Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
J Org Chem ; 87(4): 1880-1897, 2022 02 18.
Article in English | MEDLINE | ID: mdl-34780177

ABSTRACT

Parallel library synthesis is an important tool for drug discovery because it enables the synthesis of closely related analogues in parallel via robust and general synthetic transformations. In this perspective, we analyzed the synthetic methodologies used in >5000 parallel libraries representing 15 prevalent synthetic transformations. The library data set contains complex substrates and diverse arrays of building blocks used over the last 14 years at AbbVie. The library synthetic methodologies that have demonstrated robustness and generality with proven success are described along with their substrate scopes. The evolution of the synthetic methodologies for library synthesis over the past decade is discussed. We also highlight that the combination of parallel library synthesis with high-throughput experimentation will continue to facilitate the discovery of library-amenable synthetic methodologies in drug discovery.


Subject(s)
Drug Discovery
2.
Bioorg Med Chem Lett ; 27(7): 1576-1583, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28254486

ABSTRACT

Herein we disclose SAR studies of a series of dimethylamino pyrrolidines which we recently reported as novel inhibitors of the PRC2 complex through disruption of EED/H3K27me3 binding. Modification of the indole and benzyl moieties of screening hit 1 provided analogs with substantially improved binding and cellular activities. This work culminated in the identification of compound 2, our nanomolar proof-of-concept (PoC) inhibitor which provided on-target tumor growth inhibition in a mouse xenograft model. X-ray crystal structures of several inhibitors bound in the EED active-site are also discussed.


Subject(s)
Polycomb Repressive Complex 2/antagonists & inhibitors , Polycomb Repressive Complex 2/metabolism , Pyrrolidines/pharmacology , Sulfonamides/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Humans , Ligands , Mice , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Polycomb Repressive Complex 2/chemistry , Protein Binding , Pyrrolidines/chemical synthesis , Pyrrolidines/chemistry , Stereoisomerism , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Xenograft Model Antitumor Assays
3.
Bioorg Med Chem Lett ; 27(15): 3317-3325, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28610984

ABSTRACT

Herein we disclose SAR studies that led to a series of isoindoline ureas which we recently reported were first-in-class, non-substrate nicotinamide phosphoribosyltransferase (NAMPT) inhibitors. Modification of the isoindoline and/or the terminal functionality of screening hit 5 provided inhibitors such as 52 and 58 with nanomolar antiproliferative activity and preclinical pharmacokinetics properties which enabled potent antitumor activity when dosed orally in mouse xenograft models. X-ray crystal structures of two inhibitors bound in the NAMPT active-site are discussed.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cytokines/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Urea/analogs & derivatives , Urea/pharmacology , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Cytokines/chemistry , Cytokines/metabolism , Drug Discovery , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/therapeutic use , Humans , Isoindoles/chemistry , Isoindoles/pharmacokinetics , Isoindoles/pharmacology , Isoindoles/therapeutic use , Mice , Models, Molecular , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Nicotinamide Phosphoribosyltransferase/chemistry , Nicotinamide Phosphoribosyltransferase/metabolism , Structure-Activity Relationship , Urea/pharmacokinetics , Urea/therapeutic use
4.
ACS Med Chem Lett ; 14(4): 521-529, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37077401

ABSTRACT

Enthusiasm surrounding nickel/photoredox C(sp2)-C(sp3) cross-couplings is very high; however, these methods are sometimes challenged by complex drug-like substrates in discovery chemistry. In our hands this has been especially true of the decarboxylative coupling, which has lagged behind other photoredox couplings in internal adoption and success. Herein, the development of a photoredox high-throughput experimentation platform to optimize challenging C(sp2)-C(sp3) decarboxylative couplings is described. Chemical-coated glass beads (ChemBeads) and a novel parallel bead dispenser are used to expedite the high-throughput experimentation process and identify improved coupling conditions. In this report, photoredox high-throughput experimentation is utilized to dramatically improve low-yielding decarboxylative C(sp2)-C(sp3) couplings, and libraries, using conditions not previously identified in the literature.

5.
J Med Chem ; 65(6): 4500-4533, 2022 03 24.
Article in English | MEDLINE | ID: mdl-35133822

ABSTRACT

Glucocorticoid receptor modulators (GRM) are the first-line treatment for many immune diseases, but unwanted side effects restrict chronic dosing. However, targeted delivery of a GRM payload via an immunology antibody-drug conjugate (iADC) may deliver significant efficacy at doses that do not lead to unwanted side effects. We initiated our α-TNF-GRM ADC project focusing on identifying the optimal payload and a linker that afforded stable attachment to both the payload and antibody, resulting in the identification of the synthetically accessible maleimide-Gly-Ala-Ala linker. DAR 4 purified ADCs were shown to be more efficacious in a mouse contact hypersensitivity model than the parent α-TNF antibody. Analysis of P1NP and corticosterone biomarkers showed there was a sufficient therapeutic window between efficacy and unwanted effects. In a chronic mouse arthritis model, α-TNF-GRM ADCs were more efficacious than both the parent α-TNF mAb and an isotype control bearing the same GRM payload.


Subject(s)
Antineoplastic Agents , Immunoconjugates , Animals , Antibodies , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Mice , Receptors, Glucocorticoid
6.
J Med Chem ; 64(1): 417-429, 2021 01 14.
Article in English | MEDLINE | ID: mdl-33378180

ABSTRACT

Tumor necrosis factor α (TNFα) is a soluble cytokine that is directly involved in systemic inflammation through the regulation of the intracellular NF-κB and MAPK signaling pathways. The development of biologic drugs that inhibit TNFα has led to improved clinical outcomes for patients with rheumatoid arthritis and other chronic autoimmune diseases; however, TNFα has proven to be difficult to drug with small molecules. Herein, we present a two-phase, fragment-based drug discovery (FBDD) effort in which we first identified isoquinoline fragments that disrupt TNFα ligand-receptor binding through an allosteric desymmetrization mechanism as observed in high-resolution crystal structures. The second phase of discovery focused on the de novo design and optimization of fragments with improved binding efficiency and drug-like properties. The 3-indolinone-based lead presented here displays oral, in vivo efficacy in a mouse glucose-6-phosphate isomerase (GPI)-induced paw swelling model comparable to that seen with a TNFα antibody.


Subject(s)
Biological Products/chemical synthesis , Drug Design , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Administration, Oral , Allosteric Regulation , Animals , Arthritis, Rheumatoid/drug therapy , Autoimmune Diseases/drug therapy , Biological Products/pharmacology , Biological Products/therapeutic use , Ligands , Mice , Tumor Necrosis Factor-alpha/metabolism
7.
Bioorg Med Chem Lett ; 20(19): 5787-92, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20471255

ABSTRACT

Herein we describe the identification and characterization of a class of molecules that are believed to extend into a region of p38 known as the 'switch pocket'. Although these molecules lack a canonical hinge binding motif, they show K(i) values as low as 100 nM against p38. We show that molecules that interact with this region of the protein demonstrate different binding kinetics than a canonical ATP mimetic, as well as a wide range of kinome profiles. Thus, the switch pocket presents new opportunities for kinome selectivity which could result in unique biochemical responses and offer new opportunities in the field of kinase drug discovery.


Subject(s)
Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Adenosine Triphosphate/chemistry , Binding Sites , Computer Simulation , Crystallography, X-Ray , Fluorescence Resonance Energy Transfer , Kinetics , Mitogen-Activated Protein Kinase 14/metabolism , Protein Binding , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Protein Structure, Tertiary , Structure-Activity Relationship
8.
J Med Chem ; 51(10): 3030-4, 2008 May 22.
Article in English | MEDLINE | ID: mdl-18438986

ABSTRACT

N'-aryl acyl hydrazides were identified as P2X7 receptor antagonists. Structure-activity relationship (SAR) studies evaluated functional activity by monitoring calcium flux inhibition in cell lines expressing recombinant human and rat P2X7 receptors. Selected analogs were assayed in vitro for their capacity to inhibit release of cytokine IL-1beta. Compounds with potent antagonist function were evaluated in vivo using the zymosan-induced peritonitis model. A representative compound effectively attenuated mechanical allodynia in a rat model of neuropathic pain.


Subject(s)
Analgesics/chemical synthesis , Hydrazines/chemical synthesis , Purinergic P2 Receptor Antagonists , Analgesics/chemistry , Analgesics/pharmacology , Animals , Calcium/metabolism , Cell Line , Humans , Hydrazines/chemistry , Hydrazines/pharmacology , Interleukin-1beta/antagonists & inhibitors , Interleukin-1beta/metabolism , Isoquinolines/chemical synthesis , Isoquinolines/chemistry , Isoquinolines/pharmacology , Pain/drug therapy , Pain Measurement , Peripheral Nervous System Diseases/drug therapy , Peritoneal Cavity , Peritonitis/metabolism , Peritonitis/prevention & control , Quinolines/chemical synthesis , Quinolines/chemistry , Quinolines/pharmacology , Rats , Receptors, Purinergic P2X7 , Recombinant Proteins/antagonists & inhibitors , Structure-Activity Relationship
10.
J Med Chem ; 61(24): 11074-11100, 2018 12 27.
Article in English | MEDLINE | ID: mdl-30384606

ABSTRACT

A HTS campaign identified compound 1, an excellent hit-like molecule to initiate medicinal chemistry efforts to optimize a dual ROCK1 and ROCK2 inhibitor. Substitution (2-Cl, 2-NH2, 2-F, 3-F) of the pyridine hinge binding motif or replacement with pyrimidine afforded compounds with a clean CYP inhibition profile. Cocrystal structures of an early lead compound were obtained in PKA, ROCK1, and ROCK2. This provided critical structural information for medicinal chemistry to drive compound design. The structural data indicated the preferred configuration at the central benzylic carbon would be ( R), and application of this information to compound design resulted in compound 16. This compound was shown to be a potent and selective dual ROCK inhibitor in both enzyme and cell assays and efficacious in the retinal nerve fiber layer model after oral dosing. This tool compound has been made available through the AbbVie Compound Toolbox. Finally, the cocrystal structures also identified that aspartic acid residues 176 and 218 in ROCK2, which are glutamic acids in PKA, could be targeted as residues to drive both potency and kinome selectivity. Introduction of a piperidin-3-ylmethanamine group to the compound series resulted in compound 58, a potent and selective dual ROCK inhibitor with excellent predicted drug-like properties.


Subject(s)
Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , rho-Associated Kinases/antagonists & inhibitors , Administration, Oral , Animals , Biological Availability , Crystallography, X-Ray , Cytochrome P-450 CYP2C9 Inhibitors/chemistry , Cytochrome P-450 CYP2C9 Inhibitors/pharmacology , Cytochrome P-450 CYP3A Inhibitors/chemistry , Cytochrome P-450 CYP3A Inhibitors/pharmacology , Drug Design , Drug Evaluation, Preclinical/methods , Half-Life , Humans , Mice, Inbred C57BL , Optic Nerve Injuries/drug therapy , Optic Nerve Injuries/pathology , Rats, Sprague-Dawley , Structure-Activity Relationship , rho-Associated Kinases/chemistry
11.
J Med Chem ; 49(15): 4459-69, 2006 Jul 27.
Article in English | MEDLINE | ID: mdl-16854051

ABSTRACT

The discovery and pharmacological evaluation of potent, selective, and orally bioavailable growth hormone secretagogue receptor (GHS-R) antagonists are reported. Previously, 2,4-diaminopyrimidine-based GHS-R antagonists reported from our laboratories have been shown to be dihydrofolate reductase (DHFR) inhibitors. By comparing the X-ray crystal structure of DHFR docked with our GHS-R antagonists and GHS-R modeling, we designed and synthesized a series of potent and DHFR selective GHS-R antagonists with good pharmacokinetic (PK) profiles. An amide derivative 13d (Ca2+ flux IC50 = 188 nM, [brain]/[plasma] = 0.97 @ 8 h in rat) showed a 10% decrease in 24 h food intake in rats, and over 5% body weight reduction after 14-day oral treatment in diet-induced obese (DIO) mice. In comparison, a urea derivative 14c (Ca2+ flux IC50 = 7 nM, [brain]/[plasma] = 0.0 in DIO) failed to show significant effect on food intake in the acute feeding DIO model. These observations demonstrated for the first time that peripheral GHS-R blockage with small molecule GHS-R antagonists might not be sufficient for suppressing appetite and inducing body weight reduction.


Subject(s)
Aminopyridines/chemical synthesis , Anti-Obesity Agents/chemical synthesis , Receptors, G-Protein-Coupled/antagonists & inhibitors , Administration, Oral , Amides/chemical synthesis , Amides/pharmacology , Aminopyridines/pharmacology , Animals , Anti-Obesity Agents/pharmacology , Appetite Depressants/chemical synthesis , Appetite Depressants/pharmacology , Biological Availability , Body Weight/drug effects , Cell Line , Crystallography, X-Ray , Eating/drug effects , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Models, Molecular , Molecular Structure , Rats , Rats, Sprague-Dawley , Receptors, Ghrelin , Structure-Activity Relationship , Urea/analogs & derivatives , Urea/chemical synthesis , Urea/pharmacology
12.
J Lab Autom ; 21(3): 459-69, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26085482

ABSTRACT

A novel methodology for the synthesis and purification of drug-like compound libraries has been developed through the use of a microwave reactor with an integrated high-performance liquid chromatography-mass spectrometry (HPLC-MS) system. The strategy uses a fully automated synthesizer with a microwave as energy source and robotic components for weighing and dispensing of solid reagents, handling liquid reagents, capper/crimper of microwave reaction tube assemblies, and transportation. Crude reaction products were filtered through solid-phase extraction cartridges and injected directly onto a reverse-phase chromatography column via an injection valve. For multistep synthesis, crude products were passed through scavenger resins and reintroduced for subsequent reactions. All synthetic and purification steps were conducted under full automation with no handling or isolation of intermediates, to afford the desired purified products. This approach opens the way to highly efficient generation of drug-like compounds as part of a lead discovery strategy or within a lead optimization program.


Subject(s)
Automation, Laboratory/methods , Microwaves , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/isolation & purification , Chromatography, Liquid/methods , Mass Spectrometry/methods
13.
J Med Chem ; 58(23): 9154-70, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26509640

ABSTRACT

S1P5 is one of 5 receptors for sphingosine-1-phosphate and is highly expressed on endothelial cells within the blood-brain barrier, where it maintains barrier integrity in in vitro models (J. Neuroinflamm. 2012, 9, 133). Little more is known about the effects of S1P5 modulation due to the absence of tool molecules with suitable selectivity and drug-like properties. We recently reported that molecule A-971432 (Harris, 2010) (29 in this paper) is highly efficacious in reversing lipid accumulation and age-related cognitive decline in rats (Van der Kam , , AAIC 2014). Herein we describe the development of a series of selective S1P5 agonists that led to the identification of compound 29, which is highly selective for S1P5 and has excellent plasma and CNS exposure after oral dosing in preclinical species. To further support its suitability for in vivo studies of S1P5 biology, we extensively characterized 29, including confirmation of its selectivity in pharmacodynamic assays of S1P1 and S1P3 function in rats. In addition, we found that 29 improves blood-brain barrier integrity in an in vitro model and reverses age-related cognitive decline in mice. These results suggest that S1P5 agonism is an innovative approach with potential benefit in neurodegenerative disorders involving lipid imbalance and/or compromised blood-brain barrier such as Alzheimer's disease or multiple sclerosis.


Subject(s)
Azetidinecarboxylic Acid/analogs & derivatives , Benzene Derivatives/chemistry , Benzene Derivatives/pharmacology , Neurodegenerative Diseases/drug therapy , Receptors, Lysosphingolipid/agonists , Administration, Oral , Animals , Azetidinecarboxylic Acid/administration & dosage , Azetidinecarboxylic Acid/chemistry , Azetidinecarboxylic Acid/pharmacokinetics , Azetidinecarboxylic Acid/pharmacology , Benzene Derivatives/administration & dosage , Benzene Derivatives/pharmacokinetics , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Cell Line , Cognitive Aging , Dogs , Female , Humans , Macaca fascicularis , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Rats , Rats, Sprague-Dawley , Receptors, Lysosphingolipid/metabolism
14.
J Med Chem ; 52(10): 3377-84, 2009 May 28.
Article in English | MEDLINE | ID: mdl-19419141

ABSTRACT

The discovery of a series of pyrrole-sulfonamides as positive allosteric modulators (PAM) of alpha7 nAChRs is described. Optimization of this series led to the identification of 19 (A-867744), a novel type II PAM with good potency and selectivity. Compound 19 showed acceptable pharmacokinetic profile across species and brain levels sufficient to modulate alpha7 nAChRs. In a rodent model of sensory gating, 19 normalized gating deficits. These results suggest that 19 represents a novel class of molecules capable of allosteric modulation of the alpha7 nAChRs.


Subject(s)
Allosteric Regulation , Pyrroles/pharmacology , Receptors, Nicotinic/drug effects , Sensory Gating/drug effects , Sulfonamides/pharmacology , Animals , Brain/metabolism , Cells, Cultured , Drug Discovery , Mice , Microsomes , Oocytes , Patch-Clamp Techniques , Pharmacokinetics , Xenopus laevis , alpha7 Nicotinic Acetylcholine Receptor , Benzenesulfonamides
15.
Bioorg Med Chem Lett ; 17(11): 3122-9, 2007 Jun 01.
Article in English | MEDLINE | ID: mdl-17391963

ABSTRACT

Survivin is one of the most tumor-specific genes in the human genome and is an attractive target for cancer therapy. However, small-molecule ligands for survivin have not yet been described. Thus, an interrogation of survivin which could potentially both validate a small-molecule therapy approach, and determine the biochemical nature of any of survivin's functions has not been possible. Here we describe the discovery and characterization of a small molecule binding site on the survivin surface distinct from the Smac peptide-binding site. The new site is located at the dimer interface and exhibits many of the features of highly druggable, biologically relevant protein binding sites. A variety of small hydrophobic compounds were found that bind with moderate affinity to this binding site, from which one lead was developed into a group of compounds with nanomolar affinity. Additionally, a subset of these compounds are adequately water-soluble and cell-permeable. Thus, the structural studies and small molecules described here provide tools that can be used to probe the biochemical role(s) of survivin, and may ultimately serve as a basis for the development of small molecule therapeutics acting via direct or allosteric disruption of binding events related to this poorly understood target.


Subject(s)
Cysteine Proteinase Inhibitors/chemistry , Microtubule-Associated Proteins/chemistry , Molecular Probes/chemistry , Neoplasm Proteins/chemistry , Binding Sites , Crystallography, X-Ray , Dimerization , Humans , Hydrophobic and Hydrophilic Interactions , Inhibitor of Apoptosis Proteins , Ligands , Protein Conformation , Survivin
17.
Bioorg Med Chem Lett ; 16(5): 1138-41, 2006 Mar 01.
Article in English | MEDLINE | ID: mdl-16380257

ABSTRACT

A series of alpha-amino acids were identified as ligands which compete with gabapentin for binding to the alpha(2)delta subunit of voltage-dependent Ca(2+) channels. Potent analogs were identified. Their activity in an in vivo pain assay is described.


Subject(s)
Amino Acids/chemistry , Calcium Channel Blockers/chemistry , Calcium Channel Blockers/pharmacology , Calcium Channels/chemistry , Calcium Channels/metabolism , Animals , Benzene/chemistry , Ligands , Molecular Structure , Pain/drug therapy , Pain/metabolism , Protein Subunits/metabolism , Rats , Structure-Activity Relationship
18.
Bioorg Med Chem Lett ; 14(17): 4505-9, 2004 Sep 06.
Article in English | MEDLINE | ID: mdl-15357981

ABSTRACT

A series of substituted isoindolinone ureas was prepared and evaluated for enzymatic and cellular inhibition of KDR kinase activity. Several of these analogs, such as 14c, are potent inhibitors of KDR both enzymatically (< 50 nM) and cellularly < or = 100 nM). A 3D KDR/CDK2/MAP kinase overlay model with several structurally related tyrosine kinase inhibitors was used to predict the binding interactions of the isoindolinone ureas with the KDR active site.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Indoles/chemistry , Urea/chemistry , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Animals , Humans , Indoles/pharmacology , Mice , NIH 3T3 Cells , Urea/pharmacology , Vascular Endothelial Growth Factor Receptor-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL