Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Blood ; 135(14): 1146-1160, 2020 04 02.
Article in English | MEDLINE | ID: mdl-32040544

ABSTRACT

Increasing evidence suggests that platelets play a predominant role in colon and breast cancer metastasis, but the underlying molecular mechanisms remain elusive. Glycoprotein VI (GPVI) is a platelet-specific receptor for collagen and fibrin that triggers platelet activation through immunoreceptor tyrosine-based activation motif (ITAM) signaling and thereby regulates diverse functions, including platelet adhesion, aggregation, and procoagulant activity. GPVI has been proposed as a safe antithrombotic target, because its inhibition is protective in models of arterial thrombosis, with only minor effects on hemostasis. In this study, the genetic deficiency of platelet GPVI in mice decreased experimental and spontaneous metastasis of colon and breast cancer cells. Similar results were obtained with mice lacking the spleen-tyrosine kinase Syk in platelets, an essential component of the ITAM-signaling cascade. In vitro and in vivo analyses supported that mouse, as well as human GPVI, had platelet adhesion to colon and breast cancer cells. Using a CRISPR/Cas9-based gene knockout approach, we identified galectin-3 as the major counterreceptor of GPVI on tumor cells. In vivo studies demonstrated that the interplay between platelet GPVI and tumor cell-expressed galectin-3 uses ITAM-signaling components in platelets and favors the extravasation of tumor cells. Finally, we showed that JAQ1 F(ab')2-mediated inhibition of GPVI efficiently impairs platelet-tumor cell interaction and tumor metastasis. Our study revealed a new mechanism by which platelets promote the metastasis of colon and breast cancer cells and suggests that GPVI represents a promising target for antimetastatic therapies.


Subject(s)
Blood Platelets/pathology , Breast Neoplasms/pathology , Colonic Neoplasms/pathology , Galectin 3/metabolism , Platelet Membrane Glycoproteins/metabolism , Animals , Blood Platelets/metabolism , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Movement , Colonic Neoplasms/metabolism , Female , Humans , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Neoplasm Metastasis/pathology , Platelet Activation , Platelet Membrane Glycoproteins/genetics , Protein Interaction Maps
2.
Molecules ; 27(18)2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36144655

ABSTRACT

An epidemic of avian type H7N9 influenza virus, which took place in China in 2013, was enhanced by a naturally occurring R294K mutation resistant against Oseltamivir at the catalytic site of the neuraminidase. To cope with such drug-resistant neuraminidase mutations, we applied the molecular docking technique to evaluate the fitness of the available drugs such as Oseltamivir, Zanamivir, Peramivir, Laninamivir, L-Arginine and Benserazide hydrochloride concerning the N9 enzyme with single (R294K, R119K, R372K), double (R119_294K, R119_372K, R294_372K) and triple (R119_294_372K) mutations in the pocket. We found that the drugs Peramivir and Zanamivir score best amongst the studied compounds, demonstrating their high binding potential towards the pockets with the considered mutations. Despite the fact that mutations changed the shape of the pocket and reduced the binding strength for all drugs, Peramivir was the only drug that formed interactions with the key residues at positions 119, 294 and 372 in the pocket of the triple N9 mutant, while Zanamivir demonstrated the lowest RMSD value (0.7 Å) with respect to the reference structure.


Subject(s)
Influenza A Virus, H7N9 Subtype , Influenza, Human , Acids, Carbocyclic , Antiviral Agents/chemistry , Arginine/pharmacology , Benserazide/pharmacology , Benserazide/therapeutic use , Drug Resistance, Viral/genetics , Enzyme Inhibitors/pharmacology , Guanidines/pharmacology , Guanidines/therapeutic use , Humans , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H7N9 Subtype/metabolism , Influenza, Human/drug therapy , Molecular Docking Simulation , Mutation , Neuraminidase/chemistry , Oseltamivir/pharmacology , Zanamivir/pharmacology
3.
J Chem Phys ; 146(7): 074703, 2017 Feb 21.
Article in English | MEDLINE | ID: mdl-28228017

ABSTRACT

Peptides are versatile molecules with applications spanning from biotechnology to nanomedicine. They exhibit a good capability to unbundle carbon nanotubes (CNT) by improving their solubility in water. Furthermore, they are a powerful drug delivery system since they can easily be uptaken by living cells, and their high surface-to-volume ratio facilitates the adsorption of molecules of different natures. Therefore, understanding the interaction mechanism between peptides and CNT is important for designing novel therapeutical agents. In this paper, the mechanisms of the adsorption of antimicrobial peptide Cecropin A-Magainin 2 (CA-MA) on a graphene nanosheet (GNS) and on an ultra-short single-walled CNT are characterized using molecular dynamics simulations. The results show that the peptide coats both GNS and CNT surfaces through preferential contacts with aromatic side chains. The peptide packs compactly on the carbon surfaces where the polar and functionalizable Lys side chains protrude into the bulk solvent. It is shown that the adsorption is strongly correlated to the loss of the peptide helical structure. In the case of the CNT, the outer surface is significantly more accessible for adsorption. Nevertheless when the outer surface is already covered by other peptides, a spontaneous diffusion, via the amidated C-terminus into the interior of the CNT, was observed within 150 ns of simulation time. We found that this spontaneous insertion into the CNT interior can be controlled by the polarity of the entrance rim. For the positively charged CA-MA peptide studied, hydrogenated and fluorinated rims, respectively, hinder and promote the insertion.


Subject(s)
Anti-Infective Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Graphite/chemistry , Magainins/chemistry , Nanostructures/chemistry , Nanotubes, Carbon/chemistry , Adsorption , Amino Acid Sequence , Drug Delivery Systems , Molecular Dynamics Simulation , Solubility , Surface Properties , Water/chemistry
4.
J Nat Prod ; 79(12): 2997-3005, 2016 Dec 23.
Article in English | MEDLINE | ID: mdl-27966945

ABSTRACT

A series of (E)-11-isonitrosostrychnine oxime ethers, 2-aminostrychnine, (strychnine-2-yl)propionamide, 18-oxostrychnine, and N-propylstrychnine bromide were synthesized and evaluated pharmacologically at human α1 and α1ß glycine receptors in a functional fluorescence-based and a whole-cell patch-clamp assay and in [3H]strychnine binding studies. 2-Aminostrychnine and the methyl, allyl, and propargyl oxime ethers were the most potent α1 and α1ß antagonists in the series, displaying IC50 values similar to those of strychnine at the two receptors. Docking experiments to the strychnine binding site of the crystal structure of the α3 glycine receptor indicated the same orientation of the strychnine core for all analogues. For the most potent oxime ethers, the ether substituent was accommodated in a lipophilic receptor binding pocket. The findings identify the oxime hydroxy group as a suitable attachment point for linking two strychnine pharmacophores by a polymethylene spacer and are, therefore, important for the design of bivalent ligands targeting glycine receptors.


Subject(s)
Ethers/chemical synthesis , Oximes/pharmacology , Receptors, Glycine/antagonists & inhibitors , Strychnine , Animals , Binding Sites , Binding, Competitive , Crystallography, X-Ray , Ethers/chemistry , Ethers/pharmacology , Glycine/analysis , Glycine/metabolism , Humans , Inhibitory Concentration 50 , Ligands , Molecular Conformation , Molecular Structure , Oximes/chemistry , Structure-Activity Relationship , Strychnine/analogs & derivatives , Strychnine/chemical synthesis , Strychnine/chemistry , Strychnine/pharmacology
5.
Biopolymers ; 103(1): 1-14, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25059842

ABSTRACT

Antimicrobial peptides are promising alternative to traditional antibiotics and antitumor drugs for the battle against new antibiotic resistant bacteria strains and cancer maladies. The study of their structural and dynamics properties at physiological conditions can help to understand their stability, delivery mechanisms, and activity in the human body. In this article, we have used molecular dynamics simulations to study the effects of solvent environment, temperature, ions concentration, and peptide concentration on the structural properties of the antimicrobial hybrid peptide Cecropin A-Magainin 2. In TFE/water mixtures, the structure of the peptide retained α-helix contents and an average hinge angle in close agreement with the experimental NMR and CD measurements reported in literature. Compared to the TFE/water mixture, the peptide simulated at the same ionic concentration lost most of its α-helix structure. The increase of peptide concentration at both 300 and 310 K resulted in the peptide aggregation. The peptides in the complex retained the initial N-ter α-helix segment during all the simulation. The α-helix stabilization is further enhanced in the high salt concentration simulations. The peptide aggregation was not observed in TFE/water mixture simulations and, the peptide aggregate, obtained from the water simulation, simulated in the same conditions did dissolve within few tens of nanoseconds. The results of this study provide insights at molecular level on the structural and dynamics properties of the CA-MA peptide at physiological and membrane mimic conditions that can help to better understand its delivery and interaction with biological interfaces.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Ions/chemistry , Peptides/chemistry , Solutions/chemistry , Solvents/chemistry , Molecular Dynamics Simulation , Temperature , Trifluoroethanol/chemistry
6.
J Biomol Struct Dyn ; 41(18): 8992-9012, 2023.
Article in English | MEDLINE | ID: mdl-36331069

ABSTRACT

Microtubules are the main building blocks of the cytoskeleton that maintain the shape of the cell. Microtubule-associated proteins, such as Tau protein, facilitate their plasticity in cells. Highly phosphorylated Tau has weak affinity to microtubule and, hence, high probability of aggregation into neurofibrillary tangles (tauopathy). Alzheimer's disease evolves when Tau proteins are abnormally phosphorylated. To prevent tauopathy in Alzheimer's disease, we designed drugs de novo targeting them in silico to the phosphorylated Tau-microtubule complexes. Our molecular docking (AutoDock, MOE, GOLD) and molecular dynamics (GROMACS, 2019.6) simulation results revealed compound 23 (C12H28N4O5) as a potential drug candidate, since it can bind (-11.1 kcal/mol by AutoDock) and fix not only phosphorylated Tau on the surface of microtubules, but also prevent their aggregation into bundles. In addition, compound 23 has shown its ability to de-bundle already grouped phosphorylated peptides into single pieces.Communicated by Ramaswamy H. Sarma.

7.
Biomedicines ; 11(2)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36830959

ABSTRACT

Glycoprotein VI (GPVI) is a platelet-specific receptor for collagen and fibrin, regulating important platelet functions such as platelet adhesion and thrombus growth. Although the blockade of GPVI function is widely recognized as a potent anti-thrombotic approach, there are limited studies focused on site-specific targeting of GPVI. Using computational modeling and bioinformatics, we analyzed collagen- and CRP-binding surfaces of GPVI monomers and dimers, and compared the interacting surfaces with other mammalian GPVI isoforms. We could predict a minimal collagen-binding epitope of GPVI dimer and designed an EA-20 antibody that recognizes a linear epitope of this surface. Using platelets and whole blood samples donated from wild-type and humanized GPVI transgenic mice and also humans, our experimental results show that the EA-20 antibody inhibits platelet adhesion and aggregation in response to collagen and CRP, but not to fibrin. The EA-20 antibody also prevents thrombus formation in whole blood, on the collagen-coated surface, in arterial flow conditions. We also show that EA-20 does not influence GPVI clustering or receptor shedding. Therefore, we propose that blockade of this minimal collagen-binding epitope of GPVI with the EA-20 antibody could represent a new anti-thrombotic approach by inhibiting specific interactions between GPVI and the collagen matrix.

8.
Sci Rep ; 13(1): 1855, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36725967

ABSTRACT

The signal modelling framework JimenaE simulates dynamically Boolean networks. In contrast to SQUAD, there is systematic and not just heuristic calculation of all system states. These specific features are not present in CellNetAnalyzer and BoolNet. JimenaE is an expert extension of Jimena, with new optimized code, network conversion into different formats, rapid convergence both for system state calculation as well as for all three network centralities. It allows higher accuracy in determining network states and allows to dissect networks and identification of network control type and amount for each protein with high accuracy. Biological examples demonstrate this: (i) High plasticity of mesenchymal stromal cells for differentiation into chondrocytes, osteoblasts and adipocytes and differentiation-specific network control focusses on wnt-, TGF-beta and PPAR-gamma signaling. JimenaE allows to study individual proteins, removal or adding interactions (or autocrine loops) and accurately quantifies effects as well as number of system states. (ii) Dynamical modelling of cell-cell interactions of plant Arapidopsis thaliana against Pseudomonas syringae DC3000: We analyze for the first time the pathogen perspective and its interaction with the host. We next provide a detailed analysis on how plant hormonal regulation stimulates specific proteins and who and which protein has which type and amount of network control including a detailed heatmap of the A.thaliana response distinguishing between two states of the immune response. (iii) In an immune response network of dendritic cells confronted with Aspergillus fumigatus, JimenaE calculates now accurately the specific values for centralities and protein-specific network control including chemokine and pattern recognition receptors.


Subject(s)
Proteins , Software , Signal Transduction , Cell Communication , Cell Differentiation
9.
Front Bioeng Biotechnol ; 10: 869111, 2022.
Article in English | MEDLINE | ID: mdl-36105598

ABSTRACT

The rapid development of green and sustainable materials opens up new possibilities in the field of applied research. Such materials include nanocellulose composites that can integrate many components into composites and provide a good chassis for smart devices. In our study, we evaluate four approaches for turning a nanocellulose composite into an information storage or processing device: 1) nanocellulose can be a suitable carrier material and protect information stored in DNA. 2) Nucleotide-processing enzymes (polymerase and exonuclease) can be controlled by light after fusing them with light-gating domains; nucleotide substrate specificity can be changed by mutation or pH change (read-in and read-out of the information). 3) Semiconductors and electronic capabilities can be achieved: we show that nanocellulose is rendered electronic by iodine treatment replacing silicon including microstructures. Nanocellulose semiconductor properties are measured, and the resulting potential including single-electron transistors (SET) and their properties are modeled. Electric current can also be transported by DNA through G-quadruplex DNA molecules; these as well as classical silicon semiconductors can easily be integrated into the nanocellulose composite. 4) To elaborate upon miniaturization and integration for a smart nanocellulose chip device, we demonstrate pH-sensitive dyes in nanocellulose, nanopore creation, and kinase micropatterning on bacterial membranes as well as digital PCR micro-wells. Future application potential includes nano-3D printing and fast molecular processors (e.g., SETs) integrated with DNA storage and conventional electronics. This would also lead to environment-friendly nanocellulose chips for information processing as well as smart nanocellulose composites for biomedical applications and nano-factories.

10.
Front Chem ; 7: 920, 2019.
Article in English | MEDLINE | ID: mdl-32117858

ABSTRACT

The high level of Axl tyrosine kinase expression in various cancer cell lines makes it an attractive target for the development of anti-cancer drugs. In this study, we carried out several sets of in silico screening for the ATP-competitive Axl kinase inhibitors based on different molecular docking protocols. The best drug-like candidates were identified, after parental structure modifications, by their highest affinity to the target protein. We found that our newly designed compound R5, a derivative of the R428 patented analog, is the most promising inhibitor of the Axl kinase according to the three molecular docking algorithms applied in the study. The molecular docking results are in agreement with the molecular dynamics simulations using the MM-PBSA/GBSA implicit solvation models, which confirm the high affinity of R5 toward the protein receptor. Additionally, the selectivity test against other kinases also reveals a high affinity of R5 toward ABL1 and Tyro3 kinases, emphasizing its promising potential for the treatment of malignant tumors.

11.
ACS Omega ; 3(5): 5281-5290, 2018 May 31.
Article in English | MEDLINE | ID: mdl-30023915

ABSTRACT

After a large outbreak in Brazil, novel drugs against Zika virus became extremely necessary. Evaluation of virus-based pharmacological strategies concerning essential host factors brought us to the idea that targeting the Axl receptor by blocking its dimerization function could be critical for virus entry. Starting from experimentally validated compounds, such as RU-301, RU-302, warfarin, and R428, we identified a novel compound 2' (R428 derivative) to be the most potent for this task amongst a number of alternative compounds and leads. The improved affinity of compound 2' was confirmed by molecular docking as well as molecular dynamics simulation techniques using implicit solvation models. The current study summarizes a new possibility for inhibition of the Axl function as a potential target for future antiviral therapies.

12.
J Fungi (Basel) ; 4(3)2018 Jul 04.
Article in English | MEDLINE | ID: mdl-29973534

ABSTRACT

Aspergillus fumigatus is a saprophytic, cosmopolitan fungus that attacks patients with a weak immune system. A rational solution against fungal infection aims to manipulate fungal metabolism or to block enzymes essential for Aspergillus survival. Here we discuss and compare different bioinformatics approaches to analyze possible targeting strategies on fungal-unique pathways. For instance, phylogenetic analysis reveals fungal targets, while domain analysis allows us to spot minor differences in protein composition between the host and fungi. Moreover, protein networks between host and fungi can be systematically compared by looking at orthologs and exploiting information from host⁻pathogen interaction databases. Further data—such as knowledge of a three-dimensional structure, gene expression data, or information from calculated metabolic fluxes—refine the search and rapidly put a focus on the best targets for antimycotics. We analyzed several of the best targets for application to structure-based drug design. Finally, we discuss general advantages and limitations in identification of unique fungal pathways and protein targets when applying bioinformatics tools.

13.
Proteomes ; 4(1)2016 Feb 19.
Article in English | MEDLINE | ID: mdl-28248218

ABSTRACT

Staphylococcus aureus is an important model organism and pathogen. This S. aureus proteome overview details shared and specific proteins and selected virulence-relevant protein complexes from representative strains of all three major clades. To determine the strain distribution and major clades we used a refined strain comparison combining ribosomal RNA, MLST markers, and looking at highly-conserved regions shared between strains. This analysis shows three sub-clades (A-C) for S. aureus. As calculations are complex and strain annotation is quite time consuming we compare here key representatives of each clade with each other: model strains COL, USA300, Newman, and HG001 (clade A), model strain N315 and Mu50 (clade B) and ED133 and MRSA252 (clade C). We look at these individual proteomes and compare them to a background of 64 S. aureus strains. There are overall 13,284 S. aureus proteins not part of the core proteome which are involved in different strain-specific or more general complexes requiring detailed annotation and new experimental data to be accurately delineated. By comparison of the eight representative strains, we identify strain-specific proteins (e.g., 18 in COL, 105 in N315 and 44 in Newman) that characterize each strain and analyze pathogenicity islands if they contain such strain-specific proteins. We identify strain-specific protein repertoires involved in virulence, in cell wall metabolism, and phosphorylation. Finally we compare and analyze protein complexes conserved and well-characterized among S. aureus (a total of 103 complexes), as well as predict and analyze several individual protein complexes, including structure modeling in the three clades.

14.
Trends Plant Sci ; 20(12): 781-783, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26777904

ABSTRACT

Many plant microbial pathogens utilize cytokinins to establish inter-actions with their host. However, the production of cytokinins by an animal pathogen has just been reported for the first time. Here we discuss the impact of microbial secreted cytokinins on the infection dynamics in plant and animal cells.


Subject(s)
Cytokinins/metabolism , Host-Pathogen Interactions/physiology , Mycobacterium tuberculosis/metabolism , Plant Diseases/microbiology , Aminohydrolases/metabolism , Animals , Arabidopsis Proteins/metabolism , Immunity, Innate/physiology , Mycobacterium tuberculosis/pathogenicity , Rhodococcus/metabolism , Rhodococcus/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL