Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Euro Surveill ; 29(8)2024 Feb.
Article in English | MEDLINE | ID: mdl-38390651

ABSTRACT

Influenza A viruses circulated in Europe from September 2023 to January 2024, with influenza A(H1N1)pdm09 predominance. We provide interim 2023/24 influenza vaccine effectiveness (IVE) estimates from two European studies, covering 10 countries across primary care (EU-PC) and hospital (EU-H) settings. Interim IVE was higher against A(H1N1)pdm09 than A(H3N2): EU-PC influenza A(H1N1)pdm09 IVE was 53% (95% CI: 41 to 63) and 30% (95% CI: -3 to 54) against influenza A(H3N2). For EU-H, these were 44% (95% CI: 30 to 55) and 14% (95% CI: -32 to 43), respectively.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Influenza B virus , Influenza A Virus, H3N2 Subtype , Vaccination , Case-Control Studies , Seasons , Hospitals , Primary Health Care
2.
JAMA Netw Open ; 7(7): e2419258, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949812

ABSTRACT

Importance: In the context of emerging SARS-CoV-2 variants or lineages and new vaccines, it is key to accurately monitor COVID-19 vaccine effectiveness (CVE) to inform vaccination campaigns. Objective: To estimate the effectiveness of COVID-19 vaccines administered in autumn and winter 2022 to 2023 against symptomatic SARS-CoV-2 infection (with all circulating viruses and XBB lineage in particular) among people aged 60 years or older in Europe, and to compare different CVE approaches across the exposed and reference groups used. Design, Setting, and Participants: This case-control study obtained data from VEBIS (Vaccine Effectiveness, Burden and Impact Studies), a multicenter study that collects COVID-19 and influenza data from 11 European sites: Croatia; France; Germany; Hungary; Ireland; Portugal; the Netherlands; Romania; Spain, national; Spain, Navarre region; and Sweden. Participants were primary care patients aged 60 years or older with acute respiratory infection symptoms who were recruited at the 11 sites after the start of the COVID-19 vaccination campaign from September 2022 to August 2023. Cases and controls were defined as patients with positive and negative, respectively, reverse transcription-polymerase chain reaction (RT-PCR) test results. Exposures: The exposure was COVID-19 vaccination. The exposure group consisted of patients who received a COVID-19 vaccine during the autumn and winter 2022 to 2023 vaccination campaign and 14 days or more before symptom onset. Reference group included patients who were not vaccinated during or in the 6 months before the 2022 to 2023 campaign (seasonal CVE), those who were never vaccinated (absolute CVE), and those who were vaccinated with at least the primary series 6 months or more before the campaign (relative CVE). For relative CVE of second boosters, patients receiving their second booster during the campaign were compared with those receiving 1 booster 6 months or more before the campaign. Main Outcomes and Measures: The outcome was RT-PCR-confirmed, medically attended, symptomatic SARS-CoV-2 infection. Four CVE estimates were generated: seasonal, absolute, relative, and relative of second boosters. CVE was estimated using logistic regression, adjusting for study site, symptom onset date, age, chronic condition, and sex. Results: A total of 9308 primary care patients were included, with 1687 cases (1035 females; median [IQR] age, 71 [65-79] years) and 7621 controls (4619 females [61%]; median [IQR] age, 71 [65-78] years). Within 14 to 89 days after vaccination, seasonal CVE was 29% (95% CI, 14%-42%), absolute CVE was 39% (95% CI, 6%-60%), relative CVE was 31% (95% CI, 15% to 44%), and relative CVE of second boosters was 34% (95% CI, 18%-47%) against all SARS-CoV-2 variants. In the same interval, seasonal CVE was 44% (95% CI, -10% to 75%), absolute CVE was 52% (95% CI, -23% to 82%), relative CVE was 47% (95% CI, -8% to 77%), and relative CVE of second boosters was 46% (95% CI, -13% to 77%) during a period of high XBB circulation. Estimates decreased with time since vaccination, with no protection from 180 days after vaccination. Conclusions and Relevance: In this case-control study among older Europeans, all CVE approaches suggested that COVID-19 vaccines administered in autumn and winter 2022 to 2023 offered at least 3 months of protection against symptomatic, medically attended, laboratory-confirmed SARS-CoV-2 infection. The effectiveness of new COVID-19 vaccines against emerging SARS-CoV-2 variants should be continually monitored using CVE seasonal approaches.


Subject(s)
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Seasons , Vaccine Efficacy , Humans , Aged , COVID-19/prevention & control , COVID-19/epidemiology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/therapeutic use , Female , Europe/epidemiology , Male , SARS-CoV-2/immunology , Middle Aged , Case-Control Studies , Aged, 80 and over , Vaccination/statistics & numerical data , European People
3.
Vaccine ; 42(19): 3931-3937, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38839521

ABSTRACT

In autumn 2023, European vaccination campaigns predominantly administered XBB.1.5 vaccine. In a European multicentre study, we estimated 2023 COVID-19 vaccine effectiveness (VE) against laboratory-confirmed symptomatic infection at primary care level between September 2023 and January 2024. Using a test-negative case-control design, we estimated VE in the target group for COVID-19 vaccination overall and by time since vaccination. We included 1057 cases and 4397 controls. Vaccine effectiveness was 40 % (95 % CI: 26-53 %) overall, 48 % (95 % CI: 31-61 %) among those vaccinated < 6 weeks of onset and 29 % (95 % CI: 3-49 %) at 6-14 weeks. Our results suggest that COVID-19 vaccines administered to target groups during the autumn 2023 campaigns showed clinically significant effectiveness against laboratory-confirmed, medically attended symptomatic SARS-CoV-2 infection in the 3 months following vaccination. A longer study period will allow for further variant-specific COVID-19 VE estimates, better understanding decline in VE and informing booster administration policies.


Subject(s)
COVID-19 Vaccines , COVID-19 , Primary Health Care , SARS-CoV-2 , Vaccine Efficacy , Humans , COVID-19/prevention & control , COVID-19/epidemiology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Europe/epidemiology , Female , Male , Middle Aged , Adult , SARS-CoV-2/immunology , Case-Control Studies , Aged , Young Adult , Adolescent , Vaccination/methods , Vaccination/statistics & numerical data , Immunization Programs
SELECTION OF CITATIONS
SEARCH DETAIL