Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Pharm Dev Technol ; 20(4): 465-72, 2015 Jun.
Article in English | MEDLINE | ID: mdl-24490758

ABSTRACT

CONTEXT: Serious efforts have been made to overcome the bioavailability problems of ever increasing number of poorly soluble drugs, including atorvastatin (ATO); however, enhancing its gastric solubility has not received much attention. OBJECTIVES: To improve the bioavailability of ATO by increasing its gastric solubility in a stable oral disintegration tablet (ODT) formulation. MATERIALS AND METHODS: Amorphous solid dispersion (ASD) of ATO with Eudragit® EPO was used as API in ODT formulation. Characterization using Differential scanning calorimetry, Powder X-ray diffraction, Fourier transform infrared drug-polymer interaction simulated by molecular modeling, solubility, dissolution and stability studies together with in vivo evaluation. RESULTS AND DISCUSSION: In ASD there was uniform distribution of drug in the polymer and it retained the amorphous nature without any chemical interactions except the possibility of hydrogen bond formation, with substantially higher gastric solubility. The dissolution profile of the ODT containing ASD was significantly improved >90% within 15 min compared with 25% of plain ATO formulation. In vivo results showed an overall enhancement in the apparent bioavailability (83% and 434% more than Lipitor® and plain amorphous ATO tablets, respectively). Combining the ASD with ODT presents a reliable solution to overcome the low solubility and bioavailability problems of ATO in a simple, robust and cost effective formulation.


Subject(s)
Anticholesteremic Agents/pharmacokinetics , Atorvastatin/pharmacokinetics , Administration, Oral , Animals , Anticholesteremic Agents/administration & dosage , Anticholesteremic Agents/chemistry , Atorvastatin/administration & dosage , Atorvastatin/chemistry , Biological Availability , Drug Stability , Excipients/chemistry , Gastrointestinal Absorption , Hydrogen Bonding , Male , Models, Molecular , Polymethacrylic Acids/chemistry , Powder Diffraction , Rats, Sprague-Dawley , Solubility , Tablets , X-Ray Diffraction
2.
Molecules ; 19(5): 5925-39, 2014 May 08.
Article in English | MEDLINE | ID: mdl-24815311

ABSTRACT

Thymoquinone (TQ) is a potent anticancer phytochemical with confirmed in vitro efficacy. Its clinical use has not yet established, and very few reports have documented its formulation. There also are no reports about the aqueous solubility and stability of this valuable drug, despite their direct correlation with the in vivo efficacy. In the current research, we have established and validated a stability-indicating HPLC method for the detection of TQ and its degradation products under different conditions. We then investigated the solubility and stability profiles of TQ in aqueous solutions. The stability study was aimed to determine the effect of pH, solvent type and light on the degradation process of TQ, along with the investigation of the kinetics of this degradation. The solubility of TQ varied in different aqueous solvents, and might be compromised due to stability issues. However, these findings confirm that the aqueous solubility is not the major obstacle for the drug formulations mainly due to the considerable water solubility (>500 µg/mL) that may be enough to exert pharmacologic effects if administered via parenteral route. Stability study results showed a very low stability profile of TQ in all the aqueous solutions with rapid degradation that varied with solvent type. The study of the degradation kinetics showed a significant effect of pH on the degradation process. The process followed first order kinetics at more acidic and alkaline pH values, and second order kinetics at pH 5-7.4, regardless of the solvent type. The results also expressed that light has a greater impact on the stability of TQ as a shorter period of exposure led to severe degradation, independent of the solution pH and solvent type. Our results also addressed some discrepancies in previously published researches regarding the formulation and quantification of TQ with suggested solutions. Overall, the current study concludes that TQ is unstable in aqueous solutions, particularly at an alkaline pH, in addition to presenting severe light sensitivity. This data indicates the inappropriateness of aqueous solutions as pharmaceutical vehicles for TQ preparations. To the best of our knowledge, this is the first study describing TQ aqueous solubility and stability that may lead to the development of a stable and effective TQ formulation.


Subject(s)
Antineoplastic Agents/chemistry , Benzoquinones/chemistry , Neoplasms/drug therapy , Phytochemicals/chemistry , Benzoquinones/therapeutic use , Drug Stability , Humans , Hydrogen-Ion Concentration , Kinetics , Light , Neoplasms/chemistry , Temperature
3.
Eur J Pharm Sci ; 63: 53-62, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25004412

ABSTRACT

We report crosslinker free self assembly of bovine serum albumin (BSA) and a hydrophobic payload paclitaxel (PTX), into nanoparticles by harnessing the temperature driven unfolding of protein. To systematically study the effects of various factors responsible for the key attributes of the nanoparticles, a Resolution IV design was used. 20 formulations were made with pH, temperature, time of heating before and after addition of drug, stirring rate, protein concentration, and protein to drug ratio selected as independent variables. Particle size, encapsulation efficiency, yield and zeta potential were the response variables. Perturbation and Pareto charts were used to single out the important factors, while, mathematical equations and 3D surface charts have been used to describe the relationship between dependent and independent variables. Nanoparticles with size of 188-482 nm were observed with a highly negative zeta potential of -39.5 to -21.9. Nanoparticles obtained had decent encapsulation efficiency (72.5-87.9%) with effective yield (80.0-93.8%). Validation of the mathematical models with 4 runs indicated the good prognostic ability of Resolution IV design. Spectroscopic studies suggested the non-covalent complexation between BSA and PTX as the possible mechanism of self assembly due to irreversible conformational changes in protein. Transmission Electron Microscopy (TEM) revealed spherical nanoparticles with a porous network of PTX-BSA. X-ray Diffraction (XRD) showed amorphous nature of nanoparticles. PTX release from the nanoparticles was found to be controlled release and followed Peppas-Sahlin model. In vitro cytotoxicity of PTX-BSA nanoparticles was comparable to that of Taxol after 48 h treatment. These findings suggest heat driven BSA self assembly as a viable approach to formulate cytotoxic drug carrying nanoparticles which could be efficiently used in anti-cancer therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Cross-Linking Reagents/chemistry , Drug Carriers/chemistry , Nanoparticles/chemistry , Serum Albumin, Bovine/chemistry , Animals , Antineoplastic Agents/chemistry , Cattle , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Hep G2 Cells , Humans , Particle Size , Structure-Activity Relationship , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL