Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Biochem Biophys Res Commun ; 694: 149417, 2024 01 29.
Article in English | MEDLINE | ID: mdl-38150919

ABSTRACT

In the era of immunotherapy, the targeting of disease-specific biomarkers goes hand in hand with the development of highly selective antibody-based reagents having optimal pharmacological/toxicological profiles. One interesting and debated biomaker for several types of cancers is the onco-fetal protein Cripto-1 that is selectively expressed in many solid tumours and has been actively investigated as potential theranostic target. Starting from previously described anti-CFC/Cripto-1 murine monoclonal antibodies, we have moved forward to prepare the humanized recombinant Fabs which have been engineered so as to bear an MTGase site useful for a one-step site-specific labelling. The purified and bioconjugated molecules have been extensively characterized and tested on Cripto-1-positive cancer cells through in vitro binding assays. These recombinant Fab fragments recognize the target antigen in its native form on intact cells suggesting that they can be further developed as reagents for detecting Cripto-1 in theranostic settings.


Subject(s)
Immunoglobulin Fab Fragments , Neoplasms , Animals , Humans , Mice , Antibodies , GPI-Linked Proteins/metabolism , Immunoglobulin Fab Fragments/chemistry , Intercellular Signaling Peptides and Proteins , Neoplasm Proteins/metabolism
2.
Int J Mol Sci ; 24(10)2023 May 10.
Article in English | MEDLINE | ID: mdl-37239905

ABSTRACT

CD59 is an abundant immuno-regulatory human protein that protects cells from damage by inhibiting the complement system. CD59 inhibits the assembly of the Membrane Attack Complex (MAC), the bactericidal pore-forming toxin of the innate immune system. In addition, several pathogenic viruses, including HIV-1, escape complement-mediated virolysis by incorporating this complement inhibitor in their own viral envelope. This makes human pathogenic viruses, such as HIV-1, not neutralised by the complement in human fluids. CD59 is also overexpressed in several cancer cells to resist the complement attack. Consistent with its importance as a therapeutical target, CD59-targeting antibodies have been proven to be successful in hindering HIV-1 growth and counteracting the effect of complement inhibition by specific cancer cells. In this work, we make use of bioinformatics and computational tools to identify CD59 interactions with blocking antibodies and to describe molecular details of the paratope-epitope interface. Based on this information, we design and produce paratope-mimicking bicyclic peptides able to target CD59. Our results set the basis for the development of antibody-mimicking small molecules targeting CD59 with potential therapeutic interest as complement activators.


Subject(s)
Complement System Proteins , HIV-1 , Humans , Binding Sites, Antibody , Complement System Proteins/metabolism , CD59 Antigens/metabolism , Complement Membrane Attack Complex/metabolism , Complement Inactivating Agents , HIV-1/physiology
3.
Mol Biol Rep ; 48(2): 1505-1519, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33471263

ABSTRACT

Serine hydrolases play crucial roles in many physiological and pathophysiological processes and a panel of these enzymes are targets of approved drugs. Despite this, most of the human serine hydrolases remain poorly characterized with respect to their biological functions and substrates and only a limited number of in vivo active inhibitors have been so far identified. Acylpeptide hydrolase (APEH) is a member of the prolyl-oligopeptidase class, with a unique substrate specificity, that has been suggested to have a potential oncogenic role. In this study, a set of peptides was rationally designed from the lead compound SsCEI 4 and in vitro screened for APEH inhibition. Out of these molecules, a dodecapeptide named Ala 3 showed the best inhibitory effects and it was chosen as a candidate for investigating the anti-cancer effects induced by inhibition of APEH in SAOS-2 cell lines. The results clearly demonstrated that Ala 3 markedly reduced cell viability via deregulation of the APEH-proteasome system. Furthermore, flow cytometric analysis revealed that Ala 3 anti-proliferative effects were closely related to the activation of a caspase-dependent apoptotic pathway. Our findings provide further evidence that APEH can play a crucial role in the pathogenesis of cancer, shedding new light on the great potential of this enzyme as an attractive target for the diagnosis and the quest for selective cancer therapies.


Subject(s)
Enzyme Inhibitors/chemistry , Molecular Targeted Therapy , Osteosarcoma/genetics , Peptide Hydrolases/genetics , Apoptosis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cell Survival/genetics , Enzyme Inhibitors/therapeutic use , Humans , Osteosarcoma/drug therapy , Osteosarcoma/pathology , Peptide Hydrolases/chemistry , Peptide Hydrolases/drug effects , Proteasome Endopeptidase Complex/genetics , Substrate Specificity
4.
Oral Dis ; 27(5): 1137-1147, 2021 Jul.
Article in English | MEDLINE | ID: mdl-32916013

ABSTRACT

Oral squamous cell carcinoma (OSCC) is a common epithelial malignancy of the oral cavity. Nodal and Cripto-1 (CR-1) are important developmental morphogens expressed in several adult cancers and are associated with disease progression. Whether Nodal and CR-1 are simultaneously expressed in the same tumor and how this affects cancer biology are unclear. We investigate the expression and potential role of both Nodal and CR-1 in human OSCC. Immunohistochemistry results show that Nodal and CR-1 are both expressed in the same human OSCC sample and that intensity of Nodal staining is correlated with advanced-stage disease. However, this was not observed with CR-1 staining. Western blot analysis of lysates from two human OSCC line experiments shows expression of CR-1 and Nodal, and their respective signaling molecules, Src and ERK1/2. Treatment of SCC25 and SCC15 cells with both Nodal and CR-1 inhibitors simultaneously resulted in reduced cell viability and reduced levels of P-Src and P-ERK1/2. Further investigation showed that the combination treatment with both Nodal and CR-1 inhibitors was capable of reducing invasiveness of SCC25 cells. Our results show a possible role for Nodal/CR-1 function during progression of human OSCC and that targeting both proteins simultaneously may have therapeutic potential.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Adult , Cell Line, Tumor , Humans , Squamous Cell Carcinoma of Head and Neck
5.
Biochem J ; 477(8): 1391-1407, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32215602

ABSTRACT

Bicyclic peptides assembled around small organic scaffolds are gaining an increasing interest as new potent, stable and highly selective therapeutics because of their uncommon ability to specifically recognize protein targets, of their small size that favor tissue penetration and of the versatility and easiness of the synthesis. We have here rationally designed bicyclic peptides assembled around a common tri-bromo-methylbenzene moiety in order to mimic the structure of the CFC domain of the oncogene Cripto-1 and, more specifically, to orient in the most fruitful way the hot spot residues H120 and W123. Through the CFC domain, Cripto-1 binds the ALK4 receptor and other protein partners supporting uncontrolled cell growth and proliferation. Soluble variants of CFC have the potential to inhibit these interactions suppressing the protein activity. A CFC analog named B3 binds ALK4 in vitro with an affinity in the nanomolar range. Structural analyses in solution via NMR and CD show that B3 has rather flexible conformations, like the parent CFC domain. The functional effects of B3 on the Cripto-1-positive NTERA cancer cell line have been evaluated showing that both CFC and B3 are cytotoxic for the cells and block the Cripto-1 intracellular signaling. Altogether, the data suggest that the administration of the soluble CFC and of the structurally related analog has the potential to inhibit tumor growth.


Subject(s)
GPI-Linked Proteins/antagonists & inhibitors , Neoplasm Proteins/antagonists & inhibitors , Peptides/chemistry , Activin Receptors, Type I/genetics , Activin Receptors, Type I/metabolism , Amino Acid Motifs , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Design , GPI-Linked Proteins/chemistry , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Humans , Intercellular Signaling Peptides and Proteins/chemistry , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Magnetic Resonance Spectroscopy , Neoplasm Proteins/chemistry , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Peptides/pharmacology
6.
Int J Mol Sci ; 22(16)2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34445382

ABSTRACT

Natural and de novo designed peptides are gaining an ever-growing interest as drugs against several diseases. Their use is however limited by the intrinsic low bioavailability and poor stability. To overcome these issues retro-inverso analogues have been investigated for decades as more stable surrogates of peptides composed of natural amino acids. Retro-inverso peptides possess reversed sequences and chirality compared to the parent molecules maintaining at the same time an identical array of side chains and in some cases similar structure. The inverted chirality renders them less prone to degradation by endogenous proteases conferring enhanced half-lives and an increased potential as new drugs. However, given their general incapability to adopt the 3D structure of the parent peptides their application should be careful evaluated and investigated case by case. Here, we review the application of retro-inverso peptides in anticancer therapies, in immunology, in neurodegenerative diseases, and as antimicrobials, analyzing pros and cons of this interesting subclass of molecules.


Subject(s)
Peptides/genetics , Peptides/pharmacology , Amino Acid Sequence , Animals , Humans , Peptides/chemical synthesis , Protein Conformation
7.
Int J Mol Sci ; 22(19)2021 Oct 02.
Article in English | MEDLINE | ID: mdl-34639041

ABSTRACT

The three members (GADD45α, GADD45ß, and GADD45γ) of the growth arrest and DNA damage-inducible 45 (GADD45) protein family are involved in a myriad of diversified cellular functions. With the aim of unravelling analogies and differences, we performed comparative biochemical and biophysical analyses on the three proteins. The characterization and quantification of their binding to the MKK7 kinase, a validated functional partner of GADD45ß, indicate that GADD45α and GADD45γ are strong interactors of the kinase. Despite their remarkable sequence similarity, the three proteins present rather distinct biophysical properties. Indeed, while GADD45ß and GADD45γ are marginally stable at physiological temperatures, GADD45α presents the Tm value expected for a protein isolated from a mesophilic organism. Surprisingly, GADD45α and GADD45ß, when heated, form high-molecular weight species that exhibit features (ThT binding and intrinsic label-free UV/visible fluorescence) proper of amyloid-like aggregates. Cell viability studies demonstrate that they are endowed with a remarkable toxicity against SHSY-5Y and HepG2 cells. The very uncommon property of GADD45ß to form cytotoxic species in near-physiological conditions represents a puzzling finding with potential functional implications. Finally, the low stability and/or the propensity to form toxic species of GADD45 proteins constitute important features that should be considered in interpreting their many functions.


Subject(s)
Amyloid/metabolism , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/metabolism , Protein Aggregates , Amyloid/chemistry , Cell Survival , Cells, Cultured , Humans , Intracellular Signaling Peptides and Proteins/genetics , MAP Kinase Kinase 7/metabolism , Protein Aggregation, Pathological/metabolism , Protein Binding , Protein Conformation, beta-Strand , Protein Stability , Recombinant Proteins , Thermodynamics , GADD45 Proteins
8.
Int J Mol Sci ; 23(1)2021 Dec 31.
Article in English | MEDLINE | ID: mdl-35008880

ABSTRACT

APEH is a ubiquitous and cytosolic serine protease belonging to the prolyl oligopeptidase (POP) family, playing a critical role in the processes of degradation of proteins through both exo- and endopeptidase events. Endopeptidase activity has been associated with protein oxidation; however, the actual mechanisms have yet to be elucidated. We show that a synthetic fragment of GDF11 spanning the region 48-64 acquires sensitivity to the endopeptidase activity of APEH only when the methionines are transformed into the corresponding sulphoxide derivatives. The data suggest that the presence of sulphoxide-modified methionines is an important prerequisite for the substrates to be processed by APEH and that the residue is crucial for switching the enzyme activity from exo- to endoprotease. The cleavage occurs on residues placed on the C-terminal side of Met(O), with an efficiency depending on the methionine adjacent residues, which thereby may play a crucial role in driving and modulating APEH endoprotease activity.


Subject(s)
Peptide Hydrolases/metabolism , Peptides/metabolism , Humans , Models, Molecular , Oxidation-Reduction , Substrate Specificity
9.
Int J Mol Sci ; 22(6)2021 Mar 20.
Article in English | MEDLINE | ID: mdl-33804612

ABSTRACT

BACKGROUND: Monoclonal antibodies (mAbs) against cancer biomarkers are key reagents in diagnosis and therapy. One such relevant biomarker is a preferentially expressed antigen in melanoma (PRAME) that is selectively expressed in many tumors. Knowing mAb's epitope is of utmost importance for understanding the potential activity and therapeutic prospective of the reagents. METHODS: We generated a mAb against PRAME immunizing mice with PRAME fragment 161-415; the affinity of the antibody for the protein was evaluated by ELISA and SPR, and its ability to detect the protein in cells was probed by cytofluorimetry and Western blotting experiments. The antibody epitope was identified immobilizing the mAb on bio-layer interferometry (BLI) sensor chip, capturing protein fragments obtained following trypsin digestion and performing mass spectrometry analyses. RESULTS: A mAb against PRAME with an affinity of 35 pM was obtained and characterized. Its epitope on PRAME was localized on residues 202-212, taking advantage of the low volumes and lack of fluidics underlying the BLI settings. CONCLUSIONS: The new anti-PRAME mAb recognizes the folded protein on the surface of cell membranes suggesting that the antibody's epitope is well exposed. BLI sensor chips can be used to identify antibody epitopes.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antigens, Neoplasm/immunology , Antineoplastic Agents, Immunological/pharmacology , Drug Development , Epitopes/immunology , Interferometry , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibody Specificity , Antineoplastic Agents, Immunological/chemistry , Antineoplastic Agents, Immunological/immunology , Dose-Response Relationship, Drug , Enzyme-Linked Immunosorbent Assay , Epitopes/chemistry , Flow Cytometry , Humans , Kinetics , Melanoma , Mice , Molecular Targeted Therapy , Protein Binding/immunology , Recombinant Proteins , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
10.
Int J Mol Sci ; 23(1)2021 Dec 30.
Article in English | MEDLINE | ID: mdl-35008834

ABSTRACT

Autoimmune endocrine disorders, such as type 1 diabetes (T1D) and thyroiditis, at present are treated with only hormone replacement therapy. This emphasizes the need to identify personalized effective immunotherapeutic strategies targeting T and B lymphocytes. Among the genetic variants associated with several autoimmune disorders, the C1858T polymorphism of the protein tyrosine phosphatase non-receptor type 22 (PTPN22) gene, encoding for Lyp variant R620W, affects the innate and adaptive immunity. We previously exploited a novel personalized immunotherapeutic approach based on siRNA delivered by liposomes (lipoplexes) that selectively inhibit variant allele expression. In this manuscript, we improved lipoplexes carrying siRNA for variant C1858T by functionalizing them with Fab of Rituximab antibody (RituxFab-Lipoplex) to specifically target B lymphocytes in autoimmune conditions, such as T1D. RituxFab-Lipoplexes specifically bind to B lymphocytes of the human Raji cell line and of human PBMC of healthy donors. RituxFab-Lipoplexes have impact on the function of B lymphocytes of T1D patients upon CpG stimulation showing a higher inhibitory effect on total cell proliferation and IgM+ plasma cell differentiation than the not functionalized ones. These results might open new pathways of applicability of RituxFab-Lipoplexes, such as personalized immunotherapy, to other autoimmune disorders, where B lymphocytes are the prevalent pathogenic immunocytes.


Subject(s)
B-Lymphocytes/immunology , Gene Transfer Techniques , Immunoglobulin Fab Fragments/immunology , Lipids/chemistry , Mutation/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 22/genetics , RNA, Small Interfering/administration & dosage , Rituximab/immunology , Amino Acid Sequence , B-Lymphocytes/drug effects , Cell Line , Circular Dichroism , Dynamic Light Scattering , Humans , Liposomes , Lymphocyte Activation/immunology , Phenotype , Proteolysis/drug effects , Rituximab/chemistry , Rituximab/pharmacology
11.
Angiogenesis ; 23(3): 357-369, 2020 08.
Article in English | MEDLINE | ID: mdl-32152757

ABSTRACT

N-formyl peptide receptors (FPRs) are G protein-coupled receptors involved in the recruitment and activation of immune cells in response to pathogen-associated molecular patterns. Three FPRs have been identified in humans (FPR1-FPR3), characterized by different ligand properties, biological function and cellular distribution. Recent findings from our laboratory have shown that the peptide BOC-FLFLF (L-BOC2), related to the FPR antagonist BOC2, acts as an angiogenesis inhibitor by binding to various angiogenic growth factors, including vascular endothelial growth factor-A165 (VEGF). Here we show that the all-D-enantiomer of L-BOC2 (D-BOC2) is devoid of any VEGF antagonist activity. At variance, D-BOC2, as well as the D-FLFLF and succinimidyl (Succ)-D-FLFLF (D-Succ-F3) D-peptide variants, is endowed with a pro-angiogenic potential. In particular, the D-peptide D-Succ-F3 exerts a pro-angiogenic activity in a variety of in vitro assays on human umbilical vein endothelial cells (HUVECs) and in ex vivo and in vivo assays in chick and zebrafish embryos and adult mice. This activity is related to the capacity of D-Succ-F3 to bind FRP3 expressed by HUVECs. Indeed, the effects exerted by D-Succ-F3 on HUVECs are fully suppressed by the G protein-coupled receptor inhibitor pertussis toxin, the FPR2/FPR3 antagonist WRW4 and by an anti-FPR3 antibody. A similar inhibition was observed following WRW4-induced FPR3 desensitization in HUVECs. Finally, D-Succ-F3 prevented the binding of the anti-FPR3 antibody to the cell surface of HUVECs. In conclusion, our data demonstrate that the angiogenic activity of D-Succ-F3 is due to the engagement and activation of FPR3 expressed by endothelial cells, thus shedding a new light on the biological function of this chemoattractant receptor.


Subject(s)
Human Umbilical Vein Endothelial Cells/metabolism , Neovascularization, Physiologic/drug effects , Oligopeptides/pharmacology , Receptors, Formyl Peptide , Humans , Oligopeptides/chemical synthesis , Oligopeptides/chemistry , Receptors, Formyl Peptide/agonists , Receptors, Formyl Peptide/metabolism
12.
Glycoconj J ; 37(1): 77-93, 2020 02.
Article in English | MEDLINE | ID: mdl-31823246

ABSTRACT

Dystroglycanopathies are diseases characterized by progressive muscular degeneration and impairment of patient's quality of life. They are associated with altered glycosylation of the dystrophin-glycoprotein (DGC) complex components, such as α-dystroglycan (α-DG), fundamental in the structural and functional stability of the muscle fiber. The diagnosis of dystroglycanopathies is currently based on the observation of clinical manifestations, muscle biopsies and enzymatic measures, and the available monoclonal antibodies are not specific for the dystrophic hypoglycosylated muscle condition. Thus, modified α-DG mucins have been considered potential targets for the development of new diagnostic strategies toward these diseases. In this context, this work describes the synthesis of the hypoglycosylated α-DG mimetic glycopeptide NHAc-Gly-Pro-Thr-Val-Thr[αMan]-Ile-Arg-Gly-BSA (1) as a potential tool for the development of novel antibodies applicable to dystroglycanopathies diagnosis. Glycopeptide 1 was used for the development of polyclonal antibodies and recombinant monoclonal antibodies by Phage Display technology. Accordingly, polyclonal antibodies were reactive to glycopeptide 1, which enables the application of anti-glycopeptide 1 antibodies in immune reactive assays targeting hypoglycosylated α-DG. Regarding monoclonal antibodies, for the first time variable heavy (VH) and variable light (VL) immunoglobulin domains were selected by Phage Display, identified by NGS and described by in silico analysis. The best-characterized VH and VL domains were cloned, expressed in E. coli Shuffle T7 cells, and used to construct a single chain fragment variable that recognized the Glycopeptide 1 (GpαDG1 scFv). Molecular modelling of glycopeptide 1 and GpαDG1 scFv suggested that their interaction occurs through hydrogen bonds and hydrophobic contacts involving amino acids from scFv (I51, Y33, S229, Y235, and P233) and R8 and α-mannose from Glycopeptide 1.


Subject(s)
Antibodies, Monoclonal/immunology , Dystroglycans/immunology , Glycoproteins/immunology , Mucins/immunology , Walker-Warburg Syndrome/diagnosis , Dystroglycans/chemistry , Glycoproteins/chemical synthesis , Humans , Mucins/chemistry
13.
Int J Mol Sci ; 21(17)2020 Aug 31.
Article in English | MEDLINE | ID: mdl-32878291

ABSTRACT

Antibodies and antibody-derived molecules are continuously developed as both therapeutic agents and key reagents for advanced diagnostic investigations. Their application in these fields has indeed greatly expanded the demand of these molecules and the need for their production in high yield and purity. While full-length antibodies require mammalian expression systems due to the occurrence of functionally and structurally important glycosylations, most antibody fragments and antibody-like molecules are non-glycosylated and can be more conveniently prepared in E. coli-based expression platforms. We propose here an updated survey of the most effective and appropriate methods of preparation of antibody fragments that exploit E. coli as an expression background and review the pros and cons of the different platforms available today. Around 250 references accompany and complete the review together with some lists of the most important new antibody-like molecules that are on the market or are being developed as new biotherapeutics or diagnostic agents.


Subject(s)
Escherichia coli/metabolism , Immunoglobulin Fragments/metabolism , Recombinant Proteins/metabolism , Single-Chain Antibodies/metabolism , Animals , Bioengineering , Escherichia coli/genetics , Humans , Immunoglobulin Fragments/genetics , Recombinant Proteins/genetics , Single-Chain Antibodies/genetics
14.
Int J Mol Sci ; 21(23)2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33255744

ABSTRACT

The transcription factor CCCTC-binding factor (CTCF) modulates pleiotropic functions mostly related to gene expression regulation. The role of CTCF in large scale genome organization is also well established. A unifying model to explain relationships among many CTCF-mediated activities involves direct or indirect interactions with numerous protein cofactors recruited to specific binding sites. The co-association of CTCF with other architectural proteins such as cohesin, chromodomain helicases, and BRG1, further supports the interplay between master regulators of mammalian genome folding. Here, we report a comprehensive LC-MS/MS mapping of the components of the switch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complex co-associated with CTCF including subunits belonging to the core, signature, and ATPase modules. We further show that the localization patterns of representative SWI/SNF members significantly overlap with CTCF sites on transcriptionally active chromatin regions. Moreover, we provide evidence of a direct binding of the BRK-BRG1 domain to the zinc finger motifs 4-8 of CTCF, thus, suggesting that these domains mediate the interaction of CTCF with the SWI/SNF complex. These findings provide an updated view of the cooperative nature between CTCF and the SWI/SNF ATP-dependent chromatin remodeling complexes, an important step for understanding how these architectural proteins collaborate to shape the genome.


Subject(s)
CCCTC-Binding Factor/genetics , Chromatin Assembly and Disassembly/genetics , Chromosomal Proteins, Non-Histone/genetics , DNA Helicases/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics , Zinc Fingers/genetics , Adenosine Triphosphatases/genetics , Binding Sites/genetics , Cell Cycle Proteins/genetics , Gene Expression Regulation/genetics , Genome, Human/genetics , Humans , Multiprotein Complexes/genetics , Protein Interaction Maps/genetics , Tandem Mass Spectrometry , Cohesins
15.
J Pept Sci ; 25(5): e3146, 2019 May.
Article in English | MEDLINE | ID: mdl-30652389

ABSTRACT

The placental growth factor (PlGF), a member of VEGF family, plays a crucial role in pathological angiogenesis, especially ischemia, inflammation, and cancer. This activity is mediated by its selective binding to VEGF receptor 1 (VEGFR-1), which occurs predominantly through receptor domains 2 and 3. The PlGF ß-hairpin region spanning residues Q87 to V100 is one of the key binding elements on the protein side. We have undertaken a study on the design, preparation, and functional characterization of the peptide reproducing this region and of a set of analogues where glycine 94, occurring at the corner of the hairpin in the native protein, is replaced by charged as well as hydrophobic residues. Also, some peptides with arginine 96 replaced by other residues have been studied. We find that the parent peptide weakly binds VEGFR-1, but replacement of G94 with residues bearing H-bond donating residues significantly improves the affinity. Replacement of R96 instead blocks the interaction between the peptide and the domain. The strongest affinity is observed with the G94H (peptide PlGF-2) and G94W (peptide PlGF-10) mutants, while the peptide PlGF-8, bearing the R96G mutation, is totally inactive. The PlGF-1 and PlGF-2 peptides also bind the VEGFR-2 receptors, though with a reduced affinity, and are able to interfere with the VEGF-induced receptor signaling on endothelial cells. The peptides also bind VEGFR-2 on the surface of cells, while PlGF-8 is inactive. Data suggest that these peptides have potential applications as PlGF/VEGF mimic in various experimental settings.


Subject(s)
Human Umbilical Vein Endothelial Cells/chemistry , Membrane Proteins/chemistry , Peptides/chemistry , Vascular Endothelial Growth Factor Receptor-1/chemistry , Vascular Endothelial Growth Factor Receptor-2/chemistry , Binding Sites , Cell Proliferation , Endothelial Cells , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Membrane Proteins/metabolism , Peptides/metabolism , Surface Properties , Vascular Endothelial Growth Factor Receptor-1/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
16.
Anal Biochem ; 542: 1-10, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29154788

ABSTRACT

Plasma-derived proteins are a subset of relevant biotherapeutics also known as "well-characterized biologicals". They are enriched from plasma through several steps of physical and biochemical methodologies, reaching the regulatory accepted standards of safety, levels of impurities, activity and lot-to-lot consistency. Final products accepted for commercialization are submitted to tight analytical, functional and safety controls by a number of different approaches that fulfill the requirements of sensitivity and reliability. We report here the use of a multianalytical approach for the comparative evaluation of different lots of Factor IX isolated from plasma preparations and submitted or not to a step of nanofiltration. The approach include, among the other, proteomic techniques based on both MALDI-TOF and LC-MS Orbitrap mass spectrometry, circular dichroism for structural characterization, chromatographic and electrophoretic techniques, ELISA and functional assays based on clotting activity and binding to known anticoagulants. Comparative data obtained on two sets of nanofiltered and non-nanofiltered lots with different final activity show that the products have substantially overlapping profiles in terms of activity, contaminants, structural properties and protein content, suggesting that the proposed multianalytical approach is robust enough to be used for the routine validation of clinical lots.


Subject(s)
Factor IX/analysis , Filtration , Nanofibers/chemistry , Circular Dichroism , Enzyme-Linked Immunosorbent Assay , Humans , Mass Spectrometry , Proteomics
17.
Amino Acids ; 50(2): 321-329, 2018 02.
Article in English | MEDLINE | ID: mdl-29198078

ABSTRACT

Pharmacological strategies aimed at preventing cancer growth are in most cases paralleled by diagnostic investigations for monitoring and prognosticating therapeutic efficacy. A relevant approach in cancer is the suppression of pathological angiogenesis, which is principally driven by vascular endothelial growth factor (VEGF) or closely related factors and by activation of specific receptors, prevailingly VEGFR1 and VEGFR2, set on the surface of endothelial cells. Monitoring the presence of these receptors in vivo is henceforth a way to predict therapy outcome. We have designed small peptides able to bind and possibly antagonize VEGF ligands by targeting VEGF receptors. Peptide systems have been designed to be small, cyclic and to host triplets of residues known to be essential for VEGF receptors recognition and we named them 'mini-factors'. They have been structurally characterized by CD, NMR and molecular dynamics (MD) simulations. Mini-factors do bind with different specificity and affinity VEGF receptors but none blocks receptor activity. Following derivatization with suitable tracers they have been employed as molecular probes for sensing receptors on cell surface without affecting their activity as is usually observed with other binders having neutralizing activity.


Subject(s)
Oligopeptides/metabolism , Receptors, Vascular Endothelial Growth Factor/metabolism , Vascular Endothelial Growth Factor Receptor-1/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Biotinylation , Disulfides/chemistry , Dose-Response Relationship, Drug , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , HEK293 Cells , Humans , Magnetic Resonance Imaging , Models, Molecular , Oligopeptides/chemistry , Peptide Library , Protein Binding , Recombinant Proteins/metabolism , Surface Plasmon Resonance
18.
Nanomedicine ; 14(2): 483-491, 2018 02.
Article in English | MEDLINE | ID: mdl-29175599

ABSTRACT

Nanoparticles (NPs) are a promising tool for in vivo multimodality imaging and theranostic applications. Hyaluronic acid (HA)-based NPs have numerous active groups that make them ideal as tumor-targeted carriers. The B-lymphoma neoplastic cells express on their surfaces a clone-specific immunoglobulin receptor (Ig-BCR). The peptide A20-36 (pA20-36) selectively binds to the Ig-BCR of A20 lymphoma cells. In this work, we demonstrated the ability of core-shell chitosan-HA-NPs decorated with pA20-36 to specifically target A20 cells and reduce the tumor burden in a murine xenograft model. We monitored tumor growth using high-frequency ultrasonography and demonstrated targeting specificity and kinetics of the NPs via in vivo fluorescent reflectance imaging. This result was also confirmed by ex vivo magnetic resonance imaging and confocal microscopy. In conclusion, we demonstrated the ability of NPs loaded with fluorescent and paramagnetic tracers to act as multimodal imaging contrast agents and hence as a non-toxic, highly specific theranostic system.


Subject(s)
Lymphoma, B-Cell/drug therapy , Multimodal Imaging/methods , Nanoparticles/administration & dosage , Peptide Fragments/administration & dosage , Theranostic Nanomedicine , Animals , Chitosan/chemistry , Humans , Hyaluronic Acid/chemistry , Lymphoma, B-Cell/diagnostic imaging , Lymphoma, B-Cell/pathology , Mice, Inbred BALB C , Mice, Nude , Nanoparticles/chemistry , Peptide Fragments/chemistry , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
19.
J Virol ; 90(7): 3745-59, 2016 Jan 27.
Article in English | MEDLINE | ID: mdl-26819303

ABSTRACT

UNLABELLED: The hepatitis C virus (HCV) E2 envelope glycoprotein is crucial for virus entry into hepatocytes. A conserved region of E2 encompassing amino acids 412 to 423 (epitope I) and containing Trp420, a residue critical for virus entry, is recognized by several broadly neutralizing antibodies. Peptides embodying this epitope I sequence adopt a ß-hairpin conformation when bound to neutralizing monoclonal antibodies (MAbs) AP33 and HCV1. We therefore generated new mouse MAbs that were able to bind to a cyclic peptide containing E2 residues 412 to 422 (C-epitope I) but not to the linear counterpart. These MAbs bound to purified E2 with affinities of about 50 nM, but they were unable to neutralize virus infection. Structural analysis of the complex between C-epitope I and one of our MAbs (C2) showed that the Trp420 side chain is largely buried in the combining site and that the Asn417 side chain, which is glycosylated in E2 and solvent exposed in other complexes, is slightly buried upon C2 binding. Also, the orientation of the cyclic peptide in the antibody-combining site is rotated by 180° compared to the orientations of the other complexes. All these structural features, however, do not explain the lack of neutralization activity. This is instead ascribed to the high degree of selectivity of the new MAbs for the cyclic epitope and to their inability to interact with the epitope in more flexible and extended conformations, which recent data suggest play a role in the mechanisms of neutralization escape. IMPORTANCE: Hepatitis C virus (HCV) remains a major health care burden, affecting almost 3% of the global population. The conserved epitope comprising residues 412 to 423 of the viral E2 glycoprotein is a valid vaccine candidate because antibodies recognizing this region exhibit potent neutralizing activity. This epitope adopts a ß-hairpin conformation when bound to neutralizing MAbs. We explored the potential of cyclic peptides mimicking this structure to elicit anti-HCV antibodies. MAbs that specifically recognize a cyclic variant of the epitope bind to soluble E2 with a lower affinity than other blocking antibodies and do not neutralize virus. The structure of the complex between one such MAb and the cyclic epitope, together with new structural data showing the linear peptide bound to neutralizing MAbs in extended conformations, suggests that the epitope displays a conformational flexibility that contributes to neutralization escape. Such features can be of major importance for the design of epitope-based anti-HCV vaccines.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/isolation & purification , Epitopes, B-Lymphocyte/immunology , Hepacivirus/immunology , Hepatitis C Antibodies/immunology , Hepatitis C Antibodies/isolation & purification , Viral Envelope Proteins/immunology , Animals , Antibodies, Monoclonal/chemistry , Hepatitis C Antibodies/chemistry , Mice, Inbred BALB C , Models, Molecular , Neutralization Tests , Protein Binding , Protein Conformation , Viral Envelope Proteins/chemistry
20.
Bioorg Med Chem ; 25(24): 6589-6596, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29113739

ABSTRACT

Nodal is a growth factor expressed during early embryonic development, but reactivated in several advanced-stage cancers. Targeting of Nodal signaling, which occurs via the binding to Cripto-1 co-receptor, results in inhibition of cell aggressiveness and reduced tumor growth. The Nodal binding region to Cripto-1 was identified and targeted with a high affinity monoclonal antibody (3D1). By STD-NMR technique, we investigated the interaction of Nodal fragments with 3D1 with the aim to elucidate at atomic level the interaction surface. Data indicate with high accuracy the antibody-antigen contact atoms and confirm the information previously obtained by immune-enzymatic methods. Main residues contacted by 3D1 are P46, V47, E49 and E50, which belong to the Nodal loop involved in the interaction with the co-receptor.


Subject(s)
Antibodies, Monoclonal/chemistry , Nodal Protein/chemistry , Dose-Response Relationship, Drug , Humans , Magnetic Resonance Spectroscopy , Molecular Structure , Nodal Protein/chemical synthesis , Nodal Protein/isolation & purification , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL