Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Ann Bot ; 133(5-6): 883-904, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38197716

ABSTRACT

BACKGROUND AND AIMS: Biogeographical relationships between the Canary Islands and north-west Africa are often explained by oceanic dispersal and geographical proximity. Sister-group relationships between Canarian and eastern African/Arabian taxa, the 'Rand Flora' pattern, are rare among plants and have been attributed to the extinction of north-western African populations. Euphorbia balsamifera is the only representative species of this pattern that is distributed in the Canary Islands and north-west Africa; it is also one of few species present in all seven islands. Previous studies placed African populations of E. balsamifera as sister to the Canarian populations, but this relationship was based on herbarium samples with highly degraded DNA. Here, we test the extinction hypothesis by sampling new continental populations; we also expand the Canarian sampling to examine the dynamics of island colonization and diversification. METHODS: Using target enrichment with genome skimming, we reconstructed phylogenetic relationships within E. balsamifera and between this species and its disjunct relatives. A single nucleotide polymorphism dataset obtained from the target sequences was used to infer population genetic diversity patterns. We used convolutional neural networks to discriminate among alternative Canary Islands colonization scenarios. KEY RESULTS: The results confirmed the Rand Flora sister-group relationship between western E. balsamifera and Euphorbia adenensis in the Eritreo-Arabian region and recovered an eastern-western geographical structure among E. balsamifera Canarian populations. Convolutional neural networks supported a scenario of east-to-west island colonization, followed by population extinctions in Lanzarote and Fuerteventura and recolonization from Tenerife and Gran Canaria; a signal of admixture between the eastern island and north-west African populations was recovered. CONCLUSIONS: Our findings support the Surfing Syngameon Hypothesis for the colonization of the Canary Islands by E. balsamifera, but also a recent back-colonization to the continent. Populations of E. balsamifera from northwest Africa are not the remnants of an ancestral continental stock, but originated from migration events from Lanzarote and Fuerteventura. This is further evidence that oceanic archipelagos are not a sink for biodiversity, but may be a source of new genetic variability.


Subject(s)
Euphorbia , Phylogeny , Phylogeography , Euphorbia/genetics , Euphorbia/classification , Spain , Polymorphism, Single Nucleotide , Genetic Variation , Genetics, Population , Africa, Northern
2.
New Phytol ; 240(4): 1601-1615, 2023 11.
Article in English | MEDLINE | ID: mdl-36869601

ABSTRACT

The figwort family, Scrophulariaceae, comprises c. 2000 species whose evolutionary relationships at the tribal level have proven difficult to resolve, hindering our ability to understand their origin and diversification. We designed a specific probe kit for Scrophulariaceae, targeting 849 nuclear loci and obtaining plastid regions as by-products. We sampled c. 87% of the genera described in the family and use the nuclear dataset to estimate evolutionary relationships, timing of diversification, and biogeographic patterns. Ten tribes, including two new tribes, Androyeae and Camptolomeae, are supported, and the phylogenetic positions of Androya, Camptoloma, and Phygelius are unveiled. Our study reveals a major diversification at c. 60 million yr ago in some Gondwanan landmasses, where two different lineages diversified, one of which gave rise to nearly 81% of extant species. A Southern African origin is estimated for most modern-day tribes, with two exceptions, the American Leucophylleae, and the mainly Australian Myoporeae. The rapid mid-Eocene diversification is aligned with geographic expansion within southern Africa in most tribes, followed by range expansion to tropical Africa and multiple dispersals out of Africa. Our robust phylogeny provides a framework for future studies aimed at understanding the role of macroevolutionary patterns and processes that generated Scrophulariaceae diversity.


Subject(s)
Scrophulariaceae , Phylogeny , Phylogeography , Australia , Biological Evolution
3.
New Phytol ; 235(1): 344-355, 2022 07.
Article in English | MEDLINE | ID: mdl-35292979

ABSTRACT

Angiosperm lineages in aquatic environments are characterized by high structural and functional diversity, and wide distributions. A long-standing evolutionary riddle is what processes have caused the relatively low diversity of aquatic angiosperms compared to their terrestrial relatives. We use diversification and ancestral reconstruction models with a comprehensive > 10 000 genus angiosperm phylogeny to elucidate the macroevolutionary dynamics associated with transitions of terrestrial plants to water. Our study reveals that net diversification rates are significantly lower in aquatic than in terrestrial angiosperms due to lower speciation and higher extinction. Shifts from land to water started early in angiosperm evolution, but most events were concentrated during the last c. 25 million years. Reversals to a terrestrial habitat started only 40 million years ago, but occurred at much higher rates. Within aquatic angiosperms, the estimated pattern is one of gradual accumulation of lineages, and relatively low and constant diversification rates throughout the Cenozoic. Low diversification rates, together with infrequent water transitions, account for the low diversity of aquatic angiosperms today. The stressful conditions and small global surface of the aquatic habitat available for angiosperms are hypothesized to explain this pattern.


Subject(s)
Magnoliopsida , Biological Evolution , Ecosystem , Phylogeny , Water
4.
Mol Ecol ; 31(8): 2453-2474, 2022 04.
Article in English | MEDLINE | ID: mdl-35146829

ABSTRACT

Changes in life history traits are often considered speciation triggers and can have dramatic effects on the evolutionary history of a lineage. Here, we examine the consequences of changes in two life history traits, host-type and phoresy, in the hypermetamorphic blister beetles, Meloidae. Subfamilies Nemognathinae and Meloinae exhibit a complex life cycle involving multiple metamorphoses and parasitoidism. Most genera and tribes are bee-parasitoids, and include phoretic or nonphoretic species, while two tribes feed on grasshopper eggs. These different life strategies are coupled with striking differences in species richness among clades. We generated a mitogenomic phylogeny for Nemognathinae and Meloinae, confirming the monophyly of these two clades, and used the dated phylogeny to explore the association between diversification rates and changes in host specificity and phoresy, using state-dependent speciation and extinction (SSE) models that include the effect of hidden traits. To account for the low taxon sampling, we implemented a phylogenetic-taxonomic approach based on birth-death simulations, and used a Bayesian framework to integrate parameter and phylogenetic uncertainty. Results show that the ancestral hypermetamorphic Meloidae was a nonphoretic bee-parasitoid, and that transitions towards a phoretic bee-parasitoid and grasshopper parasitoidism occurred multiple times. Nonphoretic bee-parasitoid lineages exhibit significantly higher relative extinction and lower diversification rates than phoretic bee-and grasshopper-parasitoids, but no significant differences were found between the latter two strategies. This suggests that Orthopteran host shifts and phoresy contributed jointly to the evolutionary success of the parasitoid meloidae. We also demonstrate that SSE models can be used to identify hidden traits coevolving with the focal trait in driving a lineage's diversification dynamics.


Subject(s)
Coleoptera , Animals , Bayes Theorem , Biological Evolution , Coleoptera/genetics , Genetic Speciation , Phenotype , Phylogeny
5.
Mol Ecol ; 31(9): 2644-2663, 2022 05.
Article in English | MEDLINE | ID: mdl-35262986

ABSTRACT

The salinity barrier that separates marine and freshwater biomes is probably the most important division in biodiversity on Earth. Those organisms that successfully performed this transition had access to new ecosystems while undergoing changes in selective pressure, which often led to major shifts in diversification rates. While these transitions have been extensively investigated in animals, the tempo, mode, and outcome of crossing the salinity barrier have been scarcely studied in other eukaryotes. Here, we reconstructed the evolutionary history of the species complex Cyphoderia ampulla (Euglyphida: Cercozoa: Rhizaria) based on DNA sequences from the nuclear SSU rRNA gene and the mitochondrial cytochrome oxidase subunit I gene, obtained from publicly available environmental DNA data (GeneBank, EukBank) and isolated organisms. A tree calibrated with euglyphid fossils showed that four independent transitions towards freshwater systems occurred from the mid-Miocene onwards, coincident with important fluctuations in sea level. Ancestral trait reconstructions indicated that the whole family Cyphoderiidae had a marine origin and suggest that ancestors of the freshwater forms were euryhaline and lived in environments with fluctuating salinity. Diversification rates did not show any obvious increase concomitant with ecological transitions, but morphometric analyses indicated that species increased in size and homogenized their morphology after colonizing the new environments. This suggests adaptation to changes in selective pressure exerted by life in freshwater sediments.


Subject(s)
Military Personnel , Rhizaria , Animals , Ecosystem , Eukaryota , Fresh Water , Humans , Phylogeny , Salinity
6.
Mol Phylogenet Evol ; 173: 107483, 2022 08.
Article in English | MEDLINE | ID: mdl-35500743

ABSTRACT

The field of phylogenetics has burgeoned into a great diversity of statistical models, providing researchers with a vast amount of analytical tools for investigating the evolutionary theory. This abundance of theoretical work has the merit that many different aspects of evolution can be investigated using various types of data. However, empiricists may sometimes struggle to find the right model for their needs amid such variety. In particular, some computer programs gather the theory of many different models, published in hundreds of different papers, within the same operational framework. This makes it particularly difficult for users to obtain comprehensive information about the assumptions and structure of various models. Yet, a large part of phylogenetic models are structured in individual modules that can be linked together in the same conceptual framework, akin to some sort of phylogenetic supermodel. In this paper, we propose to browse through the network of phylogenetic models, emphasizing their modular structure, with the purpose to outline the commonalities and differences of individual models. Focusing on probabilistic models, we describe how to go from the model assumptions to the corresponding probability distributions as pedagogically as possible. To achieve this task, we resort heavily on graph theory to represent the probabilistic relationships among parameters and data, and present the models in their most elementary form (i.e. including parameters that are generally marginalized out), which simplifies the mathematics considerably. We concentrate on models designed for species trees, but evoke the link with other types of trees (e.g. gene trees).


Subject(s)
Models, Statistical , Software , Models, Genetic , Phylogeny , Probability
7.
Am J Bot ; 108(9): 1673-1691, 2021 09.
Article in English | MEDLINE | ID: mdl-34550605

ABSTRACT

PREMISE: Genera that are widespread, with geographically discontinuous distributions and represented by few species, are intriguing. Is their achieved disjunct distribution recent or ancient in origin? Why are they species-poor? The Rand Flora is a continental-scale pattern in which closely related species appear codistributed in isolated regions over the continental margins of Africa. Genus Camptoloma (Scrophulariaceae) is the most notable example, comprising three species isolated from each other on the northwest, eastern, and southwest Africa. METHODS: We employed Sanger sequencing of nuclear and plastid markers, together with genomic target sequencing of 2190 low-copy nuclear genes, to infer interspecies relationships and the position of Camptoloma within Scrophulariaceae by using supermatrix and multispecies-coalescent approaches. Lineage divergence times and ancestral ranges were inferred with Bayesian Markov chain Monte Carlo (MCMC) approaches. The population history was estimated with phylogeographic coalescent methods. RESULTS: Camptoloma rotundifolium, restricted to Southern Africa, was shown to be a sister species to the disjunct clade formed by C. canariense, endemic to the Canary Islands, and C. lyperiiflorum, distributed in the Horn of Africa-Southern Arabia. Camptoloma was inferred to be sister to the mostly South African tribes Teedieae and Buddlejeae. Stem divergence was dated in the Late Miocene, while the origin of the extant disjunction was inferred as Early Pliocene. CONCLUSIONS: The current disjunct distribution of Camptoloma across Africa was likely the result of fragmentation and extinction and/or population bottlenecking events associated with historical aridification cycles during the Neogene; the pattern of species divergence, from south to north, is consistent with the "climatic refugia" Rand Flora hypothesis.


Subject(s)
Plastids , Bayes Theorem , Phylogeny , Phylogeography , Sequence Analysis, DNA
8.
Mol Phylogenet Evol ; 130: 156-168, 2019 01.
Article in English | MEDLINE | ID: mdl-30273756

ABSTRACT

Untangling the relationship between morphological evolution and lineage diversification is key to explain global patterns of phenotypic disparity across the Tree of Life. Few studies have examined the relationship between high morphological disparity and extinction. In this study, we infer phylogenetic relationships and lineage divergence times within Eupomphini (Meloidae), a tribe of blister beetles endemic to the arid zone of North America, which exhibits a puzzling pattern of very low species richness but wild variation in morphological diversity across extant taxa. Using Bayesian and maximum likelihood inference, we estimate diversification and phenotypic evolutionary rates and infer the time and magnitude of extinction rate shifts and mass extinction events. Our results suggest that Eupomphini underwent an event of ancient radiation coupled with rapid morphological change, possibly linked to the loss of the evolutionary constraint in the elytral shape. A high extinction background associated to the Miocene-Pliocene transition decimated the diversity within each major clade, resulting in the species-poor genera observed today. Our study supports a connection between high extinction rates and patterns of decoupled phenotypic evolution and lineage diversification, and the possibility of a radiation in the absence of ecological release.


Subject(s)
Biodiversity , Coleoptera/classification , Extinction, Biological , Phylogeny , Animals , Bayes Theorem , Biological Evolution , Coleoptera/anatomy & histology , Coleoptera/genetics , North America , United States
9.
Mol Phylogenet Evol ; 133: 92-106, 2019 04.
Article in English | MEDLINE | ID: mdl-30584919

ABSTRACT

The mechanisms and processes underlying patterns of species distributions have intrigued ecologists and biogeographers for a long time. The Neotropics is the most species-rich region in the World, representing an excellent model for studying the drivers of diversification. In this study, we used a phylogenomic approach to infer relationships and examine the role of major geological and climatic events in shaping biogeographic patterns within Amphilophium (Bignonieae, Bignoniaceae), a genus of Neotropical lianas. Even though Amphilophium is broadly distributed across the Neotropics, it is centered in Amazonia and the Atlantic rainforest. We generated nearly-complete plastome sequences for 32 species of Amphilophium, representing 70% of the species diversity in the genus. The final dataset included 78 plastid-coding regions and was analyzed under Maximum Likelihood and Bayesian approaches to reconstruct the phylogeny of Amphilophium. We also used this dataset to estimate divergence times using a Bayesian relaxed-clock approach. We further inferred ancestral ranges, migration events, and shifts in diversification rates using a branch-specific diversification model and the Dispersal-Extinction-Cladogenesis (DEC) model implemented in a Bayesian phylogenetic framework. Overall, we obtained a well-resolved and strongly supported phylogeny for Amphilophium, with five main clades that are well characterized by morphological features. Amphilophium originated in the Early Oligocene, and started to diversify in the Late Oligocene. The first diversification event involved a split between Amazonian and Atlantic forest clades. These two clades showed very different diversification scenarios. Divergence within the Atlantic forest clade began in the Mid-Oligocene, while the Amazonian clade underwent rapid diversification starting in the Late Miocene. In-situ speciation characterized the Amazonian clade, whereas allopatric speciation driven by migration events into other Neotropical biomes were mostly inferred within the Atlantic forest clade. The diversification of Amphilophium in the Neotropics was triggered by major geological events and changes in landscape that occurred during the Late Paleogene and Neogene, with little influence of the climatic changes of the Pleistocene ice ages. The divergence times and range inferences support the role of the Western Amazonian "megawetlands" and the formation of the South American "dry diagonal" as key climatic and geological barriers that separated the Atlantic forest from the Amazonian lowlands. Timing of migration events agrees with a Mid-Miocene closure of the Central American Seaway.


Subject(s)
Bignoniaceae/classification , Genome, Plastid , Bayes Theorem , Bignoniaceae/genetics , Forests , Genetic Speciation , Genomics , Phylogeny , Phylogeography , Rainforest
10.
Syst Biol ; 67(6): 940-964, 2018 11 01.
Article in English | MEDLINE | ID: mdl-29438538

ABSTRACT

In macroevolution, the Red Queen (RQ) model posits that biodiversity dynamics depend mainly on species-intrinsic biotic factors such as interactions among species or life-history traits, while the Court Jester (CJ) model states that extrinsic environmental abiotic factors have a stronger role. Until recently, a lack of relevant methodological approaches has prevented the unraveling of contributions from these 2 types of factors to the evolutionary history of a lineage. Herein, we take advantage of the rapid development of new macroevolution models that tie diversification rates to changes in paleoenvironmental (extrinsic) and/or biotic (intrinsic) factors. We inferred a robust and fully-sampled species-level phylogeny, as well as divergence times and ancestral geographic ranges, and related these to the radiation of Apollo butterflies (Parnassiinae) using both extant (molecular) and extinct (fossil/morphological) evidence. We tested whether their diversification dynamics are better explained by an RQ or CJ hypothesis, by assessing whether speciation and extinction were mediated by diversity-dependence (niche filling) and clade-dependent host-plant association (RQ) or by large-scale continuous changes in extrinsic factors such as climate or geology (CJ). For the RQ hypothesis, we found significant differences in speciation rates associated with different host-plants but detected no sign of diversity-dependence. For CJ, the role of Himalayan-Tibetan building was substantial for biogeography but not a driver of high speciation, while positive dependence between warm climate and speciation/extinction was supported by continuously varying maximum-likelihood models. We find that rather than a single factor, the joint effect of multiple factors (biogeography, species traits, environmental drivers, and mass extinction) is responsible for current diversity patterns and that the same factor might act differently across clades, emphasizing the notion of opportunity. This study confirms the importance of the confluence of several factors rather than single explanations in modeling diversification within lineages.


Subject(s)
Biological Evolution , Butterflies/classification , Models, Biological , Animals , Biodiversity , Butterflies/genetics , Genetic Speciation , Phylogeny
11.
New Phytol ; 220(2): 636-650, 2018 10.
Article in English | MEDLINE | ID: mdl-30016546

ABSTRACT

Reconstructing phylogenetic relationships at the micro- and macroevoutionary levels within the same tree is problematic because of the need to use different data types and analytical frameworks. We test the power of target enrichment to provide phylogenetic resolution based on DNA sequences from above species to within populations, using a large herbarium sampling and Euphorbia balsamifera (Euphorbiaceae) as a case study. Target enrichment with custom probes was combined with genome skimming (Hyb-Seq) to sequence 431 low-copy nuclear genes and partial plastome DNA. We used supermatrix, multispecies-coalescent approaches, and Bayesian dating to estimate phylogenetic relationships and divergence times. Euphorbia balsamifera, with a disjunct Rand Flora-type distribution at opposite sides of Africa, comprises three well-supported subspecies: western Sahelian sepium is sister to eastern African-southern Arabian adenensis and Macaronesian-southwest Moroccan balsamifera. Lineage divergence times support Late Miocene to Pleistocene diversification and climate-driven vicariance to explain the Rand Flora pattern. We show that probes designed using genomic resources from taxa not directly related to the focal group are effective in providing phylogenetic resolution at deep and shallow evolutionary levels. Low capture efficiency in herbarium samples increased the proportion of missing data but did not bias estimation of phylogenetic relationships or branch lengths.


Subject(s)
Genetics, Population , Genomics , Phylogeny , Genes, Plant , Geography
12.
Ann Bot ; 122(6): 1005-1017, 2018 11 30.
Article in English | MEDLINE | ID: mdl-29905771

ABSTRACT

Background and Aims: Various studies and conservationist reports have warned about the contraction of the last subtropical Afro-Macaronesian forests. These relict vegetation zones have been restricted to a few oceanic and continental islands around the edges of Africa, due to aridification. Previous studies on relict species have generally focused on glacial effects on narrow endemics; however, little is known about the effects of aridification on the fates of previously widespread subtropical lineages. Methods: Nuclear microsatellites and ecological niche modelling were used to understand observed patterns of genetic diversity in two emblematic species, widely distributed in these ecosystems: Canarina eminii (a palaeoendemic of the eastern Afromontane forests) and Canarina canariensis (a palaeoendemic of the Canarian laurel forests). The software DIYABC was used to test alternative demographic scenarios and an ensemble method was employed to model potential distributions of the selected plants from the end of the deglaciation to the present. Key Results: All the populations assessed experienced a strong and recent population decline, revealing that locally widespread endemisms may also be alarmingly threatened. Conclusions: The detected extinction debt, as well as the extinction spiral to which these populations are subjected, demands urgent conservation measures for the unique, biodiversity-rich ecosystems that they inhabit.


Subject(s)
Campanulaceae/physiology , Climate Change , Genetic Variation , Africa, Eastern , Campanulaceae/genetics , Microsatellite Repeats , Models, Biological , Population Dynamics , Spain
13.
Am J Bot ; 104(11): 1680-1694, 2017 11.
Article in English | MEDLINE | ID: mdl-29167157

ABSTRACT

Bipolar disjunct distributions are a fascinating biogeographic pattern exhibited by about 30 vascular plants, whose populations reach very high latitudes in the northern and southern hemispheres. In this review, we first propose a new framework for the definition of bipolar disjunctions and then reformulate a list of guiding principles to consider how to study bipolar species. Vicariance and convergent evolution hypotheses have been argued to explain the origin of this fragmented distribution pattern, but we show here that they can be rejected for all bipolar species, except for Carex microglochin. Instead, human introduction and dispersal (either direct or by mountain-hopping)-facilitated by standard and nonstandard vectors-are the most likely explanations for the origin of bipolar plant disjunctions. Successful establishment after dispersal is key for colonization of the disjunct areas and appear to be related to both intrinsic (e.g., self-compatibility) and extrinsic (mutualistic and antagonistic interactions) characteristics. Most studies on plant bipolar disjunctions have been conducted in Carex (Cyperaceae), the genus of vascular plants with the largest number of bipolar species. We found a predominant north-to-south direction of dispersal, with an estimated time of diversification in agreement with major cooling events during the Pliocene and Pleistocene. Bipolar Carex species do not seem to depend on specialized traits for long-distance dispersal and could have dispersed through one or multiple stochastic events, with birds as the most likely dispersal vector.


Subject(s)
Carex Plant/physiology , Plant Dispersal , Plant Physiological Phenomena , Plants , Phenotype , Plant Vascular Bundle/physiology
14.
Syst Biol ; 64(2): 215-32, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25398444

ABSTRACT

In disciplines such as macroevolution that are not amenable to experimentation, scientists usually rely on current observations to test hypotheses about historical events, assuming that "the present is the key to the past." Biogeographers, for example, used this assumption to reconstruct ancestral ranges from the distribution of extant species. Yet, under scenarios of high extinction rates, the biodiversity we observe today might not be representative of the historical diversity and this could result in incorrect biogeographic reconstructions. Here, we introduce a new approach to incorporate into biogeographic inference the temporal, spatial, and environmental information provided by the fossil record, as a direct evidence of the extinct biodiversity fraction. First, inferences of ancestral ranges for those nodes in the phylogeny calibrated with the fossil record are constrained to include the geographic distribution of the fossil. Second, we use fossil distribution and past climate data to reconstruct the climatic preferences and potential distribution of ancestral lineages over time, and use this information to build a biogeographic model that takes into account "ecological connectivity" through time. To show the power of this approach, we reconstruct the biogeographic history of the large angiosperm genus Hypericum, which has a fossil record extending back to the Early Cenozoic. Unlike previous reconstructions based on extant species distributions, our results reveal that Hypericum stem lineages were already distributed in the Holarctic before diversification of its crown-group, and that the geographic distribution of the genus has been relatively stable throughout the climatic oscillations of the Cenozoic. Geographical movement was mediated by the existence of climatic corridors, like Beringia, whereas the equatorial tropical belt acted as a climatic barrier, preventing Hypericum lineages to reach the southern temperate regions. Our study shows that an integrative approach to historical biogeography-that combines sources of evidence as diverse as paleontology, ecology, and phylogenetics-could help us obtain more accurate reconstructions of ancient evolutionary history. It also reveals the confounding effect different rates of extinction across regions have in biogeography, sometimes leading to ancestral areas being erroneously inferred as recent colonization events.


Subject(s)
Fossils , Hypericum/classification , Models, Biological , Phylogeny , Extinction, Biological , Geography , Hypericum/anatomy & histology , Seeds/anatomy & histology
15.
Ecol Lett ; 18(2): 200-17, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25560682

ABSTRACT

The study of islands as model systems has played an important role in the development of evolutionary and ecological theory. The 50th anniversary of MacArthur and Wilson's (December 1963) article, 'An equilibrium theory of insular zoogeography', was a recent milestone for this theme. Since 1963, island systems have provided new insights into the formation of ecological communities. Here, building on such developments, we highlight prospects for research on islands to improve our understanding of the ecology and evolution of communities in general. Throughout, we emphasise how attributes of islands combine to provide unusual research opportunities, the implications of which stretch far beyond islands. Molecular tools and increasing data acquisition now permit re-assessment of some fundamental issues that interested MacArthur and Wilson. These include the formation of ecological networks, species abundance distributions, and the contribution of evolution to community assembly. We also extend our prospects to other fields of ecology and evolution - understanding ecosystem functioning, speciation and diversification - frequently employing assets of oceanic islands in inferring the geographic area within which evolution has occurred, and potential barriers to gene flow. Although island-based theory is continually being enriched, incorporating non-equilibrium dynamics is identified as a major challenge for the future.


Subject(s)
Biological Evolution , Islands , Models, Biological , Biodiversity , Ecology , Ecosystem , Gene Flow , Genetic Speciation , Geography , Population Dynamics , Social Isolation
16.
BMC Evol Biol ; 14: 118, 2014 Jun 02.
Article in English | MEDLINE | ID: mdl-24888240

ABSTRACT

BACKGROUND: Considered a biodiversity hotspot, the Canary Islands have been the key subjects of numerous evolutionary studies concerning a large variety of organisms. The genus Cheirolophus (Asteraceae) represents one of the largest plant radiations in the Canarian archipelago. In contrast, only a few species occur in the Mediterranean region, the putative ancestral area of the genus. Here, our main aim was to reconstruct the phylogenetic and biogeographic history of Cheirolophus with special focus on explaining the origin of the large Canarian radiation. RESULTS: We found significant incongruence in phylogenetic relationships between nuclear and plastid markers. Each dataset provided resolution at different levels in Cheirolophus: the nuclear markers resolved the backbone of the phylogeny while the plastid data provided better resolution within the Canarian clade. The origin of Cheirolophus was dated in the Mid-Late Miocene, followed by rapid diversification into the three main Mediterranean lineages and the Macaronesian clade. A decrease in diversification rates was inferred at the end of the Miocene, with a new increase in the Late Pliocene concurrent with the onset of the Mediterranean climate. Diversification within the Macaronesian clade started in the Early-Mid Pleistocene, with unusually high speciation rates giving rise to the extant insular diversity. CONCLUSIONS: Climate-driven diversification likely explains the early evolutionary history of Cheirolophus in the Mediterranean region. It appears that the exceptionally high diversification rate in the Canarian clade was mainly driven by allopatric speciation (including intra- and interisland diversification). Several intrinsic (e.g. breeding system, polyploid origin, seed dispersal syndrome) and extrinsic (e.g. fragmented landscape, isolated habitats, climatic and geological changes) factors probably contributed to the progressive differentiation of populations resulting in numerous microendemisms. Finally, hybridization events and emerging ecological adaptation may have also reinforced the diversification process.


Subject(s)
Asteraceae/classification , Asteraceae/genetics , Genetic Speciation , Biodiversity , Biological Evolution , Cell Nucleus/genetics , Climate , DNA, Plant/genetics , Ecosystem , Phylogeny , Plastids/genetics , Spain
17.
Mol Phylogenet Evol ; 67(2): 379-403, 2013 May.
Article in English | MEDLINE | ID: mdl-23435266

ABSTRACT

The genus Hypericum L. ("St. John's wort", Hypericaceae) comprises nearly 500 species of shrubs, trees and herbs distributed mainly in temperate regions of the Northern Hemisphere, but also in high-altitude tropical and subtropical areas. Until now, molecular phylogenetic hypotheses on infra-generic relationships have been based solely on the nuclear marker ITS. Here, we used a full Bayesian approach to simultaneously reconstruct phylogenetic relationships, divergence times, and patterns of morphological and range evolution in Hypericum, using nuclear (ITS) and plastid DNA sequences (psbA-trnH, trnS-trnG, trnL-trnF) of 186 species representing 33 of the 36 described morphological sections. Consistent with other studies, we found that corrections of the branch length prior helped recover more realistic branch lengths in by-gene partitioned Bayesian analyses, but the effect was also seen within single genes if the overall mutation rate differed considerably among sites or regions. Our study confirms that Hypericum is not monophyletic with the genus Triadenum embedded within, and rejects the traditional infrageneric classification, with many sections being para- or polyphyletic. The small Western Palearctic sections Elodes and Adenotrias are the sister-group of a geographic dichotomy between a mainly New World clade and a large Old World clade. Bayesian reconstruction of morphological character states and range evolution show a complex pattern of morphological plasticity and inter-continental movement within the genus. The ancestors of Hypericum were probably tropical shrubs that migrated from Africa to the Palearctic in the Early Tertiary, concurrent with the expansion of tropical climates in northern latitudes. Global climate cooling from the Mid Tertiary onwards might have promoted adaptation to temperate conditions in some lineages, such as the development of the herbaceous habit or unspecialized corollas.


Subject(s)
Evolution, Molecular , Genome, Plastid/genetics , Hypericum , Phylogeny , Bayes Theorem , Genetic Variation , Hypericum/classification , Hypericum/genetics , Nuclear Proteins/genetics
18.
Am J Bot ; 100(5): 867-82, 2013 May.
Article in English | MEDLINE | ID: mdl-23624927

ABSTRACT

PREMISE OF THE STUDY: Tribe Cardueae (thistles) forms one of the largest tribes in the family Compositae (2400 species), with representatives in almost every continent. The greatest species richness of Cardueae occurs in the Mediterranean region where it forms an important element of its flora. New fossil evidence and a nearly resolved phylogeny of Cardueae are used here to reconstruct the spatiotemporal evolution of this group. • METHODS: We performed maximum parsimony and Bayesian phylogenetic inference based on nuclear ribosomal DNA and chloroplast DNA markers. Divergence times and ancestral area reconstructions for main lineages were estimated using penalized likelihood and dispersal-vicariance analyses, respectively, and integrated over the posterior distribution of the phylogeny from the Bayesian Markov chain Monte Carlo analysis to accommodate uncertainty in phylogenetic relationships. • KEY RESULTS: The phylogeny shows that subtribe Cardopatiinae is sister to the remaining subtribes, and subtribes Carlininae and Echinopsinae appear as consecutive sister-clades to the Carduinae/Centaureinae. Tribe Cardueae is inferred to have originated around the Mid Eocene in West Asia, which is also the ancestral area of most subtribes within Cardueae. Diversification within each subtribe began during the Oligocene-Miocene period. • CONCLUSIONS: Most diversification events within Cardueae are related to the continuous cycles of area connection and division between the Anatolian microplate and the western Mediterranean Basin during the Oligocene-Miocene and with the uplift of the Himalayan range from the Miocene onward. From these two regions, thistles dispersed and colonized the rest of the continents (e.g., the New World, Africa, and Australia), most likely during the colder Pliocene-Pleistocene period.


Subject(s)
Asteraceae/genetics , Biological Evolution , Demography , Phylogeography
19.
Syst Biol ; 60(5): 596-615, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21856636

ABSTRACT

Chloranthaceae is a small family of flowering plants (65 species) with an extensive fossil record extending back to the Early Cretaceous. Within Chloranthaceae, Hedyosmum is remarkable because of its disjunct distribution--1 species in the Paleotropics and 44 confined to the Neotropics--and a long "temporal gap" between its stem age (Early Cretaceous) and the beginning of the extant radiation (late Cenozoic). Is this gap real, reflecting low diversification and a recent radiation, or the signature of extinction? Here we use paleontological data, relaxed-clock molecular dating, diversification analyses, and parametric ancestral area reconstruction to investigate the timing, tempo, and mode of diversification in Hedyosmum. Our results, based on analyses of plastid and nuclear sequences for 40 species, suggest that the ancestor of Chloranthaceae and the Hedyosmum stem lineages were widespread in the Holarctic in the Late Cretaceous. High extinction rates, possibly associated with Cenozoic climatic fluctuations, may have been responsible for the low extant diversity of the family. Crown group Hedyosmum originated c. 36-43 Ma and colonized South America from the north during the Early-Middle Miocene (c. 20 Ma). This coincided with an increase in diversification rates, probably triggered by the uplift of the Northern Andes from the Mid-Miocene onward. This study illustrates the advantages of combining paleontological, phylogenetic, and biogeographic data to reconstruct the spatiotemporal evolution of an ancient lineage, for which the extant diversity is only a remnant of past radiations. It also shows the difficulties of inferring patterns of lineage diversification when incomplete taxon sampling is combined with high extinction rates.


Subject(s)
Evolution, Molecular , Magnoliopsida/classification , Magnoliopsida/genetics , Bayes Theorem , Biological Evolution , Cell Nucleus/genetics , Climate Change , Extinction, Biological , Fossils , Molecular Sequence Data , Phylogeny , Plastids/genetics , Sequence Analysis, DNA , South America , Statistics, Nonparametric
20.
Proc Natl Acad Sci U S A ; 106(24): 9749-54, 2009 Jun 16.
Article in English | MEDLINE | ID: mdl-19470489

ABSTRACT

Recent phylogenetic studies have revealed the major role played by the uplift of the Andes in the extraordinary diversification of the Neotropical flora. These studies, however, have typically considered the Andean uplift as a single, time-limited event fostering the evolution of highland elements. This contrasts with geological reconstructions indicating that the uplift occurred in discrete periods from west to east and that it affected different regions at different times. We introduce an approach for integrating Andean tectonics with biogeographic reconstructions of Neotropical plants, using the coffee family (Rubiaceae) as a model group. The distribution of this family spans highland and montane habitats as well as tropical lowlands of Central and South America, thus offering a unique opportunity to study the influence of the Andean uplift on the entire Neotropical flora. Our results suggest that the Rubiaceae originated in the Paleotropics and used the boreotropical connection to reach South America. The biogeographic patterns found corroborate the existence of a long-lasting dispersal barrier between the Northern and Central Andes, the "Western Andean Portal." The uplift of the Eastern Cordillera ended this barrier, allowing dispersal of boreotropical lineages to the South, but gave rise to a huge wetland system ("Lake Pebas") in western Amazonia that prevented in situ speciation and floristic dispersal between the Andes and Amazonia for at least 6 million years. Here, we provide evidence of these events in plants.


Subject(s)
Biological Evolution , Rubiaceae/genetics , Biodiversity , Molecular Sequence Data , Rubiaceae/classification , South America
SELECTION OF CITATIONS
SEARCH DETAIL