Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
PLoS One ; 15(12): e0244750, 2020.
Article in English | MEDLINE | ID: mdl-33382800

ABSTRACT

Bats are among the most diverse, widespread, and abundant mammals. In Argentina, 67 species of bats have been recorded, belonging to 5 families and 29 genera. These high levels of biodiversity are likely to complicate identification at fieldwork, especially between closely related species, where external morphology-based approaches are the only immediate means for a priori species assignment. The use of molecular markers can enhance species identification, and acquires particular relevance in capture-release studies. In this study, we discuss the extent of the use of the mitochondrial cytochrome b gene for species identification, comparing external morphology identification with a molecular phylogenetic classification based on this marker, under the light of current bat systematics. We analyzed 33 samples collected in an eco-epidemiological survey in the province of Santa Fe (Argentina). We further sequenced 27 museum vouchers to test the accuracy of cytochrome b -based phylogenies in taxonomic identification of bats occurring in the Pampean/Chacoan regions of Argentina. The cytochrome b gene was successfully amplified in all Molossid and Vespertilionid species except for Eptesicus, for which we designed a new reverse primer. The resulting Bayesian phylogeny was congruent with current systematics. Cytochrome b proved useful for species-level delimitation in non-conflicting genera (Eumops, Dasypterus, Molossops) and has infrageneric resolution in more complex lineages (Eptesicus, Myotis, Molossus). We discuss four sources of incongruence that may act separately or in combination: 1) molecular processes, 2) biology, 3) limitations in identification, and 4) errors in the current taxonomy. The present study confirms the general applicability of cytochrome b -based phylogenies in eco-epidemiological studies, but its resolution and reliability depend mainly, but not solely, on the level of genetic differentiation within each bat genus.


Subject(s)
Chiroptera/genetics , Cytochromes b/genetics , DNA, Mitochondrial/genetics , Genetic Variation , Animals , Argentina , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL