Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Indian J Exp Biol ; 51(11): 1012-7, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24416939

ABSTRACT

Production of fuel ethanol from lignocellulosic biomass conventionally includes biomass pretreatment, hydrolysis, and fermentation. The liquor generated during dilute acid pretreatment of biomass contains considerable quantities of pentose sugars as well as various degradation products of sugars and lignin, like furfural, hydroxymethyl furfural (HMF), organic acids, aldehydes and others, which are known to be inhibitory for microbial growth. This pentose rich liquor is a potent resource which can be used to produce alcohol or other value added metabolites by microbial fermentation. However, the presence of these inhibitory compounds is a major hindrance and their removal is essential for efficient utilization of this byproduct stream. In the present work, the polymeric adsorbent resins, XAD-4, XAD-7 and XAD-16 were evaluated for their ability to adsorb fermentation inhibitors like furfural and HMF from the acid pretreated liquor. These resins could remove 55-75% of furfural and 100% of HMF and more than 90% sugar remained un-adsorbed in the pretreated liquor. Desorption of furfural from stationary phase was evaluated by using ethanol and hot water. The results suggest that these polymeric resins may be used for detoxification of acid pretreatment liquor with selective removal of sugar degradation products without affecting the sugar content in the solution.


Subject(s)
Acids/chemistry , Biomass , Lignin/chemistry , Polymers/chemistry , Adsorption , Fermentation , Lignin/metabolism
2.
Appl Biochem Biotechnol ; 167(6): 1489-500, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22447190

ABSTRACT

Residue of chili plants left in the field after harvesting is a major lignocellulosic resource that is underexploited. India has over 0.6 million tons of this residue available as surplus annually which projects it as a potent feedstock for conversion to bioethanol. The cellulose, hemicellulose and lignin content of the chili residues are subject to variations with type of cultivar, geographical region and the season of cultivation, and the composition is critical in developing strategies for its conversion to bioalcohol(s). As with any lignocellulosic biomass, this feedstock needs pretreatment to make it more susceptible to hydrolysis by enzymes which is the most efficient method for generating sugars which can, then, be fermented to alcohol. Pretreatment of chili postharvest residue (CPHR) is, therefore, important though very little study has addressed this challenge. Similarly, enzymatic saccharification of pretreated chili biomass is another area which needs dedicated R&D because the combination of enzyme preparations and the conditions for saccharification are different in different biomass types. The present study was undertaken to develop an optimal process for pretreatment and enzymatic saccharification of CPHR that will yield high amount of free sugars. Dilute acid and alkali pretreatment of the biomass was studied at high temperatures (120-180 °C), with mixing (50-200 rpm) in a high pressure reactor. The holding time was adjusted between 15 and 60 min, and the resultant biomass was evaluated for its susceptibility to enzymatic hydrolysis. Similarly, the conditions for hydrolysis including biomass and enzyme loadings, mixing and incubation time were studied using a Taguchi method of experimentation and were optimized to obtain maximal yield of sugars. Efficiency of pretreatment was gauged by observing the changes in composition and the physicochemical properties of native and pretreated biomass which were analyzed by SEM and XRD analyses. The studies are expected to provide insights into the intricacies of biomass conversion leading to better processes that are simpler and more efficient.


Subject(s)
Carbohydrate Metabolism , Crops, Agricultural/metabolism , Enzymes/metabolism , Biomass , Cellulose/metabolism , Lignin/metabolism , Microscopy, Electron, Scanning , X-Ray Diffraction
3.
Bioresour Technol ; 112: 300-7, 2012 May.
Article in English | MEDLINE | ID: mdl-22420987

ABSTRACT

In the present work, alkali assisted microwave pretreatment (AAMP) of cotton plant residue (CPR) with high pressure reactor pretreatment was compared. Further, modeling of AAMP was attempted. AAMP, followed by enzymatic saccharification was evaluated and the critical parameters were identified to be exposure time, particle size and enzyme loading. The levels of these parameters were optimized using response surface methodology (RSM) to enhance sugar yield. AAMP of CPR (1mm average size) for 6 min at 300 W yielded solid fractions that on hydrolysis resulted in maximum reducing sugar yield of 0.495 g/g. The energy required for AAMP at 300 W for 6 min was 108 kJ whereas high pressure pretreatment (180°C, 100 rpm for 45 min) requires 5 times more energy i.e., 540 kJ. Physiochemical characterization of native and pretreated feedstock revealed differences between high pressure pretreatment and AAMP.


Subject(s)
Alkalies/pharmacology , Biofuels/analysis , Bioreactors , Carbohydrates/biosynthesis , Fermentation/drug effects , Gossypium/drug effects , Microwaves , Analysis of Variance , Biomass , Gossypium/ultrastructure , Hydrolysis/drug effects , Pressure , Reproducibility of Results , Spectroscopy, Fourier Transform Infrared , Thermodynamics , Waste Products , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL