ABSTRACT
In the Amazon region, the estimation of radiation fluxes through remote sensing techniques is hindered by the lack of ground measurements required as input in the models, as well as the difficulty to obtain cloud-free images. Here, we assess an approach to estimate net radiation (Rn) and its components under all-sky conditions for the Amazon region through the Surface Energy Balance Algorithm for Land (SEBAL) model utilizing only remote sensing and reanalysis data. The study period comprised six years, between January 2001-December 2006, and images from MODIS sensor aboard the Terra satellite and GLDAS reanalysis products were utilized. The estimates were evaluated with flux tower measurements within the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) project. Comparison between estimates obtained by the proposed method and observations from LBA towers showed errors between 12.5% and 16.4% and 11.3% and 15.9% for instantaneous and daily Rn, respectively. Our approach was adequate to minimize the problem related to strong cloudiness over the region and allowed to map consistently the spatial distribution of net radiation components in Amazonia. We conclude that the integration of reanalysis products and satellite data, eliminating the need for surface measurements as input model, was a useful proposition for the spatialization of the radiation fluxes in the Amazon region, which may serve as input information needed by algorithms that aim to determine evapotranspiration, the most important component of the Amazon hydrological balance.
ABSTRACT
The sugarcane borer, Diatraea saccharalis (F.), is the main pest of sugarcane in Brazil. Genetic variability and gene flow among 13 Brazilian populations of the species were evaluated based on mitochondrial DNA sequences to estimate the exchange of genetic information within and among populations. We found high genetic structure among sampled localities (ΦST=0.50923), and pairwise genetic distances were significantly correlated to geographic distances. Demographic analysis and genealogical network of mitochondrial sequences indicate population growth and admixture of D. saccharalis populations, events likely related to the sequential expansion of the corn and sugarcane crops in Brazil. The implications of these findings for pest management are discussed.
Subject(s)
Genetic Variation , Moths/genetics , Animals , Brazil , Insect Control , PhylogeographyABSTRACT
Soybean rust (SBR) is a disease of significant impact to Brazilian soybean production. Twenty-four locations in a major growing region in southern Brazil, where long-term (30 years) weather information was available, were selected to estimate the risk of SBR epidemics and identify potential predictors derived from El Niño 3.4 region. A rainfall-based model was used to predict SBR severity in an "epidemic development window" (the months of February and March for the studied region) in the time series. Twenty-eight daily simulations for each year-location (n = 720) were performed considering each day after 31 January as a hypothetical detection date (HDD) to estimate a severity index (SBRindex). The mean SBRindex in a single year was defined as the 'growing season severity index' (GSSI) for that year. A probabilistic risk assessment related GSSI and sea surface temperatures (SST) at the El Niño 3.4. region (here categorized as warm, cold or neutral phase) in October-November-December (OND) of the same growing season. Overall, the median GSSI across location-years was 34.5%. The risk of GSSI exceeding 60% was generally low and ranged from 0 to 20 percentage points, with the higher values found in the northern regions of the state when compared to the central-western. During a warm OND-SST phase, the probability of GSSI exceeding its overall mean (locations pooled) increased significantly by around 25 percentage points compared to neutral and cold SST phases, especially over the central western region. This study demonstrates the potential to use El Niño/Southern Oscillation information to anticipate the risk of SBR epidemics up to 1 month in advance at a regional scale.
Subject(s)
Basidiomycota/pathogenicity , Glycine max/microbiology , Plant Diseases/microbiology , Brazil , El Nino-Southern Oscillation , Models, Theoretical , Plant Diseases/etiology , Plant Diseases/statistics & numerical data , Risk Factors , SeasonsABSTRACT
BACKGROUND: Sand flies (Diptera: Psychodidae) are the vectors of Leishmania parasites, the causative agents of leishmaniasis. Cutaneous leishmaniasis is an increasing public health problem in the Republic of Suriname and is mainly caused by Leishmania (Vianna) guyanensis, but L. (V.) braziliensis, L. (L.) amazonensis, and L. (V.) naiffi also infect humans. Transmission occurs predominantly in the forested hinterland of the country. Information regarding the potential vectors of leishmaniasis in Suriname is limited. This study aims to broaden the knowledge about vectors involved in the transmission of cutaneous leishmaniasis in Suriname. For this purpose, sand flies were characterized in various foci of cutaneous leishmaniasis in the country, the districts of Para, Brokopondo, and Sipaliwini. METHODS: Sand flies were collected in areas around mining plots and villages using CDC light traps in the period between February 2011 and March 2013. They were categorized by examination of the spermathecea (females) and the external genitalia (males). RESULTS: A total of 2,743 sand fly specimens belonging to 34 different species were captured, including four species (Lutzomyia aragaoi, Lu. ayrozai, Lu. damascenoi, and Lu. sordellii) that had never before been described for Suriname. Five percent of the catch comprised Lu. squamiventris sensu lato, one female of which was positive with L. (V.) braziliensis and was captured in a gold mining area in Brokopondo. Other sand fly species found positive for Leishmania parasites were Lu. trichopyga, Lu. ininii, and Lu. umbratilis, comprising 32, 8, and 4%, respectively, of the catch. These were captured at gold mining areas in Brokopondo and Sipaliwini, but the Leishmania parasites they had ingested could not be identified due to insufficient amounts of DNA. CONCLUSIONS: The sand fly fauna in Suriname is highly diverse and comprises Lutzomyia species capable of transmitting Leishmania parasites. Four new Lutzomyia species have been found, and four species - Lu. squamiventris (s.l.), Lu. trichopyga, Lu. ininii, and Lu. umbratilis - have been found to harbor Leishmania parasites. The latter were among the most abundant species captured. These observations may contribute to the understanding of leishmaniasis transmission and the development of control programs in Suriname.
Subject(s)
Biodiversity , Epidemics , Insect Vectors , Leishmaniasis, Cutaneous/epidemiology , Psychodidae/classification , Psychodidae/growth & development , Animals , Female , Humans , Male , Psychodidae/anatomy & histology , Suriname/epidemiologyABSTRACT
The applicability of mitochondrial nad6 sequences to studies of DNA and population variability in Lepidoptera was tested in four species of economically important moths and one of wild butterflies. The genetic information so obtained was compared to that of cox1 sequences for two species of Lepidoptera. nad6 primers appropriately amplified all the tested DNA targets, the generated data proving to be as informative and suitable in recovering population structures as that of cox1. The proposal is that, to obtain more robust results, this mitochondrial region can be complementarily used with other molecular sequences in studies of low level phylogeny and population genetics in Lepidoptera.
ABSTRACT
The applicability of mitochondrial nad6 sequences to studies of DNA and population variability in Lepidoptera was tested in four species of economically important moths and one of wild butterflies. The genetic information so obtained was compared to that of cox1 sequences for two species of Lepidoptera. nad6 primers appropriately amplified all the tested DNA targets, the generated data proving to be as informative and suitable in recovering population structures as that of cox1. The proposal is that, to obtain more robust results, this mitochondrial region can be complementarily used with other molecular sequences in studies of low level phylogeny and population genetics in Lepidoptera.