laden GACs may provide an opportunity to employ existing regeneration infrastructure to mineralize the adsorbed PFAS and recover the spent GAC. The specific objectives of this review are (i) to investigate the role of physicochemical properties of PFAS on thermal regeneration, (ii) to assess the changes in regeneration yield as well as GAC physical and chemical structure upon thermal regeneration, and (iii) to critically discuss regeneration parameters controlling the process. This literature review on the engineered regeneration process illustrates the significant promise of this approach that can break the endless environmental cycle of these forever chemicals, while preserving the desired physicochemical properties of the valuable GAC adsorbent.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Water Purification , Adsorption , Charcoal , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis
4.
Environ Sci Technol ; 55(2): 919-929, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33170670

ABSTRACT

Few-layered molybdenum disulfide (MoS2) nanosheets are poised to be at the core of low-voltage electronic device development. Upon environmental release, these two-dimensional (2D) structures can interact with abundant natural geocolloids. This study probes the role of dimensionality in modulating the aggregation behavior of 2D MoS2 nanosheets with plate-like geocolloids (i.e., homoionized kaolinite and montmorillonite clays). MoS2 nanosheets were exfoliated using an ethanol/water mixture, and aggregation kinetics were investigated with time-resolved dynamic light scattering at low monovalent salt concentrations and at three pH levels, in the presence and absence of Suwannee River humic acid (SRHA). Results indicate that pH and particle ratios are key to modulating the stability of MoS2/clay systems. At pH 4, aggregation of MoS2 increased with increasing MoS2/clay ratios and approached maximum values of 0.09 and 0.06 nm/s in the binary systems with montmorillonite and kaolinite, respectively. Electrostatic attraction facilitates heteroaggregation at pH values of 4 and 6; differences in the clay structures (i.e., face-face or face-edge aggregates) might explain the resulting MoS2/clay aggregate configurations, which were probed via the evolution of particle size distribution. The presence of only 0.1 mg/L SRHA drastically suppresses the heteroaggregation propensity of MoS2 nanosheets with geocolloids (to less than 0.01 nm/s at all pH values tested). The high stability of these heterogeneous systems under environmentally relevant conditions can increase the likelihood for cellular uptake and long-distance transport of MoS2.


Subject(s)
Colloids , Molybdenum , Clay , Hydrogen-Ion Concentration , Static Electricity
5.
J Fish Dis ; 44(4): 359-370, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33559228

ABSTRACT

Aquaculture is the fastest growing food-production sector and is vital to food security, habitat restoration and endangered species conservation. One of the continued challenges to the industry is our ability to manage aquatic disease agents that can rapidly decimate operations and are a constant threat to sustainability. Such threats also evolve as microbes acquire resistance and/or new pathogens emerge. The advent of nanotechnology has transformed our approach to fisheries disease management with advances in water disinfection, food conversion, fish health and management systems. In this review, several nano-enabled technology successes will be discussed as they relate to the challenges associated with disease management in the aquaculture sector, with a particular focus on fishes. Future perspectives on how nanotechnology can offer functional approaches for improving disinfection and innovating at the practical space of early warning systems will be discussed. Finally, the importance of "safety by design" approaches to the development of novel commercial nano-enabled products will be emphasized.


Subject(s)
Aquaculture/methods , Fish Diseases/prevention & control , Fishes , Nanotechnology/methods , Animals
6.
Toxicol Appl Pharmacol ; 404: 115167, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32771490

ABSTRACT

Growing use of carbon nanotubes (CNTs) have garnered concerns regarding their association with adverse health effects. Few studies have probed how CNTs affect a host's susceptibility to pathogens, particularly respiratory viruses. We reported that exposure of lung cells and mice to pristine single-walled CNTs (SWCNTs) leads to significantly increased influenza virus H1N1 strain A/Mexico/4108/2009 (IAV) titers in concert with repressed antiviral immune responses. In the present study, we investigated if hydroxylated multi-walled CNTs (MWCNTs), would result in similar outcomes. C57BL/6 mice were exposed to 20 µg MWCNTs on day 0 and IAV on day 3 and samples were collected on day 7. We investigated pathological changes, viral titers, immune-related gene expression in lung tissue, and quantified differential cell counts and cytokine and chemokine levels in bronchoalveolar lavage fluid. MWCNTs alone caused mild inflammation with no apparent changes in immune markers whereas IAV alone presented typical infection-associated inflammation, pathology, and titers. The co-exposure (MWCNTs + IAV) did not alter titers or immune cell profiles compared to the IAV only but increased concentrations of IL-1ß, TNFα, GM-CSF, KC, MIPs, and RANTES and inhibited mRNA expression of Tlr3, Rig-i, Mda5, and Ifit2. Our findings suggest MWCNTs modulate immune responses to IAV with no effect on the viral titer and modest pulmonary injury, a result different from those reported for SWCNT exposures. This is the first study to show that MWCNTs modify cytokine and chemokine responses that control aspects of host defenses which may play a greater role in mitigating IAV infections.


Subject(s)
Influenza A Virus, H1N1 Subtype , Lung Injury/chemically induced , Nanotubes, Carbon , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Animals , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Male , Mice , Mice, Inbred C57BL
7.
Environ Sci Technol ; 54(24): 16017-16027, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33259189

ABSTRACT

The colonias along the United States-Mexico border are generally self-built neighborhoods of low-income families that lack basic infrastructure. While some government assistance has provided roads and electricity, water and wastewater services are still lacking in many colonias. This research is the first to collect a comprehensive dataset on water, sanitation, health, and living conditions in these unincorporated neighborhoods through collection of water samples and surveys; 114 households in 23 colonias across three geographically diverse Texas counties are studied. Water quality is assessed via traditional microbial indicators, chlorine, and arsenic. This complex dataset requires an advanced statistical tool to disentangle relationships among diverse factors. Structural equation modeling is utilized to identify relationships among surveyed and measured variables. The model reveals that colonias residents with well/hauled water accurately predict their water quality, while those with treated+piped water tend to think that their water is worse than it actually is. Dwelling quality and connection to sanitary sewers influence perceived health risks and household health, respectively. Furthermore, these communities have an overwhelming need and desire for point-of-use water treatment. This model can inform decision making and may be adapted to probe other questions and social dynamics for water and sanitation in unincorporated communities elsewhere.


Subject(s)
Sanitation , Water , Family Characteristics , Humans , Mexico , Residence Characteristics
8.
Environ Sci Technol ; 53(13): 7265-7287, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31199142

ABSTRACT

Nanotechnology has unprecedentedly revolutionized human societies over the past decades and will continue to advance our broad societal goals in the coming decades. The research, development, and particularly the application of engineered nanomaterials have shifted the focus from "less efficient" single-component nanomaterials toward "superior-performance", next-generation multifunctional nanohybrids. Carbon nanomaterials (e.g., carbon nanotubes, graphene family nanomaterials, carbon dots, and graphitic carbon nitride) and metal/metal oxide nanoparticles (e.g., Ag, Au, CdS, Cu2O, MoS2, TiO2, and ZnO) combinations are the most commonly pursued nanohybrids (carbon-metal nanohybrids; CMNHs), which exhibit appealing properties and promising multifunctionalities for addressing multiple complex challenges faced by humanity at the critical energy-water-environment (EWE) nexus. In this frontier review, we first highlight the altered and newly emerging properties (e.g., electronic and optical attributes, particle size, shape, morphology, crystallinity, dimensionality, carbon/metal ratio, and hybridization mode) of CMNHs that are distinct from those of their parent component materials. We then illustrate how these important newly emerging properties and functions of CMNHs direct their performances at the EWE nexus including energy harvesting (e.g., H2O splitting and CO2 conversion), water treatment (e.g., contaminant removal and membrane technology), and environmental sensing and in situ nanoremediation. This review concludes with identifications of critical knowledge gaps and future research directions for maximizing the benefits of next-generation multifunctional CMNHs at the EWE nexus and beyond.


Subject(s)
Graphite , Nanostructures , Nanotubes, Carbon , Metals , Nanotechnology
9.
Environ Sci Technol ; 52(15): 8233-8241, 2018 08 07.
Article in English | MEDLINE | ID: mdl-29944362

ABSTRACT

Multiwalled carbon nanotube-titanium dioxide (MWNT-TiO2) nanohybrids (NHs), a promising support for electrocatalysts, have a high likelihood of environmental release. Aggregation of these NHs may or may not be captured by the sum of their component behavior, thus necessitating a systematic evaluation. This study probes the "part-whole question" by systematically evaluating the role of TiO2 loading (C:Ti molar ratios of 1:0.1, 1:0.05 and 1:0.033) on the aggregation behavior of these NHs. Aggregation kinetics of these in-house synthesized (using a sol-gel method) NHs and the components is investigated with time-resolved dynamic light scattering in the presence of mono- and divalent cations and with and without Suwannee River humic acid. A deviation in the aggregation behavior from classical electrokinetic theory has been observed which indicates that the material complexity has a strong influence in the observed behavior; hence other material attributes (e.g., fractal dimension, surface roughness, charge heterogeneity, etc.) should be carefully considered when studying such materials. The sum of the aggregation behavior of the parts may not capture that of the whole (i.e., of the NHs); aggregation depends on the TiO2 loading and also on the hybridization process and the background aquatic chemistry.


Subject(s)
Nanotubes, Carbon , Humic Substances , Rivers , Titanium
10.
Virol J ; 14(1): 242, 2017 12 22.
Article in English | MEDLINE | ID: mdl-29273069

ABSTRACT

BACKGROUND: Numerous toxicological studies have focused on injury caused by exposure to single types of nanoparticles, but few have investigated how such exposures impact a host's immune response to pathogen challenge. Few studies have shown that nanoparticles can alter a host's response to pathogens (chiefly bacteria) but there is even less knowledge of the impact of such particles on viral infections. In this study, we performed experiments to investigate if exposure of mice to single-walled carbon nanotubes (SWCNT) alters immune mechanisms and viral titers following subsequent influenza A virus (IAV) infection. METHODS: Male C57BL/6 mice were exposed to 20 µg of SWCNT or control vehicle by intratracheal instillation followed by intranasal exposure to 3.2 × 104 TCID50 IAV or PBS after 3 days. On day 7 mice were euthanized and near-infrared fluorescence (NIRF) imaging was used to track SWCNT in lung tissues. Viral titers, histopathology, and mRNA expression of antiviral and inflammatory genes were measured in lung tissue. Differential cell counts and cytokine levels were quantified in bronchoalveolar lavage fluid (BALF). RESULTS: Viral titers showed a 63-fold increase in IAV in SWCNT + IAV exposed lungs compared to the IAV only exposure. Quantitation of immune cells in BALF indicated an increase of neutrophils in the IAV group and a mixed profile of lymphocytes and neutrophils in SWCNT + IAV treated mice. NIRF indicated SWCNT remained in the lung throughout the experiment and localized in the junctions of terminal bronchioles, alveolar ducts, and surrounding alveoli. The dual exposure exacerbated pulmonary inflammation and tissue lesions compared to SWCNT or IAV single exposures. IAV exposure increased several cytokine and chemokine levels in BALF, but greater levels of IL-4, IL-12 (P70), IP-10, MIP-1, MIP-1α, MIP-1ß, and RANTES were evident in the SWCNT + IAV group. The expression of tlr3, ifnß1, rantes, ifit2, ifit3, and il8 was induced by IAV alone but several anti-viral targets showed a repressed trend (ifits) with pre-exposure to SWCNT. CONCLUSIONS: These findings reveal a pronounced effect of SWCNT on IAV infection in vivo as evidenced by exacerbated lung injury, increased viral titers and several cytokines/chemokines levels, and reduction of anti-viral gene expression. These results imply that SWCNT can increase susceptibility to respiratory viral infections as a novel mechanism of toxicity.


Subject(s)
Acute Lung Injury/immunology , Influenza A Virus, H1N1 Subtype/immunology , Nanotubes, Carbon/toxicity , Orthomyxoviridae Infections/immunology , Pneumonia, Viral/immunology , Viral Load/immunology , Acute Lung Injury/chemically induced , Acute Lung Injury/virology , Animals , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/virology , Cytokines/analysis , Cytokines/immunology , Gene Expression Regulation/immunology , Lung/pathology , Lung/ultrastructure , Lymphocytes/immunology , Lymphocytes/metabolism , Male , Mice , Mice, Inbred C57BL , Neutrophils/immunology , Neutrophils/metabolism , Orthomyxoviridae Infections/chemically induced , Orthomyxoviridae Infections/virology , Pneumonia, Viral/chemically induced , Pneumonia, Viral/virology , RNA, Messenger/metabolism
11.
Langmuir ; 33(6): 1486-1495, 2017 02 14.
Article in English | MEDLINE | ID: mdl-28098460

ABSTRACT

There is interest in the controlled aggregation of gold nanorods (GNRs) for the production of extended nanoassemblies. Prior studies have relied upon chemical modification of the GNR surface to achieve a desired final aggregate structure. Herein we illustrate that control of electrolyte composition can facilitate end-to-end assembly of cetyltrimethylammonium-bromide-coated (CTAB) GNRs. By adjusting either the sulfate anion concentration or the exposure time it is possible to connect GNRs in chain-like assemblies. In contrast, end-to-end assembly was not observed in control experiments using monovalent chloride salts. We attribute the end-to-end assembly to the localized association of sulfate with exposed quaternary ammonium head groups of CTAB at the nanorod tip. To quantify the assembly kinetics, visible-near-infrared extinction spectra were collected over a predetermined time period, and the colloidal behavior of the GNR suspensions was interpreted using plasmon band analysis. Transmission electron microscopy and atomic force microscopy results support the conclusions reached via plasmon band analysis, and the colloidal behavior is consistent with Derjaguin-Landau-Verwey-Overbeek theory.

12.
Environ Sci Technol ; 51(2): 948-957, 2017 01 17.
Article in English | MEDLINE | ID: mdl-27977933

ABSTRACT

Recent evidence suggests that, because of their sorptive nature, if single-walled carbon nanotubes (SWCNTs) make their way into aquatic environments, they may reduce the toxicity of other waterborne contaminants. However, few studies have examined whether contaminants remain adsorbed following ingestion by aquatic organisms. The objective of this study was to examine the bioavailability and bioactivity of ethinyl estradiol (EE2) sorbed onto SWCNTs in a fish gastrointestinal (GI) tract. Sorption experiments indicated that SWCNTs effectively adsorbed EE2, but the chemical was still able to bind and activate soluble estrogen receptors (ERs) in vitro. However, centrifugation to remove SWCNTs and adsorbed EE2 significantly reduced ER activity compared to that of EE2 alone. Additionally, the presence of SWCNTs did not reduce the extent of EE2-driven induction of vitellogenin 1 in vivo compared to the levels in organisms exposed to EE2 alone. These results suggest that while SWCNTs adsorb EE2 from aqueous solutions, under biological conditions EE2 can desorb and retain bioactivity. Additional results indicate that interactions with gastrointestinal proteins may decrease the level of adsorption of estrogen to SWCNTs by 5%. This study presents valuable data for elucidating how SWCNTs interact with chemicals that are already present in our aquatic environments, which is essential for determining their potential health risk.


Subject(s)
Ethinyl Estradiol/metabolism , Fishes/metabolism , Gastrointestinal Tract/metabolism , Nanotubes, Carbon , Animals , Biological Availability , Estradiol , Estrogens , Ethinyl Estradiol/toxicity , Gastrointestinal Absorption
13.
Environ Sci Technol ; 50(7): 3562-71, 2016 Apr 05.
Article in English | MEDLINE | ID: mdl-26928084

ABSTRACT

The aggregation kinetics of nC60 and higher-order fullerene (HOF) clusters, i.e., nC70, nC76, and nC84, was systematically studied under a wide range of mono- (NaCl) and divalent (CaCl2) electrolytes and using time-resolved dynamic light scattering. Suwanee River Humic Acid (SRHA) was also used to determine the effect of natural macromolecules on nHOF aggregation. An increase in electrolyte concentration resulted in electrical double-layer compression of the negatively charged fullerene clusters, and the nC60s and nHOFs alike displayed classical Derjaguin-Landau-Verwey-Overbeek (DLVO) type interaction. The critical coagulation concentration (CCC) displayed a strong negative correlation with the carbon number in fullerenes and was estimated as 220, 150, 100, and 70 mM NaCl and 10, 12, 6, and 7.5 mM CaCl2 for nC60, nC70, nC76, and nC84, respectively. The aggregation mechanism (i.e., van der Waals interaction domination) was enumerated via molecular dynamics simulation and modified DLVO model. The presence of SRHA (2.5 mg TOC/L) profoundly influenced the aggregation behavior by stabilizing all fullerene clusters, even at a 100 mM NaCl concentration. The results from this study can be utilized to predict aggregation kinetics of nHOF clusters other than the ones studied here. The scaling factor for van der Waals interaction can also be used to model nHOF cluster interaction.


Subject(s)
Aquatic Organisms/metabolism , Fullerenes/chemistry , Electrophoresis , Humic Substances/analysis , Kinetics , Linear Models , Molecular Dynamics Simulation , Thermodynamics
14.
Environ Chem ; 12(6): 652-661, 2015 May 20.
Article in English | MEDLINE | ID: mdl-26855611

ABSTRACT

Single-walled carbon nanotubes' (SWNT) effectiveness in applications is enhanced by debundling or stabilization. Anionic surfactants are known to effectively stabilize SWNTs. However, the role of specific chirality on surfactant-stabilized SWNT aggregation has not been studied to date. The aggregation behavior of chirally enriched (6,5) and (7,6) semiconducting SWNTs, functionalized with three anionic surfactants-sodium dodecyl sulfate (SDS), sodium dodecyl benzene sulfonate (SDBS), and sodium deoxycholate (SDOCO)-was evaluated with time-resolved dynamic light scattering. A wide range of mono- (NaCl) and di-valent (CaCl2) electrolytes as well as a 2.5 mg TOC/L Suwannee River humic acid (SRHA) were used as background chemistry. Overall, SDBS showed the most effectiveness in SWNT stability, followed by SDOCO and SDS. However, the relatively larger diameter (7,6) chiral tubes compromised the surfactant stability, compared to (6,5) chiral enrichment, due to enhanced van der Waals interaction. The presence of di-valent electrolytes overshadowed the chirality effects and resulted in similar aggregation behavior for both the SWNT samples. Molecular modeling results enumerated key differences in surfactant conformation on SWNT surfaces and identified interaction energy changes between the two chiralities to delineate aggregation mechanisms. The stability of SWNTs increased in the presence of SRHA under 10 mM monovalent and mixed electrolyte conditions. The results suggest that change in chirality can overcome surfactant stabilization of semiconducting SWNTs. SWNT stability can also be strongly influenced by the anionic surfactant structure.

16.
Environ Sci Technol ; 48(1): 761-9, 2014.
Article in English | MEDLINE | ID: mdl-24328237

ABSTRACT

In this study, we comprehensively evaluate chloride- and ionic-strength-mediated changes in the physical morphology, dissolution, and bacterial toxicity of silver nanoparticles (AgNPs), which are one of the most-used nanomaterials. The findings isolate the impact of ionic strength from that of chloride concentration. As ionic strength increases, AgNP aggregation likewise increases (such that the hydrodynamic radius [HR] increases), fractal dimension (Df) strongly decreases (providing increased available surface relative to suspensions with higher Df), and the release of Ag(aq) increases. With increased Ag(+) in solution, Escherichia coli demonstrates reduced tolerance to AgNP exposure (i.e., toxicity increases) under higher ionic strength conditions. As chloride concentration increases, aggregates are formed (HR increases) but are dominated by AgCl(0)(s) bridging of AgNPs; relatedly, Df increases. Furthermore, AgNP dissolution strongly increases under increased chloride conditions, but the dominant, theoretical, equilibrium aqueous silver species shift to negatively charged AgClx((x-1)-) species, which appear to be less toxic to E. coli. Thus, E. coli demonstrates increased tolerance to AgNP exposure under higher chloride conditions (i.e., toxicity decreases). Expression measurements of katE, a gene involved in catalase production to alleviate oxidative stress, support oxidative stress in E. coli as a result of Ag(+) exposure. Overall, our work indicates that the environmental impacts of AgNPs must be evaluated under relevant water chemistry conditions.


Subject(s)
Chlorides/chemistry , Escherichia coli/drug effects , Metal Nanoparticles/chemistry , Silver/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Chlorides/pharmacology , Environment , Ions/pharmacology , Metal Nanoparticles/toxicity , Metal Nanoparticles/ultrastructure , Osmolar Concentration , Oxidative Stress/drug effects , Solubility , Solutions/pharmacology , Water/chemistry
17.
Environ Sci Technol ; 48(3): 1973-83, 2014.
Article in English | MEDLINE | ID: mdl-24383993

ABSTRACT

Detection of SWCNTs in complex matrices presents a unique challenge as common techniques lack spatial resolution and specificity. Near infrared fluorescence (NIRF) has emerged as a valuable tool for detecting and quantifying SWCNTs in environmental samples by exploiting their innate fluorescent properties. The objective of this study was to optimize NIRF-based imaging and quantitation methods for tracking and quantifying SWCNTs in an aquatic vertebrate model in conjunction with assessing toxicological end points. Fathead minnows (Pimephales promelas) were exposed by single gavage to SWCNTs and their distribution was tracked using a custom NIRF imaging system for 7 days. No overt toxicity was observed in any of the SWCNT treated fish; however, histopathology observations from gastrointestinal (GI) tissue revealed edema within the submucosa and altered mucous cell morphology. NIRF images showed strong SWCNT-derived fluorescence signals in whole fish and excised intestinal tissues. Fluorescence was not detected in other tissues examined, indicating that no appreciable intestinal absorption occurred. SWCNTs were quantified in intestinal tissues using a NIRF spectroscopic method revealing values that were consistent with the pattern of fluorescence observed with NIRF imaging. Results of this work demonstrate the utility of NIRF imaging as a valuable tool for examining uptake and distribution of SWCNTs in aquatic vertebrates.


Subject(s)
Cyprinidae , Nanotubes, Carbon/analysis , Optical Imaging/methods , Animals , Environmental Monitoring , Fishes , Fluorescence , Optical Imaging/instrumentation , Spectrometry, Fluorescence , Spectroscopy, Near-Infrared
18.
Part Fibre Toxicol ; 11: 66, 2014 Dec 14.
Article in English | MEDLINE | ID: mdl-25497303

ABSTRACT

BACKGROUND: Airborne exposure to nanomaterials from unintended occupational or environmental exposures or as a consequence of product use may lead to adverse health effects. Numerous studies have focused on single-walled carbon nanotubes (SWCNTs) and their ability to cause pulmonary injury related to fibrosis, and cancer; however few studies have addressed their impact on infectious agents, particularly viruses that are known for causing severe disease. Here we have demonstrated the ability of pristine SWCNTs of diverse electronic structure to increase the susceptibility of small airway epithelial cells (SAEC) to pandemic influenza A H1N1 infection and discerned potential mechanisms of action driving this response. METHODS: Small airway epithelial cells (SAEC) were exposed to three types of SWCNTs with varying electronic structure (SG65, SG76, CG200) followed by infection with A/Mexico/4108/2009 (pH1N1). Cells were then assayed for viral infectivity by immunofluorescence and viral titers. We quantified mRNA and protein levels of targets involved in inflammation and anti-viral activity (INFß1, IL-8, RANTES/CCL5, IFIT2, IFIT3, ST3GAL4, ST6GAL1, IL-10), localized sialic acid receptors, and assessed mitochondrial function. Hyperspectral imaging analysis was performed to map the SWCNTs and virus particles in fixed SAEC preparations. We additionally performed characterization analysis to monitor SWCNT aggregate size and structure under biological conditions using dynamic light scattering (DLS), static light scattering (SLS). RESULTS: Based on data from viral titer and immunofluorescence assays, we report that pre-treatment of SAEC with SWCNTs significantly enhances viral infectivity that is not dependent on SWCNT electronic structure and aggregate size within the range of 106 nm - 243 nm. We further provide evidence to support that this noted effect on infectivity is not likely due to direct interaction of the virus and nanoparticles, but rather a combination of suppression of pro-inflammatory (RANTES) and anti-viral (IFIT2, IFIT3) gene/protein expression, impaired mitochondrial function and modulation of viral receptors by SWCNTs. CONCLUSIONS: Results of this work reveal the potential for SWCNTs to increase susceptibility to viral infections as a mechanism of adverse effect. These data highlight the importance of investigating the ability of carbon-nanomaterials to modulate the immune system, including impacts on anti-viral mechanisms in lung cells, thereby increasing susceptibility to infectious agents.


Subject(s)
Air Pollutants/toxicity , Bronchi/virology , Immunity, Innate/drug effects , Influenza A Virus, H1N1 Subtype/pathogenicity , Nanotubes, Carbon/toxicity , Respiratory Mucosa/virology , Air Pollutants/chemistry , Apoptosis Regulatory Proteins , Bronchi/cytology , Bronchi/immunology , Cell Survival/drug effects , Cells, Cultured , Chemokine CCL5/antagonists & inhibitors , Chemokine CCL5/genetics , Chemokine CCL5/metabolism , Gene Expression Regulation/drug effects , Gene Expression Regulation, Viral/drug effects , Humans , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/immunology , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mitochondria/drug effects , Mitochondria/immunology , Mitochondria/metabolism , Nanotubes, Carbon/chemistry , Particle Size , Proteins/antagonists & inhibitors , Proteins/genetics , Proteins/metabolism , RNA-Binding Proteins , Respiratory Mucosa/cytology , Respiratory Mucosa/immunology , Time Factors
19.
Nanotechnology ; 24(39): 395602, 2013 Oct 04.
Article in English | MEDLINE | ID: mdl-24013496

ABSTRACT

Size-tunable stable aqueous fullerenes were prepared with different concentrations of biocompatible block-copolymer pluronic (PA) F-127, ranging from 0.001% to 1% (w/v). Size uniformity increased with the increase in PA concentration, yielding optimum 58.8 ± 5.6 and 61.8 ± 5.6 nm nC60s and nC70s, respectively (0.10%w/v PA), as observed using a dynamic light scattering technique. Fullerene aqueous suspensions also manifested enhanced stability in saline solution, Dulbecco's modified Eagle medium (DMEM), and Roswell Park Memorial Institute (RPMI) culture medium. Transmission electron microscopy was performed to elaborate on the morphology and size specificity of fullerene clusters. Physicochemical characterizations of the suspended fullerenes were performed through UV-vis spectroscopy and electrophoretic mobility measurements. PA molecules showed size restriction by encasement, as observed via molecular dynamics simulations. Such solubilization with controllable size and non-aggregating behavior can facilitate application enhancement and mechanistic environmental and toxicological studies of size-specific fullerenes.


Subject(s)
Fullerenes/chemistry , Polymers/chemistry , Sodium Chloride/chemistry , Biocompatible Materials/chemistry , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Particle Size
20.
Environ Sci Technol ; 47(4): 1853-60, 2013 Feb 19.
Article in English | MEDLINE | ID: mdl-23360522

ABSTRACT

Heteroaggregation behavior of gold nanospheres (AuNS) in presence of pluronic acid (PA) modified single-walled carbon nanotubes (PA-SWNTs) was systematically studied for a wide range of mono- and divalent (NaCl and CaCl(2)) electrolyte conditions. Homoaggregation rates of AuNS were also determined to delineate heteroaggregation mechanisms. Time resolved dynamic light scattering (DLS) was employed to monitor aggregation. The homoaggregation of AuNS showed classical Derjaguin-Landau-Verwey-Overbeek (DLVO) type behavior with defined reaction limited (RLCA) and diffusion limited (DLCA) aggregation regimes. PA-SWNTs homoaggregation on the one hand showed no response with electrolyte increase. AuNS heteroaggregation rates on the other hand, showed regime dependent response. At low electrolyte or RLCA regime, AuNS heteroaggregation showed significantly slower rates, compared to its homoaggregation behavior; whereas enhanced heteroaggregation was observed for DLCA regime. The key mechanisms of heteroaggregation of AuNS are identified as obstruction to collision at RLCA regime and facilitating enhanced attachment at DLCA regime manifested by the presence of PA-SWNTs. Presence of Suwannee River humic acid (SRHA) showed aggregation enhancement for both homo- and hetero-systems, in presence of divalent Ca(2+) ions. Bridging between SRHA molecules is identified as the key mechanism for increased aggregation rate. The findings of this study are relevant particularly to coexistence of engineered nanomaterials. The strategy of using nonaggregating PA-SWNTs is a novel experimental strategy that can be adopted elsewhere to further the heteroaggregation studies for a wider set of particles and surface coatings.


Subject(s)
Gold/chemistry , Nanoparticles/chemistry , Humic Substances , Kinetics , Microscopy, Electron, Transmission , Poloxamer/chemistry , Spectrophotometry, Ultraviolet , Spectrum Analysis, Raman
SELECTION OF CITATIONS
SEARCH DETAIL