Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
New Phytol ; 237(5): 1495-1504, 2023 03.
Article in English | MEDLINE | ID: mdl-36511294

ABSTRACT

Nonvascular photoautotrophs (NVP), including bryophytes, lichens, terrestrial algae, and cyanobacteria, are increasingly recognized as being essential to ecosystem functioning in many regions of the world. Current research suggests that climate change may pose a substantial threat to NVP, but the extent to which this will affect the associated ecosystem functions and services is highly uncertain. Here, we propose a research agenda to address this urgent question, focusing on physiological and ecological processes that link NVP to ecosystem functions while also taking into account the substantial taxonomic diversity across multiple ecosystem types. Accordingly, we developed a new categorization scheme, based on microclimatic gradients, which simplifies the high physiological and morphological diversity of NVP and world-wide distribution with respect to several broad habitat types. We found that habitat-specific ecosystem functions of NVP will likely be substantially affected by climate change, and more quantitative process understanding is required on: (1) potential for acclimation; (2) response to elevated CO2 ; (3) role of the microbiome; and (4) feedback to (micro)climate. We suggest an integrative approach of innovative, multimethod laboratory and field experiments and ecophysiological modelling, for which sustained scientific collaboration on NVP research will be essential.


Subject(s)
Bryophyta , Lichens , Ecosystem , Climate Change , Plants , Bryophyta/physiology , Lichens/physiology
2.
Proc Natl Acad Sci U S A ; 117(36): 22293-22302, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32839321

ABSTRACT

During austral summer field seasons between 1999 and 2018, we sampled at 91 locations throughout southern Victoria Land and along the Transantarctic Mountains for six species of endemic microarthropods (Collembola), covering a latitudinal range from 76.0°S to 87.3°S. We assembled individual mitochondrial cytochrome c oxidase subunit 1 (COI) sequences (n = 866) and found high levels of sequence divergence at both small (<10 km) and large (>600 km) spatial scales for four of the six Collembola species. We applied molecular clock estimates and assessed genetic divergences relative to the timing of past glacial cycles, including collapses of the West Antarctic Ice Sheet (WAIS). We found that genetically distinct lineages within three species have likely been isolated for at least 5.54 My to 3.52 My, while the other three species diverged more recently (<2 My). We suggest that Collembola had greater dispersal opportunities under past warmer climates, via flotation along coastal margins. Similarly increased opportunities for dispersal may occur under contemporary climate warming scenarios, which could influence the genetic structure of extant populations. As Collembola are a living record of past landscape evolution within Antarctica, these findings provide biological evidence to support geological and glaciological estimates of historical WAIS dynamics over the last ca 5 My.


Subject(s)
Genetic Variation , Invertebrates/genetics , Soil , Animals , Antarctic Regions , Climate Change , Ice Cover , Seasons
3.
J Environ Manage ; 266: 110593, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32392143

ABSTRACT

Antarctica has been witnessing continued growth of tourism, both in the overall visitation and in the diversity of itineraries and visitor activities. Expanding tourism presents unique business and educational opportunities, but it is also putting immense pressure on Antarctica's natural, and for the most parts, pristine environment. Understanding the effectiveness of different tourism management strategies and instruments, like the Visitor Site Guidelines adopted by the Antarctic Treaty, is fundamental to the sustainable management of Antarctic tourism. The purpose of this study was to assess the effectiveness of Visitor Site Guidelines and other tourism management actions in reducing impacts to the natural environment and for this, we used Barrientos Island as our case study as this is one of the most popular sites for tourism activities in the Antarctic Peninsula Region. First, we conducted a literature review and biological inventories to enable a thorough description of Barrientos Island's ecological values. The results show that Barrientos Island occupies the third highest biological richness among the top 15 most visited sites in the Antarctic Peninsula Region. We then assessed how tourism use on Barrientos Island affected biodiversity and the environment, and how Visitor Site Guidelines and other management measures helped alleviate these impacts. As intended, these instruments has been positive and valuable by providing operational guidance. However, they may lack significant information for tourism decision-making processes. To this end, we propose an alternative adaptive management approach that can more efficiently conserve biodiversity and environmental values while allowing the development of sustainable tourism activities in Antarctica.


Subject(s)
Biodiversity , Antarctic Regions , Islands
4.
New Phytol ; 223(2): 661-674, 2019 07.
Article in English | MEDLINE | ID: mdl-30951191

ABSTRACT

Chronosequences at the forefront of retreating glaciers provide information about colonization rates of bare surfaces. In the northern hemisphere, forest development can take centuries, with rates often limited by low nutrient availability. By contrast, in front of the retreating Pia Glacier (Tierra del Fuego, Chile), a Nothofagus forest is in place after only 34 yr of development, while total soil nitrogen (N) increased from near zero to 1.5%, suggesting a strong input of this nutrient. We measured N-fixation rates, carbon fluxes, leaf N and phosphorus contents and leaf δ15 N in the dominant plants, including the herb Gunnera magellanica, which is endosymbiotically associated with a cyanobacterium, in order to investigate the role of N-fixing and mycorrhizal symbionts in N-budgets during successional transition. G. magellanica presented some of the highest nitrogenase activities yet reported (potential maximal contribution of 300 kg N ha-1  yr-1 ). Foliar δ15 N results support the framework of a highly efficient N-uptake and transfer system based on mycorrhizas, with c. 80% of N taken up by the mycorrhizas potentially transferred to the host plant. Our results suggest the symbiosis of G. magellanica with cyanobacteria, and trees and shrubs with mycorrhizas, to be the key processes driving this rapid succession.


Subject(s)
Mycorrhizae/metabolism , Nitrogen/metabolism , Tracheophyta/metabolism , Tracheophyta/microbiology , Antarctic Regions , Carbon Cycle , Chile , Isotope Labeling , Nitrogen Fixation , Phosphorus/metabolism , Photosynthesis , Plant Leaves/metabolism , Soil
5.
Plants (Basel) ; 13(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38891327

ABSTRACT

The Valdivian region has a temperate rainy climate with differences in rainfall throughout the year. This heterogeneity results in periods of summer drought that expose the poikilohydric epiphytes to desiccation. With this research, we aim to answer different research questions related to phorophyte preference, response to desiccation, and response to radiation. How does the diversity of macrolichens vary at a local and microclimate scale in three tree species within an evergreen forest? What is the tolerance limit of macrolichens against prolonged desiccation, according to evaluation of the maximum efficiency of PSII (Fv/Fm) and pigment concentration? What is the tolerance limit against a potential increase in radiation? We found that macrolichen communities are determined by tree species, which regulate the suitability of the substrate by modifying the temperature and humidity conditions. In addition, our results show a rapid photosynthetic alteration in temporal exposure to desiccation, measured through Fv/Fm and pigment concentration. Our results showed that the most sensitive lichens to radiation and desiccation are not coincident. We confirm the low tolerance of macrolichen species to high radiation, reflected in the saturation profile obtained for the set studied. The lichen community in the evergreen forest showed high complexity and vulnerability, pointing to the importance of more research.

6.
Plants (Basel) ; 12(13)2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37447012

ABSTRACT

The community composition of epiphytic macrolichens from two tree species (Araucaria araucana and Nothofagus antarctica) was conducted in temperate forests in the Conguillío National Park, Chile. The composition of lichen biota is influenced by phorophyte species, bark pH, and microclimatic conditions. A total of 31 species of macrolichens were found on A. araucana and N. antarctica. Most of the species showed phorophyte preference, with nine being exclusive to A. araucana and 10 to N. antarctica. The detrended correspondence analysis (DCA) indicated the formation of three communities: one representing macrolichens growing on N. antarctica and two others growing chiefly on A. araucana, either with north or south exposure. More work is needed to study the lichen biota of the forests of the Chilean Andes, which are under multiple threats, including clearing and climate change. In order to counteract such risks to native forests and to the biodiversity of the associated epiphytic lichens, conservation plans should be established that consider the factors that influence the composition of the lichen community.

7.
J Fungi (Basel) ; 10(1)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38248919

ABSTRACT

This paper analyses the lichen flora of Navarino Island (Tierra del Fuego, Cape Horn Region, Chile), identifying species shared with the South Shetland Islands (Antarctic Peninsula). In this common flora, species are grouped by their biogeographic origin (Antarctic-subantarctic endemic, austral, bipolar, and cosmopolitan), their habitat on Navarino Island (coastal, forest, and alpine), their morphotype (crustaceous, foliaceous, fruticulose, and cladonioid), and the substrate from which they were collected (epiphytic, terricolous and humicolous, and saxicolous). A total of 124 species have been recognised as common on both sides of the Drake Passage, predominantly bipolar, crustaceous, and saxicolous species, and with an alpine distribution on Navarino Island. The most interesting fact is that more than 30% of the flora is shared between the southern tip of South America and the western Antarctic Peninsula, which is an indication of the existence of a meridian flow of propagules capable of crossing the Antarctic polar front.

8.
Plant Soil ; 482(1-2): 261-276, 2023.
Article in English | MEDLINE | ID: mdl-36714192

ABSTRACT

Purpose: Biocrust communities, which are important regulators of multiple ecosystem functions in drylands, are highly sensitive to climate change. There is growing evidence of the negative impacts of warming on the performance of biocrust constituents like lichens in the field. Here, we aim to understand the physiological basis behind this pattern. Methods: Using a unique manipulative climate change experiment, we monitored every 30 minutes and for 9 months the chlorophyll a fluorescence and microclimatic conditions (lichen surface temperature, relative moisture and photosynthetically active radiation) of Psora decipiens, a key biocrust constituent in drylands worldwide. This long-term monitoring resulted in 11,847 records at the thallus-level, which allowed us to evaluate the impacts of ~2.3 °C simulated warming treatment on the physiology of Psora at an unprecedented level of detail. Results: Simulated warming and the associated decrease in relative moisture promoted by this treatment negatively impacted the physiology of Psora, especially during the diurnal period of the spring, when conditions are warmer and drier. These impacts were driven by a mechanism based on the reduction of the length of the periods allowing net photosynthesis, and by declines in Yield and Fv/Fm under simulated warming. Conclusion: Our study reveals the physiological basis explaining observed negative impacts of ongoing global warming on biocrust-forming lichens in the field. The functional response observed could limit the growth and cover of biocrust-forming lichens in drylands in the long-term, negatively impacting in key soil attributes such as biogeochemical cycles, water balance, biological activity and ability of controlling erosion. Supplementary Information: The online version contains supplementary material available at 10.1007/s11104-022-05686-w.

9.
Plants (Basel) ; 12(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38068675

ABSTRACT

(1) Background: Lichens, as an important part of the terrestrial ecosystem, attract the attention of various research disciplines. To elucidate their ultrastructure, transmission electron microscopy of resin-embedded samples is indispensable. Since most observations of lichen samples are generated via chemical fixation and processing at room temperature, they lack the rapid immobilization of live processes and are prone to preparation artefacts. To improve their preservation, cryoprocessing was tested in the past, but never widely implemented, not least because of an extremely lengthy protocol. (2) Methods: Here, we introduce an accelerated automated freeze substitution protocol with continuous agitation. Using the example of three lichen species, we demonstrate the preservation of the native state of algal photobionts and mycobionts in association with their extracellular matrix. (3) Results: We bring to attention the extent and the structural variability of the hyphae, the extracellular matrix and numerous crystallized metabolites. Our findings will encourage studies on transformation processes related to the compartmentation of lichen thalli. They include cryopreserved aspects of algal photobionts and observations of putative physiological relevance, such as the arrangement of numerous mitochondria within chloroplast pockets. (4) Conclusions: In summary, we present accelerated freeze substitution as a very useful tool for systematic studies of lichen ultrastructures.

10.
Ann Bot ; 109(6): 1133-48, 2012 May.
Article in English | MEDLINE | ID: mdl-22451601

ABSTRACT

BACKGROUND AND AIMS: Phenotypic variability is a successful strategy in lichens for colonizing different habitats. Vagrancy has been reported as a specific adaptation for lichens living in steppe habitats around the world. Among the facultatively vagrant species, the cosmopolitan Cetraria aculeata apparently forms extremely modified vagrant thalli in steppe habitats of Central Spain. The aim of this study was to investigate whether these changes are phenotypic plasticity (a single genotype producing different phenotypes), by characterizing the anatomical and ultrastructural changes observed in vagrant morphs, and measuring differences in ecophysiological performance. METHODS: Specimens of vagrant and attached populations of C. aculeata were collected on the steppes of Central Spain. The fungal internal transcribed spacer (ITS), glyceraldehyde-3-phosphate dehydrogenase (GPD) and the large sub-unit of the mitochondrial ribosomal DNA (mtLSUm), and the algal ITS and actin were studied within a population genetics framework. Semi-thin and ultrathin sections were analysed by means of optical, scanning electron and transmission electron microscopy. Gas exchange and chlorophyll fluorescence were used to compare the physiological performance of both morphs. KEY RESULTS AND CONCLUSIONS: Vagrant and attached morphs share multilocus haplotypes which may indicate that they belong to the same species in spite of their completely different anatomy. However, differentiation tests suggested that vagrant specimens do not represent a random sub-set of the surrounding population. The morphological differences were related to anatomical and ultrastructural differences. Large intercalary growth rates of thalli after the loss of the basal-apical thallus polarity may be the cause of the increased growth shown by vagrant specimens. The anatomical and morphological changes lead to greater duration of ecophysiological activity in vagrant specimens. Although the anatomical and physiological changes could be chance effects, the genetic differentiation between vagrant and attached sub-populations and the higher biomass of the former show fitness effects and adaptation to dry environmental conditions in steppe habitats.


Subject(s)
Acclimatization , Ascomycota/cytology , Ascomycota/genetics , Lichens/cytology , Lichens/genetics , Phenotype , Climate , Genetic Variation , Sequence Analysis, DNA , Spain
11.
Sci Rep ; 11(1): 23460, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34873261

ABSTRACT

Lecideoid lichens as dominant vegetation-forming organisms in the climatically harsh areas of the southern part of continental Antarctica show clear preferences in relation to environmental conditions (i.e. macroclimate). 306 lichen samples were included in the study, collected along the Ross Sea coast (78°S-85.5°S) at six climatically different sites. The species compositions as well as the associations of their two dominant symbiotic partners (myco- and photobiont) were set in context with environmental conditions along the latitudinal gradient. Diversity values were nonlinear with respect to latitude, with the highest alpha diversity in the milder areas of the McMurdo Dry Valleys (78°S) and the most southern areas (Durham Point, 85.5°S; Garden Spur, 84.5°S), and lowest in the especially arid and cold Darwin Area (~ 79.8°S). Furthermore, the specificity of mycobiont species towards their photobionts decreased under more severe climate conditions. The generalist lichen species Lecanora fuscobrunnea and Lecidea cancriformis were present in almost all habitats, but were dominant in climatically extreme areas. Carbonea vorticosa, Lecidella greenii and Rhizoplaca macleanii were confined to milder areas. In summary, the macroclimate is considered to be the main driver of species distribution, making certain species useful as bioindicators of climate conditions and, consequently, for assessing the consequences of climate change.


Subject(s)
Ascomycota/physiology , Biodiversity , Chlorophyta/physiology , Climate , Lichens/physiology , Antarctic Regions , Climate Change , Ecology , Ecosystem , Environment , Haplotypes , Nonlinear Dynamics , Phylogeny , Symbiosis , Temperature
12.
Sci Total Environ ; 664: 499-517, 2019 May 10.
Article in English | MEDLINE | ID: mdl-30759413

ABSTRACT

The Tröllaskagi Peninsula in northern Iceland hosts more than a hundred small glaciers that have left a rich terrestrial record of Holocene climatic fluctuations in their forelands. Traditionally, it has been assumed that most of the Tröllaskagi glaciers reached their Late Holocene maximum extent during the Little Ice Age (LIA). However, there is evidence of slightly more advanced pre-LIA positions. LIA moraines from Iceland have been primary dated mostly through lichenometric dating, but the limitations of this technique do not allow dating of glacial advances prior to the 18th or 19th centuries. The application of 36Cl Cosmic-Ray Exposure (CRE) dating to Tungnahryggsjökull moraine sequences in Vesturdalur and Austurdalur (central Tröllaskagi) has revealed a number of pre-LIA glacial advances at ~400 and ~700 CE, and a number of LIA advances in the 15th and 17th centuries, the earliest LIA advances dated so far in Tröllaskagi. This technique hence shows that the LIA chronology in Tröllaskagi agrees with that of other European areas such as the Alps or the Mediterranean mountains. The combined use of lichenometric dating, aerial photographs, satellite images and fieldwork shows that the regional colonization lag of the commonly used lichen species Rhizocarpon geographicum is longer than previously assumed. For exploratory purposes, an alternative lichen species (Porpidia soredizodes) has been tested for lichenometric dating, estimating a tentative growth rate of 0.737 mm yr-1.

13.
Plant Soil ; 429(1-2): 35-52, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30078912

ABSTRACT

BACKGROUND AND AIMS: We lack studies evaluating how the identity of plant, lichen and moss species relates to microbial abundance and soil functioning on Antarctica. If species identity is associated with soil functioning, distributional changes of key species, linked to climate change, could significantly affect Antarctic soil functioning. METHODS: We evaluated how the identity of six Antarctic plant, lichen and moss species relates to a range of soil attributes (C, N and P cycling), microbial abundance and structure in Livingston Island, Maritime Antarctica. We used an effect size metric to predict the association between species (vs. bare soil) and the measured soil attributes. RESULTS: We observed species-specific effects of the plant and biocrust species on soil attributes and microbial abundance. Phenols, phosphatase and ß-D-cellobiosidase activities were the most important attributes characterizing the observed patterns. We found that the evaluated species positively correlated with soil nutrient availability and microbial abundance vs. bare soil. CONCLUSIONS: We provide evidence, from a comparative study, that plant and biocrust identity is associated with different levels of soil functioning and microbial abundance in Maritime Antarctica. Our results suggest that changes in the spatial distribution of these species linked to climate change could potentially entail changes in the functioning of Antarctic terrestrial ecosystems.

14.
FEMS Microbiol Ecol ; 59(2): 386-95, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17328119

ABSTRACT

The precise identification of the cyanobacteria that comprise an endolithic biofilm is hindered by difficulties in culturing the organisms found in these biofilms and a lack of previous molecular and ultrastructural data. This study characterizes, both at the ultrastructural and molecular level, two different cyanobacterial biofilms found in fissures of granite from continental Antarctica. Electron microscopy revealed structural differences between the two biofilms. One was only loosely adhered to the substrate, while the other biofilm showed a closer association between cells and rock minerals and was tightly attached to the substrate. Cells from both biofilms where ultrastructurally distinct, displaying, for instance, clear differences in their sheaths. The amounts of EPS and their organization associated with the cyanobacteria may determine the differences in adhesion and effects on the lithic substrate observed in the biofilms. By sequencing part of the 16S rRNA gene, the two cyanobacteria were also genetically characterized. The gene sequence of the cells comprising the biofilm that was tightly attached to the lithic substrate showed most homology with that of an endolithic cyanobacterium from Switzerland (AY153458), and the cyanobacterial type loosely adhered to the rock, clustered with Acaryochloris marina, the only organism unequivocally known to contain chlorophyll d. This study reveals the presence of at least two different types of endolithic biofilm, dominated each by a single type of cyanobacterium, able to withstand the harsh conditions of the Antarctic climate.


Subject(s)
Biofilms/growth & development , Cyanobacteria/classification , Cyanobacteria/ultrastructure , Geologic Sediments/microbiology , RNA, Ribosomal, 16S/genetics , Silicon Dioxide , Antarctic Regions , Bacterial Adhesion , Cyanobacteria/genetics , Cyanobacteria/physiology , DNA, Bacterial/analysis , DNA, Ribosomal/analysis , Genes, rRNA , Microscopy, Electron, Transmission , Sequence Analysis, DNA , Silicon Dioxide/chemistry
15.
Astrobiology ; 7(3): 443-54, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17630840

ABSTRACT

This experiment was aimed at establishing, for the first time, the survival capability of lichens exposed to space conditions. In particular, the damaging effect of various wavelengths of extraterrestrial solar UV radiation was studied. The lichens used were the bipolar species Rhizocarpon geographicum and Xanthoria elegans, which were collected above 2000 m in the mountains of central Spain and as endolithic communities inhabiting granites in the Antarctic Dry Valleys. Lichens were exposed to space in the BIOPAN-5 facility of the European Space Agency; BIOPAN-5 is located on the outer shell of the Earth-orbiting FOTON-M2 Russian satellite. The lichen samples were launched from Baikonur by a Soyuz rocket on May 31, 2005, and were returned to Earth after 16 days in space, at which time they were tested for survival. Chlorophyll fluorescence was used for the measurement of photosynthetic parameters. Scanning electron microscopy in back-scattered mode, low temperature scanning electron microscopy, and transmission electron microscopy were used to study the organization and composition of both symbionts. Confocal laser scanning microscopy, in combination with the use of specific fluorescent probes, allowed for the assessment of the physiological state of the cells. All exposed lichens, regardless of the optical filters used, showed nearly the same photosynthetic activity after the flight as measured before the flight. Likewise, the multimicroscopy approach revealed no detectable ultrastructural changes in most of the algal and fungal cells of the lichen thalli, though a greater proportion of cells in the flight samples had compromised membranes, as revealed by the LIVE/DEAD BacLight Bacterial Viability Kit. These findings indicate that most lichenized fungal and algal cells can survive in space after full exposure to massive UV and cosmic radiation, conditions proven to be lethal to bacteria and other microorganisms. The lichen upper cortex seems to provide adequate protection against solar radiation. Moreover, after extreme dehydration induced by high vacuum, the lichens proved to be able to recover, in full, their metabolic activity within 24 hours.


Subject(s)
Extraterrestrial Environment , Lichens , Exobiology , Lichens/metabolism , Lichens/radiation effects , Lichens/ultrastructure , Microscopy, Confocal , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Photosystem II Protein Complex/metabolism , Space Flight , Ultraviolet Rays/adverse effects
16.
Sci Rep ; 7(1): 5689, 2017 07 24.
Article in English | MEDLINE | ID: mdl-28740147

ABSTRACT

The Antarctic Peninsula has had a globally large increase in mean annual temperature from the 1951 to 1998 followed by a decline that still continues. The challenge is now to unveil whether these recent, complex and somewhat unexpected climatic changes are biologically relevant. We were able to do this by determining the growth of six lichen species on recently deglaciated surfaces over the last 24 years. Between 1991 and 2002, when mean summer temperature (MST) rose by 0.42 °C, five of the six species responded with increased growth. MST declined by 0.58 °C between 2002 and 2015 with most species showing a fall in growth rate and two of which showed a collapse with the loss of large individuals due to a combination of increased snow fall and longer snow cover duration. Increased precipitation can, counter-intuitively, have major negative effects when it falls as snow at cooler temperatures. The recent Antarctic cooling is having easily detectable and deleterious impacts on slow growing and highly stress-tolerant crustose lichens, which are comparable in extent and dynamics, and reverses the gains observed over the previous decades of exceptional warming.


Subject(s)
Lichens/growth & development , Antarctic Regions , Climate Change , Hot Temperature , Snow
17.
AoB Plants ; 9(6): plx053, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29225764

ABSTRACT

The majority of plant species are glycophytes and are not salt-tolerant and maintain low sodium levels within their tissues; if. high tissue sodium concentrations do occur, it is in response to elevated environmental salt levels. Here we report an apparently novel and taxonomically diverse grouping of plants that continuously maintain high tissue sodium contents and share the rare feature of possessing symbiotic cyanobacteria. Leaves of Gunnera magellanica in Tierra del Fuego always had sodium contents (dry weight basis) of around 4.26 g kg-1, about 20 times greater than measured in other higher plants in the community (0.29 g kg-1). Potassium and chloride levels were also elevated. This was not a response to soil sodium and chloride levels as these were low at all sites. High sodium contents were also confirmed in G. magellanica from several other sites in Tierra del Fuego, in plants taken to, and cultivated in Madrid for 2 years at low soil salt conditions, and also in other free living or cultivated species of Gunnera from the UK and New Zealand. Gunnera species are the only angiosperms that possess cyanobacterial symbionts so we analysed other plants that have this rather rare symbiosis, all being glycophytes. Samples of Azolla, a floating aquatic fern, from Europe and New Zealand all had even higher sodium levels than Gunnera. Roots of the gymnosperm Cycas revoluta had lower sodium contents (2.52 ± 0.34 g kg-1) but still higher than the non-symbiotic glycophytes. The overaccumulation of salt even when it is at low levels in the environment appears to be linked to the possession of a cyanobacterial symbiosis although the actual functional basis is unclear.

18.
Tree Physiol ; 26(3): 389-400, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16356909

ABSTRACT

Shade and irrigation are frequently used to increase the success of Mediterranean Quercus spp. plantations. However, there is controversy about the combined effects of these treatments on plant performance. We assessed the effects of two irradiances (full sunlight and moderate shade) and two summer watering regimes (high (daily) and low (alternate days)) on leaf and whole-plant traits of 1-year-old seedlings of Quercus coccifera, Q. ilex subsp. ballota and Q. faginea grown outdoors for 8.5 months. Leaf traits included measures of morphology, nitrogen concentration, gas exchange and photochemical efficiency, and measures of whole-plant traits included biomass allocation patterns, growth phenology, across-summer leaf area change and relative growth rate (RGR). Moderate shade reduced leaf mass per area, increased photochemical efficiency, maximum carbon assimilation rate (Amax) and allocation to leaves, and prolonged the growing period in one or more of the species. Daily watering in summer increased Amax of Q. ilex and prolonged the growing period of Q. ilex and Q. faginea. Both treatments tended to increase RGR. The effect of shade was greater in the low-watering regime than in the high-watering regime for two of the 15 studied traits, with treatment effects being independent for the remaining 13 traits. Leaf nitrogen and the ability to maintain leaf area after the arid period, rather than biomass allocation traits, explained the variation in seedling RGR. Trait responsiveness to the treatments was low and similar among species and between study scales, being unexpectedly low in Q. faginea leaves. This may be because selective pressures on leaf plasticity act differently in deciduous and evergreen species. We conclude that moderate shade and daily summer watering enhance the performance of Mediterranean Quercus seedlings through species-specific mechanisms.


Subject(s)
Agriculture/methods , Quercus/physiology , Seedlings/physiology , Water/metabolism , Analysis of Variance , Mediterranean Region , Phenotype , Plant Leaves/growth & development , Plant Shoots/physiology , Quercus/drug effects , Quercus/growth & development , Seedlings/drug effects , Water/pharmacology
19.
Int Microbiol ; 19(3): 161-173, 2016 Sep.
Article in English | MEDLINE | ID: mdl-28494086

ABSTRACT

A previously established chronosequence from Pia Glacier forefield in Tierra del Fuego (Chile) containing soils of different ages (from bare soils to forest ones) is analyzed. We used this chronosequence as framework to postulate that microbial successional development would be accompanied by changes in functionality. To test this, the GeoChip functional microarray was used to identify diversity of genes involved in microbial carbon and nitrogen metabolism, as well as other genes related to microbial stress response and biotic interactions. Changes in putative functionality generally reflected succession-related taxonomic composition of soil microbiota. Major shifts in carbon fixation and catabolism were observed, as well as major changes in nitrogen metabolism. At initial microbial dominated succession stages, microorganisms could be mainly involved in pathways that help to increase nutrient availability, while more complex microbial transformations such as denitrification and methanogenesis, and later degradation of complex organic substrates, could be more prevalent at vegetated successional states. Shifts in virus populations broadly reflected changes in microbial diversity. Conversely, stress response pathways appeared relatively well conserved for communities along the entire chronosequence. We conclude that nutrient utilization is likely the major driver of microbial succession in these soils. [Int Microbiol 19(3):161-173 (2016)].


Subject(s)
Ice Cover/microbiology , Soil Microbiology , Carbon/metabolism , Carbon Cycle , Chile , Ecology , Nitrogen/metabolism , Oligonucleotide Array Sequence Analysis
20.
Oecologia ; 133(3): 295-306, 2002 Nov.
Article in English | MEDLINE | ID: mdl-28466222

ABSTRACT

Aiming to investigate whether a carbon-to-nitrogen equilibrium model describes resource allocation in lichens, net photosynthesis (NP), respiration (R), concentrations of nitrogen (N), chlorophyll (Chl), chitin and ergosterol were investigated in 75 different lichen associations collected in Antarctica, Arctic Canada, boreal Sweden, and temperate/subtropical forests of Tenerife, South Africa and Japan. The lichens had various morphologies and represented seven photobiont and 41 mycobiont genera. Chl a, chitin and ergosterol were used as indirect markers of photobiont activity, fungal biomass and fungal respiration, respectively. The lichens were divided into three groups according to photobiont: (1) species with green algae, (2) species with cyanobacteria, and (3) tripartite species with green algal photobionts and cyanobacteria in cephalodia. Across species, thallus N concentration ranged from 1 to 50 mg g-1 dry wt., NP varied 50-fold, and R 10-fold. In average, green algal lichens had the lowest, cyanobacterial Nostoc lichens the highest and tripartite lichens intermediate N concentrations. All three markers increased with thallus N concentration, and lichens with the highest Chl a and N concentrations had the highest rates of both P and R. Chl a alone accounted for ca. 30% of variation in NP and R across species. On average, the photosynthetic efficiency quotient [K F=(NPmax+R)/R)] ranged from 2.4 to 8.6, being higher in fruticose green algal lichens than in foliose Nostoc lichens. The former group invested more N in Chl a and this trait increased NPmax while decreasing R. In general terms, the investigated lichens invested N resources such that their maximal C input capacity matched their respiratory C demand around a similar (positive) equilibrium across species. However, it is not clear how this apparent optimisation of resource use is regulated in these symbiotic organisms.

SELECTION OF CITATIONS
SEARCH DETAIL