Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Cell ; 139(4): 757-69, 2009 Nov 13.
Article in English | MEDLINE | ID: mdl-19914168

ABSTRACT

TGF-beta and BMP receptor kinases activate Smad transcription factors by C-terminal phosphorylation. We have identified a subsequent agonist-induced phosphorylation that plays a central dual role in Smad transcriptional activation and turnover. As receptor-activated Smads form transcriptional complexes, they are phosphorylated at an interdomain linker region by CDK8 and CDK9, which are components of transcriptional mediator and elongation complexes. These phosphorylations promote Smad transcriptional action, which in the case of Smad1 is mediated by the recruitment of YAP to the phosphorylated linker sites. An effector of the highly conserved Hippo organ size control pathway, YAP supports Smad1-dependent transcription and is required for BMP suppression of neural differentiation of mouse embryonic stem cells. The phosphorylated linker is ultimately recognized by specific ubiquitin ligases, leading to proteasome-mediated turnover of activated Smad proteins. Thus, nuclear CDK8/9 drive a cycle of Smad utilization and disposal that is an integral part of canonical BMP and TGF-beta pathways.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Cyclin-Dependent Kinase 8/metabolism , Cyclin-Dependent Kinase 9/metabolism , Smad Proteins/genetics , Transcriptional Activation , Transforming Growth Factor beta/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Cycle Proteins , Cell Line , Contact Inhibition , Embryo, Mammalian/cytology , Humans , Mice , Organ Size , Phosphoproteins/metabolism , Phosphorylation , Protein Structure, Tertiary , Signal Transduction , Smad Proteins/chemistry , Smad1 Protein/genetics , YAP-Signaling Proteins
2.
EMBO Rep ; 20(9): e47495, 2019 09.
Article in English | MEDLINE | ID: mdl-31338967

ABSTRACT

The concerted action of many protein kinases helps orchestrate the error-free progression through mitosis of mammalian cells. The roles and regulation of some prominent mitotic kinases, such as cyclin-dependent kinases, are well established. However, these and other known mitotic kinases alone cannot account for the extent of protein phosphorylation that has been reported during mammalian mitosis. Here we demonstrate that CK1α, of the casein kinase 1 family of protein kinases, localises to the spindle and is required for proper spindle positioning and timely cell division. CK1α is recruited to the spindle by FAM83D, and cells devoid of FAM83D, or those harbouring CK1α-binding-deficient FAM83DF283A/F283A knockin mutations, display pronounced spindle positioning defects, and a prolonged mitosis. Restoring FAM83D at the endogenous locus in FAM83D-/- cells, or artificially delivering CK1α to the spindle in FAM83DF283A/F283A cells, rescues these defects. These findings implicate CK1α as new mitotic kinase that orchestrates the kinetics and orientation of cell division.


Subject(s)
Casein Kinase I/metabolism , Cell Cycle Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Spindle Apparatus/metabolism , Animals , Casein Kinase I/genetics , Cell Cycle/genetics , Cell Cycle/physiology , Cell Cycle Proteins/genetics , Cell Line, Tumor , Flow Cytometry , HeLa Cells , Humans , Mice , Mice, Knockout , Microtubule-Associated Proteins/genetics , Mitosis/genetics , Mitosis/physiology
3.
Biochem J ; 477(23): 4603-4621, 2020 12 11.
Article in English | MEDLINE | ID: mdl-33306089

ABSTRACT

Regarded as constitutively active enzymes, known to participate in many, diverse biological processes, the intracellular regulation bestowed on the CK1 family of serine/threonine protein kinases is critically important, yet poorly understood. Here, we provide an overview of the known CK1-dependent cellular functions and review the emerging roles of CK1-regulating proteins in these processes. We go on to discuss the advances, limitations and pitfalls that CK1 researchers encounter when attempting to define relationships between CK1 isoforms and their substrates, and the challenges associated with ascertaining the correct physiological CK1 isoform for the substrate of interest. With increasing interest in CK1 isoforms as therapeutic targets, methods of selectively inhibiting CK1 isoform-specific processes is warranted, yet challenging to achieve given their participation in such a vast plethora of signalling pathways. Here, we discuss how one might shut down CK1-specific processes, without impacting other aspects of CK1 biology.


Subject(s)
Casein Kinase I/metabolism , Signal Transduction , Animals , Casein Kinase I/genetics , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Substrate Specificity
4.
J Cell Sci ; 131(1)2018 01 10.
Article in English | MEDLINE | ID: mdl-29175910

ABSTRACT

Our previous studies of PAWS1 (protein associated with SMAD1; also known as FAM83G) have suggested that this molecule has roles beyond BMP signalling. To investigate these roles, we have used CRISPR/Cas9 to generate PAWS1-knockout U2OS osteosarcoma cells. Here, we show that PAWS1 plays a role in the regulation of the cytoskeletal machinery, including actin and focal adhesion dynamics, and cell migration. Confocal microscopy and live cell imaging of actin in U2OS cells indicate that PAWS1 is also involved in cytoskeletal dynamics and organization. Loss of PAWS1 causes severe defects in F-actin organization and distribution as well as in lamellipodial organization, resulting in impaired cell migration. PAWS1 interacts in a dynamic fashion with the actin/cytoskeletal regulator CD2AP at lamellae, suggesting that its association with CD2AP controls actin organization and cellular migration. Genetic ablation of CD2AP from U2OS cells instigates actin and cell migration defects reminiscent of those seen in PAWS1-knockout cells.This article has an associated First Person interview with the first authors of the paper.


Subject(s)
Actin Cytoskeleton/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Cell Movement , Cytoskeletal Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Actins/metabolism , Adaptor Proteins, Signal Transducing/genetics , CRISPR-Cas Systems , Cell Line, Tumor , Cytoskeletal Proteins/genetics , Focal Adhesions/metabolism , Gene Knockout Techniques , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Signal Transduction
5.
EMBO Rep ; 19(4)2018 04.
Article in English | MEDLINE | ID: mdl-29514862

ABSTRACT

The BMP and Wnt signalling pathways determine axis specification during embryonic development. Our previous work has shown that PAWS1 (also known as FAM83G) interacts with SMAD1 and modulates BMP signalling. Here, surprisingly, we show that overexpression of PAWS1 in Xenopus embryos activates Wnt signalling and causes complete axis duplication. Consistent with these observations in Xenopus, Wnt signalling is diminished in U2OS osteosarcoma cells lacking PAWS1, while BMP signalling is unaffected. We show that PAWS1 interacts and co-localises with the α isoform of casein kinase 1 (CK1), and that PAWS1 mutations incapable of binding CK1 fail both to activate Wnt signalling and to elicit axis duplication in Xenopus embryos.


Subject(s)
Casein Kinase Ialpha/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Wnt Signaling Pathway , Animals , Axin Protein/metabolism , Bone Morphogenetic Proteins/metabolism , Cell Line, Tumor , Cell Nucleus , Ectopic Gene Expression , Gene Expression , Gene Knockout Techniques , Humans , Intracellular Signaling Peptides and Proteins/genetics , Multiprotein Complexes/metabolism , Phosphorylation , Protein Binding , Protein Transport , Xenopus , Xenopus Proteins/genetics , Xenopus Proteins/metabolism , beta Catenin/metabolism
6.
Cell Mol Life Sci ; 76(14): 2761-2777, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31030225

ABSTRACT

Protein silencing is often employed as a means to aid investigations in protein function and is increasingly desired as a therapeutic approach. Several types of protein silencing methodologies have been developed, including targeting the encoding genes, transcripts, the process of translation or the protein directly. Despite these advances, most silencing systems suffer from limitations. Silencing protein expression through genetic ablation, for example by CRISPR/Cas9 genome editing, is irreversible, time consuming and not always feasible. Similarly, RNA interference approaches warrant prolonged treatments, can lead to incomplete protein depletion and are often associated with off-target effects. Targeted proteolysis has the potential to overcome some of these limitations. The field of targeted proteolysis has witnessed the emergence of many methodologies aimed at targeting specific proteins for degradation in a spatio-temporal manner. In this review, we provide an appraisal of the different targeted proteolytic systems and discuss their applications in understanding protein function, as well as their potential in therapeutics.


Subject(s)
Gene Editing , Proteasome Endopeptidase Complex/metabolism , Proteins/metabolism , Proteolysis , Humans , Proteasome Endopeptidase Complex/genetics , Proteins/genetics , Ubiquitination
7.
EMBO Rep ; 18(7): 1108-1122, 2017 07.
Article in English | MEDLINE | ID: mdl-28588073

ABSTRACT

Pluripotent stem cells (PSCs) hold great clinical potential, as they possess the capacity to differentiate into fully specialised tissues such as pancreas, liver, neurons and cardiac muscle. However, the molecular mechanisms that coordinate pluripotent exit with lineage specification remain poorly understood. To address this question, we perform a small molecule screen to systematically identify novel regulators of the Smad2 signalling network, a key determinant of PSC fate. We reveal an essential function for BET family bromodomain proteins in Smad2 activation, distinct from the role of Brd4 in pluripotency maintenance. Mechanistically, BET proteins specifically engage Nodal gene regulatory elements (NREs) to promote Nodal signalling and Smad2 developmental responses. In pluripotent cells, Brd2-Brd4 occupy NREs, but only Brd4 is required for pluripotency gene expression. Brd4 downregulation facilitates pluripotent exit and drives enhanced Brd2 NRE occupancy, thereby unveiling a specific function for Brd2 in differentiative Nodal-Smad2 signalling. Therefore, distinct BET functionalities and Brd4-Brd2 isoform switching at NREs coordinate pluripotent exit with lineage specification.


Subject(s)
Cell Differentiation , Nuclear Proteins/metabolism , Pluripotent Stem Cells/metabolism , Protein Serine-Threonine Kinases/metabolism , Smad2 Protein/metabolism , Transcription Factors/metabolism , Animals , Cell Cycle Proteins , Cell Line , Cell Lineage , Humans , Mice , Proteins/metabolism , Signal Transduction
8.
Biochem Soc Trans ; 46(3): 761-771, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29871876

ABSTRACT

The eight members of the FAM83 (FAMily with sequence similarity 83) family of poorly characterised proteins are only present in vertebrates and are defined by the presence of the conserved DUF1669 domain of unknown function at their N-termini. The DUF1669 domain consists of a conserved phospholipase D (PLD)-like catalytic motif. However, the FAM83 proteins display no PLD catalytic (PLDc) activity, and the pseudo-PLDc motif present in each FAM83 member lacks the crucial elements of the native PLDc motif. In the absence of catalytic activity, it is likely that the DUF1669 domain has evolved to espouse novel function(s) in biology. Recent studies have indicated that the DUF1669 domain mediates the interaction with different isoforms of the CK1 (casein kinase 1) family of Ser/Thr protein kinases. In turn, different FAM83 proteins, which exhibit unique amino acid sequences outside the DUF1669 domain, deliver CK1 isoforms to unique subcellular compartments. One of the first protein kinases to be discovered, the CK1 isoforms are thought to be constitutively active and are known to control a plethora of biological processes. Yet, their regulation of kinase activity, substrate selectivity and subcellular localisation has remained a mystery. The emerging evidence now supports a central role for the DUF1669 domain, and the FAM83 proteins, in the regulation of CK1 biology.


Subject(s)
Neoplasm Proteins/metabolism , Protein Isoforms/metabolism , Animals , Humans
9.
Mol Cell ; 36(3): 457-68, 2009 Nov 13.
Article in English | MEDLINE | ID: mdl-19917253

ABSTRACT

TGF-beta induces phosphorylation of the transcription factors Smad2 and Smad3 at the C terminus as well as at an interdomain linker region. TGF-beta-induced linker phosphorylation marks the activated Smad proteins for proteasome-mediated destruction. Here, we identify Nedd4L as the ubiquitin ligase responsible for this step. Through its WW domain, Nedd4L specifically recognizes a TGF-beta-induced phosphoThr-ProTyr motif in the linker region, resulting in Smad2/3 polyubiquitination and degradation. Nedd4L is not interchangeable with Smurf1, a ubiquitin ligase that targets BMP-activated, linker-phosphorylated Smad1. Nedd4L limits the half-life of TGF-beta-activated Smads and restricts the amplitude and duration of TGF-beta gene responses, and in mouse embryonic stem cells, it limits the induction of mesoendodermal fates by Smad2/3-activating factors. Hierarchical regulation is provided by SGK1, which phosphorylates Nedd4L to prevent binding of Smad2/3. Previously identified as a regulator of renal sodium channels, Nedd4L is shown here to play a broader role as a general modulator of Smad turnover during TGF-beta signal transduction.


Subject(s)
Endosomal Sorting Complexes Required for Transport/metabolism , Smad2 Protein/metabolism , Smad3 Protein/metabolism , Transforming Growth Factor beta/pharmacology , Ubiquitin-Protein Ligases/metabolism , Amino Acid Sequence , Animals , Cell Line , Cells, Cultured , Embryonic Stem Cells/cytology , Embryonic Stem Cells/drug effects , Embryonic Stem Cells/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , HeLa Cells , Humans , Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism , Immunoblotting , Mice , Molecular Sequence Data , Nedd4 Ubiquitin Protein Ligases , Phosphorylation/drug effects , Polyubiquitin/metabolism , Protein Binding , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , RNA Interference , Sequence Homology, Amino Acid , Signal Transduction , Smad2 Protein/genetics , Smad3 Protein/genetics , Ubiquitin-Protein Ligases/genetics
10.
iScience ; 27(3): 109302, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38450154

ABSTRACT

Protein phosphatase 2A (PP2A) is an essential Ser/Thr phosphatase. The PP2A holoenzyme complex comprises a scaffolding (A), regulatory (B), and catalytic (C) subunit, with PPP2CA being the principal catalytic subunit. The full scope of PP2A substrates in cells remains to be defined. To address this, we employed dTAG proteolysis-targeting chimeras to efficiently and selectively degrade dTAG-PPP2CA in homozygous knock-in HEK293 cells. Unbiased global phospho-proteomics identified 2,204 proteins with significantly increased phosphorylation upon dTAG-PPP2CA degradation, implicating them as potential PPP2CA substrates. A vast majority of these are novel. Bioinformatic analyses revealed involvement of the potential PPP2CA substrates in spliceosome function, cell cycle, RNA transport, and ubiquitin-mediated proteolysis. We identify a pSP/pTP motif as a predominant target for PPP2CA and confirm some of our phospho-proteomic data with immunoblotting. We provide an in-depth atlas of potential PPP2CA substrates and establish targeted degradation as a robust tool to unveil phosphatase substrates in cells.

11.
Open Biol ; 14(7): 240075, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39043225

ABSTRACT

Palmoplantar keratoderma (PPK) is a multi-faceted skin disorder characterized by the thickening of the epidermis and abrasions on the palms and soles of the feet. Among the genetic causes, biallelic pathogenic variants in the FAM83G gene have been associated with PPK in dogs and humans. Here, a novel homozygous variant (c.794G>C, p.Arg265Pro) in the FAM83G gene, identified by whole exome sequencing in a 60-year-old female patient with PPK, is reported. The patient exhibited alterations in the skin of both hands and feet, dystrophic nails, thin, curly and sparse hair, long upper eyelid eyelashes, and poor dental enamel. FAM83G activates WNT signalling through association with ser/thr protein kinase CK1α. When expressed in FAM83G-/- DLD1 colorectal cancer cells, the FAM83GR265P variant displayed poor stability, a loss of interaction with CK1α and attenuated WNT signalling response. These defects persisted in skin fibroblast cells derived from the patient. Our findings imply that the loss of FAM83G-CK1α interaction and subsequent attenuation of WNT signalling underlie the pathogenesis of PPK caused by the FAM83GR265P variant.


Subject(s)
Casein Kinase Ialpha , Keratoderma, Palmoplantar , Wnt Signaling Pathway , Humans , Female , Keratoderma, Palmoplantar/genetics , Keratoderma, Palmoplantar/pathology , Middle Aged , Casein Kinase Ialpha/metabolism , Casein Kinase Ialpha/genetics , Exome Sequencing , Protein Binding , Fibroblasts/metabolism
12.
Nanotechnology ; 24(22): 225704, 2013 Jun 07.
Article in English | MEDLINE | ID: mdl-23644899

ABSTRACT

The effect of stoichiometry of single crystalline In2O3 nanowires on electrical transport and gas sensing was investigated. The nanowires were synthesized by vapor phase transport and had diameters ranging from 80 to 100 nm and lengths between 10 and 20 µm, with a growth direction of [001]. Transport measurements revealed n-type conduction, attributed to the presence of oxygen vacancies in the crystal lattice. As-grown In2O3 nanowires were shown to have a carrier concentration of ≈5 × 10(17) cm(-3), while nanowires that were annealed in wet O2 showed a reduced carrier concentration of less than 10(16) cm(-3). Temperature dependent conductivity measurements on the as-grown nanowires and analysis of the thermally activated Arrhenius conduction for the temperature range of 77-350 K yielded an activation energy of 0.12 eV. This is explained on the basis of carrier exchange that occurs between the surface states and the bulk of the nanowire, resulting in a depleted surface layer of thickness of the order of the Debye length (LD), estimated to be about 3-4 nm for the as-grown nanowires and about 10 times higher for the more stoichiometric nanowires. Significant changes in the electrical conductance of individual In2O3 nanowires were also observed within several seconds of exposure to NH3 and O2 gas molecules at room temperature, thus demonstrating the potential use of In2O3 nanowires as efficient miniaturized chemical sensors. The sensing mechanism is dominated by the nanowire channel conductance, and a simple energy band diagram is used to explain the change in conductivity when gas molecules adsorbed on the nanowire surface influence its electrical properties. Less stoichiometric nanowires were found to be more sensitive to oxidizing gases while more stoichiometric nanowires showed significantly enhanced response to reducing gases.


Subject(s)
Ammonia/analysis , Indium/chemistry , Nanowires/chemistry , Oxygen/analysis , Electric Conductivity , Equipment Design
13.
Trends Pharmacol Sci ; 44(11): 786-801, 2023 11.
Article in English | MEDLINE | ID: mdl-37778939

ABSTRACT

Targeted protein degradation (TPD) is an emerging modality for research and therapeutics. Most TPD approaches harness cellular ubiquitin-dependent proteolytic pathways. Proteolysis-targeting chimeras (PROTACs) and molecular glue (MG) degraders (MGDs) represent the most advanced TPD approaches, with some already used in clinical settings. Despite these advances, TPD still faces many challenges, pertaining to both the development of effective, selective, and tissue-penetrant degraders and understanding their mode of action. In this review, we focus on progress made in addressing these challenges. In particular, we discuss the utility and application of recent proteomic approaches as indispensable tools to enable insights into degrader development, including target engagement, degradation selectivity, efficacy, safety, and mode of action.


Subject(s)
Proteolysis Targeting Chimera , Proteomics , Humans , Proteolysis , Ubiquitin-Protein Ligases
14.
Methods Enzymol ; 681: 61-79, 2023.
Article in English | MEDLINE | ID: mdl-36764764

ABSTRACT

Targeted protein degradation (TPD) is a useful approach in dissecting protein function and therapeutics. Technologies such as RNA interference or gene knockout that are routinely used rely on protein turnover. However, RNA interference takes a long time to deplete target proteins and is not suitable for long-lived proteins, while a genetic knockout is irreversible, takes a long time to achieve and is not suitable for essential genes. TPD has the potential to overcome the limitations of RNA interference and gene editing approaches. We have established the Affinity directed PROtein Missile (AdPROM) system, which harnesses nanobodies or binders of target proteins to redirect E3 ubiquitin ligase activity to the target protein to induce TPD through the ubiquitin proteasome system. Here we provide a step-by-step protocol for using the AdPROM system for targeted proteolysis of endogenously GFP-tagged K-RAS through an anti-GFP nanobody. This protocol can be amended to target a wide range of different proteins of interest (POIs) either by replacing the anti-GFP nanobody with a nanobody recognising the POI or by endogenously tagging the POI with GFP through CRISPR/Cas9 genome editing.


Subject(s)
Single-Domain Antibodies , Proteolysis , Single-Domain Antibodies/genetics , Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Ubiquitination , Ubiquitin-Protein Ligases/metabolism
15.
Cell Chem Biol ; 30(10): 1261-1276.e7, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37591251

ABSTRACT

Targeted protein degradation (TPD), induced by enforcing target proximity to an E3 ubiquitin ligase using small molecules has become an important drug discovery approach for targeting previously undruggable disease-causing proteins. However, out of over 600 E3 ligases encoded by the human genome, just over 10 E3 ligases are currently utilized for TPD. Here, using the affinity-directed protein missile (AdPROM) system, in which an anti-GFP nanobody was linked to an E3 ligase, we screened over 30 E3 ligases for their ability to degrade 4 target proteins, K-RAS, STK33, ß-catenin, and FoxP3, which were endogenously GFP-tagged. Several new E3 ligases, including CUL2 diGly receptor KLHDC2, emerged as effective degraders, suggesting that these E3 ligases can be taken forward for the development of small-molecule degraders, such as proteolysis targeting chimeras (PROTACs). As a proof of concept, we demonstrate that a KLHDC2-recruiting peptide-based PROTAC connected to chloroalkane is capable of degrading HALO-GFP protein in cells.


Subject(s)
Transcription Factors , beta Catenin , Humans , beta Catenin/metabolism , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Proteolysis , Drug Discovery , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
16.
Cell Chem Biol ; 30(2): 188-202.e6, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36720221

ABSTRACT

Reversible protein phosphorylation, catalyzed by protein kinases and phosphatases, is a fundamental process that controls protein function and intracellular signaling. Failure of phospho-control accounts for many human diseases. While a kinase phosphorylates multiple substrates, a substrate is often phosphorylated by multiple kinases. This renders phospho-control at the substrate level challenging, as it requires inhibition of multiple kinases, which would thus affect other kinase substrates. Here, we describe the development and application of the affinity-directed phosphatase (AdPhosphatase) system for targeted dephosphorylation of specific phospho-substrates. By deploying the Protein Phosphatase 1 or 2A catalytic subunits conjugated to an antigen-stabilized anti-GFP nanobody, we can promote the dephosphorylation of two independent phospho-proteins, FAM83D or ULK1, knocked in with GFP-tags using CRISPR-Cas9, with exquisite specificity. By redirecting protein phosphatases to neo-substrates through nanobody-mediated proximity, AdPhosphatase can alter the phospho-status and function of target proteins and thus, offers a new modality for potential drug discovery approaches.


Subject(s)
Protein Kinases , Protein Phosphatase 2 , Humans , Cell Cycle Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Phosphorylation , Protein Kinases/metabolism , Protein Phosphatase 2/metabolism , Substrate Specificity , Phosphoric Monoester Hydrolases/metabolism
17.
Cell Chem Biol ; 29(10): 1482-1504.e7, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36075213

ABSTRACT

Proteolysis-targeting chimeras (PROTACs) bring a protein of interest (POI) into spatial proximity of an E3 ubiquitin ligase, promoting POI ubiquitylation and proteasomal degradation. PROTACs rely on endogenous cellular machinery to mediate POI degradation, therefore the subcellular location of the POI and access to the E3 ligase being recruited potentially impacts PROTAC efficacy. To interrogate whether the subcellular context of the POI influences PROTAC-mediated degradation, we expressed either Halo or FKBP12F36V (dTAG) constructs consisting of varying localization signals and tested the efficacy of their degradation by von Hippel-Lindau (VHL)- or cereblon (CRBN)-recruiting PROTACs targeting either Halo or dTAG. POIs were localized to the nucleus, cytoplasm, outer mitochondrial membrane, endoplasmic reticulum, Golgi, peroxisome or lysosome. Differentially localized Halo or FKBP12F36V proteins displayed varying levels of degradation using the same respective PROTACs, suggesting therefore that the subcellular context of the POI can influence the efficacy of PROTAC-mediated POI degradation.


Subject(s)
Tacrolimus Binding Protein 1A , Ubiquitin-Protein Ligases , Proteolysis , Tacrolimus Binding Protein 1A/metabolism , Ubiquitin-Protein Ligases/metabolism
18.
Life Sci Alliance ; 4(2)2021 02.
Article in English | MEDLINE | ID: mdl-33361334

ABSTRACT

Immunomodulatory imide drugs (IMiDs) bind CRBN, a substrate receptor of the Cul4A E3 ligase complex, enabling the recruitment of neo-substrates, such as CK1α, and their degradation via the ubiquitinproteasome system. Here, we report FAM83F as such a neo-substrate. The eight FAM83 proteins (A-H) interact with and regulate the subcellular distribution of CK1α. We demonstrate that IMiD-induced FAM83F degradation requires its association with CK1α. However, no other FAM83 protein is degraded by IMiDs. We have recently identified FAM83F as a mediator of the canonical Wnt signalling pathway. The IMiD-induced degradation of FAM83F attenuated Wnt signalling in colorectal cancer cells and removed CK1α from the plasma membrane, mirroring the phenotypes observed with genetic ablation of FAM83F. Intriguingly, the expression of FAM83G, which also binds to CK1α, appears to attenuate the IMiD-induced degradation of CK1α, suggesting a protective role for FAM83G on CK1α. Our findings reveal that the efficiency and extent of target protein degradation by IMiDs depends on the nature of inherent multiprotein complex in which the target protein is part of.


Subject(s)
Casein Kinase Ialpha/metabolism , Imides/pharmacology , Immunologic Factors/pharmacology , Intracellular Signaling Peptides and Proteins/metabolism , Neoplasm Proteins/metabolism , Wnt Signaling Pathway/drug effects , Adaptor Proteins, Signal Transducing/metabolism , Base Sequence , Cell Line, Tumor , Cell Membrane/metabolism , Gene Knock-In Techniques , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , Neoplasm Proteins/chemistry , Neoplasm Proteins/genetics , Proteasome Endopeptidase Complex/metabolism , Protein Binding , Protein Stability , Proteolysis/drug effects , Ubiquitin-Protein Ligases/metabolism
19.
Life Sci Alliance ; 4(2)2021 02.
Article in English | MEDLINE | ID: mdl-33361109

ABSTRACT

The function of the FAM83F protein, like the functions of many members of the FAM83 family, is poorly understood. Here, we show that injection of Fam83f mRNA into Xenopus embryos causes axis duplication, a phenotype indicative of enhanced Wnt signalling. Consistent with this, overexpression of FAM83F activates Wnt signalling, whereas ablation of FAM83F from human colorectal cancer (CRC) cells attenuates it. We demonstrate that FAM83F is farnesylated and interacts and co-localises with CK1α at the plasma membrane. This interaction with CK1α is essential for FAM83F to activate Wnt signalling, and FAM83F mutants that do not interact with CK1α fail to induce axis duplication in Xenopus embryos and to activate Wnt signalling in cells. FAM83F acts upstream of GSK-3ß because the attenuation of Wnt signalling caused by loss of FAM83F can be rescued by GSK-3 inhibition. Introduction of a farnesyl-deficient mutant of FAM83F in cells through CRISPR/Cas9 genome editing redirects the FAM83F-CK1α complex away from the plasma membrane and significantly attenuates Wnt signalling, indicating that FAM83F exerts its effects on Wnt signalling at the plasma membrane.


Subject(s)
Casein Kinase Ialpha/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Neoplasm Proteins/metabolism , Wnt Signaling Pathway , Animals , Cell Line , Cell Membrane/metabolism , Embryonic Development/genetics , Fluorescent Antibody Technique , Gene Expression Regulation , Gene Knockdown Techniques , Genes, Reporter , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , Neoplasm Proteins/chemistry , Neoplasm Proteins/genetics , Prenylation , Protein Binding , Protein Transport , Xenopus Proteins/genetics , Xenopus Proteins/metabolism , Xenopus laevis
20.
SLAS Discov ; 26(7): 885-895, 2021 08.
Article in English | MEDLINE | ID: mdl-34041938

ABSTRACT

Targeted protein degradation is an emerging new strategy for the modulation of intracellular protein levels with applications in chemical biology and drug discovery. One approach to enable this strategy is to redirect the ubiquitin-proteasome system to mark and degrade target proteins of interest (POIs) through the use of proteolysis targeting chimeras (PROTACs). Although great progress has been made in enabling PROTACs as a platform, there are still a limited number of E3 ligases that have been employed for PROTAC design. Herein we report a novel phenotypic screening approach for the identification of E3 ligase binders. The key concept underlying this approach is the high-throughput modification of screening compounds with a chloroalkane moiety to generate HaloPROTACs in situ, which were then evaluated for their ability to degrade a GFP-HaloTag fusion protein in a cellular context. As proof of concept, we demonstrated that we could generate and detect functional HaloPROTACs in situ, using a validated Von Hippel-Lindau (VHL) binder that successfully degraded the GFP-HaloTag fusion protein in living cells. We then used this method to prepare and screen a library of approximately 2000 prospective E3 ligase-recruiting molecules.


Subject(s)
Drug Discovery/methods , Drug Evaluation, Preclinical/methods , Proteolysis/drug effects , Humans , Protein Binding , Small Molecule Libraries , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL