Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 587(7834): 460-465, 2020 11.
Article in English | MEDLINE | ID: mdl-33149301

ABSTRACT

Atrial fibrillation, the most common cardiac arrhythmia, is an important contributor to mortality and morbidity, and particularly to the risk of stroke in humans1. Atrial-tissue fibrosis is a central pathophysiological feature of atrial fibrillation that also hampers its treatment; the underlying molecular mechanisms are poorly understood and warrant investigation given the inadequacy of present therapies2. Here we show that calcitonin, a hormone product of the thyroid gland involved in bone metabolism3, is also produced by atrial cardiomyocytes in substantial quantities and acts as a paracrine signal that affects neighbouring collagen-producing fibroblasts to control their proliferation and secretion of extracellular matrix proteins. Global disruption of calcitonin receptor signalling in mice causes atrial fibrosis and increases susceptibility to atrial fibrillation. In mice in which liver kinase B1 is knocked down specifically in the atria, atrial-specific knockdown of calcitonin promotes atrial fibrosis and increases and prolongs spontaneous episodes of atrial fibrillation, whereas atrial-specific overexpression of calcitonin prevents both atrial fibrosis and fibrillation. Human patients with persistent atrial fibrillation show sixfold lower levels of myocardial calcitonin compared to control individuals with normal heart rhythm, with loss of calcitonin receptors in the fibroblast membrane. Although transcriptome analysis of human atrial fibroblasts reveals little change after exposure to calcitonin, proteomic analysis shows extensive alterations in extracellular matrix proteins and pathways related to fibrogenesis, infection and immune responses, and transcriptional regulation. Strategies to restore disrupted myocardial calcitonin signalling thus may offer therapeutic avenues for patients with atrial fibrillation.


Subject(s)
Arrhythmias, Cardiac/metabolism , Calcitonin/metabolism , Fibrinogen/biosynthesis , Heart Atria/metabolism , Myocardium/metabolism , Paracrine Communication , Animals , Arrhythmias, Cardiac/pathology , Arrhythmias, Cardiac/physiopathology , Atrial Fibrillation , Collagen Type I/metabolism , Female , Fibroblasts/metabolism , Fibrosis/metabolism , Fibrosis/pathology , Heart Atria/cytology , Heart Atria/pathology , Heart Atria/physiopathology , Humans , Male , Mice , Myocardium/cytology , Myocardium/pathology , Myocytes, Cardiac/metabolism , Receptors, Calcitonin/metabolism
2.
J Mol Cell Cardiol ; 194: 85-95, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38960317

ABSTRACT

Coronary heart disease (CHD) is a prevalent cardiac disease that causes over 370,000 deaths annually in the USA. In CHD, occlusion of a coronary artery causes ischemia of the cardiac muscle, which results in myocardial infarction (MI). Junctophilin-2 (JPH2) is a membrane protein that ensures efficient calcium handling and proper excitation-contraction coupling. Studies have identified loss of JPH2 due to calpain-mediated proteolysis as a key pathogenic event in ischemia-induced heart failure (HF). Our findings show that calpain-2-mediated JPH2 cleavage yields increased levels of a C-terminal cleaved peptide (JPH2-CTP) in patients with ischemic cardiomyopathy and mice with experimental MI. We created a novel knock-in mouse model by removing residues 479-SPAGTPPQ-486 to prevent calpain-2-mediated cleavage at this site. Functional and molecular assessment of cardiac function post-MI in cleavage site deletion (CSD) mice showed preserved cardiac contractility and reduced dilation, reduced JPH2-CTP levels, attenuated adverse remodeling, improved T-tubular structure, and normalized SR Ca2+-handling. Adenovirus mediated calpain-2 knockdown in mice exhibited similar findings. Pulldown of CTP followed by proteomic analysis revealed valosin-containing protein (VCP) and BAG family molecular chaperone regulator 3 (BAG3) as novel binding partners of JPH2. Together, our findings suggest that blocking calpain-2-mediated JPH2 cleavage may be a promising new strategy for delaying the development of HF following MI.

3.
Surgeon ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39030101

ABSTRACT

OBJECTIVES: Cardiothoracic surgery has reported poor equality, diversity, and inclusion amongst its faculty [1-3]. We explored how gender, ethnicity, and disability influence medical students' interest in cardiothoracic surgery as a career choice, as well as overall exposure to cardiothoracic surgery in the undergraduate curriculum. METHODS: We distributed a 26-item Google Forms online survey to student members of a medical education group from all 37 UK medical schools via social media. Respondents were asked to rank different 'factors of interest' on a 1-5 Likert scale (1 â€‹= â€‹not important at all, 5 â€‹= â€‹very important) and were encouraged to add free-text comments. Quantitative data were analysed using SPSS. RESULTS: There were 258 respondents, 62% identifying as female and 38% male. Respondents' ethnicities were 45% White, 44% Asian or Asian British, and 11% from other ethnic groups. 11% of respondents confirmed 'long-standing illness or disability'. Men were almost twice as likely to consider a career in cardiothoracic surgery than women (33% vs 19%; p â€‹< â€‹0.001). Women were more likely than men to feel that their gender, lack of a similarly gendered mentor, and long working hours were important factors when considering cardiothoracic surgery as a career. Ethnicity of the respondent did not appear to affect how they perceived the challenges of a career in cardiothoracic surgery. Interestingly, 'long-standing illness or disability' did not significantly affect the decision making to consider this specialty as a career. Overall, 73% of respondents reported not having adequate exposure to cardiothoracic surgery at medical school and agreed they would benefit from more time. CONCLUSIONS: Female medical students felt their gender, lack of same-sex role models, and perceived long working hours were barriers in considering cardiothoracic surgery as a career. All students felt the need for more exposure to Cardiothoracic Surgery in the undergraduate curriculum.

4.
Monaldi Arch Chest Dis ; 94(1)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37074089

ABSTRACT

This study sought to compare the morbidity and mortality of redo aortic valve replacement (redo-AVR) versus valve-in-valve trans-catheter aortic valve implantation (valve-in-valve TAVI) for patients with a failing bioprosthetic valve. A multicenter UK retrospective study of redo-AVR or valve-in-valve TAVI for patients referred for redo aortic valve intervention due to a degenerated aortic bioprosthesis. Propensity score matching was performed for confounding factors. From July 2005 to April 2021, 911 patients underwent redo-AVR and 411 patients underwent valve-in-valve TAVI. There were 125 pairs for analysis after propensity score matching. The mean age was 75.2±8.5 years. In-hospital mortality was 7.2% (n=9) for redo-AVR versus 0 for valve-in-valve TAVI, p=0.002. Surgical patients suffered more post-operative complications, including intra-aortic balloon pump support (p=0.02), early re-operation (p<0.001), arrhythmias (p<0.001), respiratory and neurological complications (p=0.02 and p=0.03) and multi-organ failure (p=0.01). The valve-in-valve TAVI group had a shorter intensive care unit and hospital stay (p<0.001 for both). However, moderate aortic regurgitation at discharge and higher post-procedural gradients were more common after valve-in-valve TAVI (p<0.001 for both). Survival probabilities in patients who were successfully discharged from the hospital were similar after valve-in-valve TAVI and redo-AVR over the 6-year follow-up (log-rank p=0.26). In elderly patients with a degenerated aortic bioprosthesis, valve-in-valve TAVI provides better early outcomes as opposed to redo-AVR, although there was no difference in mid-term survival in patients successfully discharged from the hospital.


Subject(s)
Aortic Valve Stenosis , Bioprosthesis , Heart Valve Prosthesis Implantation , Heart Valve Prosthesis , Humans , Aged , Aged, 80 and over , Aortic Valve/surgery , Heart Valve Prosthesis Implantation/adverse effects , Retrospective Studies , Aortic Valve Stenosis/surgery , Catheters , United Kingdom/epidemiology , Treatment Outcome , Risk Factors , Bioprosthesis/adverse effects
5.
Circulation ; 143(5): 449-465, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33185461

ABSTRACT

BACKGROUND: Kinase oxidation is a critical signaling mechanism through which changes in the intracellular redox state alter cardiac function. In the myocardium, PKARIα (type-1 protein kinase A) can be reversibly oxidized, forming interprotein disulfide bonds in the holoenzyme complex. However, the effect of PKARIα disulfide formation on downstream signaling in the heart, particularly under states of oxidative stress such as ischemia and reperfusion (I/R), remains unexplored. METHODS: Atrial tissue obtained from patients before and after cardiopulmonary bypass and reperfusion and left ventricular (LV) tissue from mice subjected to I/R or sham surgery were used to assess PKARIα disulfide formation by immunoblot. To determine the effect of disulfide formation on PKARIα catalytic activity and subcellular localization, live-cell fluorescence imaging and stimulated emission depletion super-resolution microscopy were performed in prkar1 knock-out mouse embryonic fibroblasts, neonatal myocytes, or adult LV myocytes isolated from "redox dead" (Cys17Ser) PKARIα knock-in mice and their wild-type littermates. Comparison of intracellular calcium dynamics between genotypes was assessed in fura2-loaded LV myocytes, whereas I/R-injury was assessed ex vivo. RESULTS: In both humans and mice, myocardial PKARIα disulfide formation was found to be significantly increased (2-fold in humans, P=0.023; 2.4-fold in mice, P<0.001) in response to I/R in vivo. In mouse LV cardiomyocytes, disulfide-containing PKARIα was not found to impact catalytic activity, but instead led to enhanced AKAP (A-kinase anchoring protein) binding with preferential localization of the holoenzyme to the lysosome. Redox-dependent regulation of lysosomal two-pore channels by PKARIα was sufficient to prevent global calcium release from the sarcoplasmic reticulum in LV myocytes, without affecting intrinsic ryanodine receptor leak or phosphorylation. Absence of I/R-induced PKARIα disulfide formation in "redox dead" knock-in mouse hearts resulted in larger infarcts (2-fold, P<0.001) and a concomitant reduction in LV contractile recovery (1.6-fold, P<0.001), which was prevented by administering the lysosomal two-pore channel inhibitor Ned-19 at the time of reperfusion. CONCLUSIONS: Disulfide modification targets PKARIα to the lysosome, where it acts as a gatekeeper for two-pore channel-mediated triggering of global calcium release. In the postischemic heart, this regulatory mechanism is critical for protection from extensive injury and offers a novel target for the design of cardioprotective therapeutics.


Subject(s)
Calcium/metabolism , Cyclic AMP-Dependent Protein Kinase RIalpha Subunit/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Myocardial Reperfusion Injury/therapy , Animals , Humans , Mice , Oxidation-Reduction
6.
Eur Heart J ; 42(48): 4947-4960, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34293101

ABSTRACT

AIMS: Recent clinical trials indicate that sodium-glucose cotransporter 2 (SGLT2) inhibitors improve cardiovascular outcomes in heart failure patients, but the underlying mechanisms remain unknown. We explored the direct effects of canagliflozin, an SGLT2 inhibitor with mild SGLT1 inhibitory effects, on myocardial redox signalling in humans. METHODS AND RESULTS: Study 1 included 364 patients undergoing cardiac surgery. Right atrial appendage biopsies were harvested to quantify superoxide (O2.-) sources and the expression of inflammation, fibrosis, and myocardial stretch genes. In Study 2, atrial tissue from 51 patients was used ex vivo to study the direct effects of canagliflozin on NADPH oxidase activity and nitric oxide synthase (NOS) uncoupling. Differentiated H9C2 and primary human cardiomyocytes (hCM) were used to further characterize the underlying mechanisms (Study 3). SGLT1 was abundantly expressed in human atrial tissue and hCM, contrary to SGLT2. Myocardial SGLT1 expression was positively associated with O2.- production and pro-fibrotic, pro-inflammatory, and wall stretch gene expression. Canagliflozin reduced NADPH oxidase activity via AMP kinase (AMPK)/Rac1signalling and improved NOS coupling via increased tetrahydrobiopterin bioavailability ex vivo and in vitro. These were attenuated by knocking down SGLT1 in hCM. Canagliflozin had striking ex vivo transcriptomic effects on myocardial redox signalling, suppressing apoptotic and inflammatory pathways in hCM. CONCLUSIONS: We demonstrate for the first time that canagliflozin suppresses myocardial NADPH oxidase activity and improves NOS coupling via SGLT1/AMPK/Rac1 signalling, leading to global anti-inflammatory and anti-apoptotic effects in the human myocardium. These findings reveal a novel mechanism contributing to the beneficial cardiac effects of canagliflozin.


Subject(s)
Canagliflozin , Sodium-Glucose Transporter 2 Inhibitors , Canagliflozin/metabolism , Canagliflozin/pharmacology , Humans , Myocardium , Myocytes, Cardiac/metabolism , Oxidation-Reduction , Sodium-Glucose Transporter 2 Inhibitors/pharmacology
7.
JAMA ; 327(19): 1875-1887, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35579641

ABSTRACT

Importance: Transcatheter aortic valve implantation (TAVI) is a less invasive alternative to surgical aortic valve replacement and is the treatment of choice for patients at high operative risk. The role of TAVI in patients at lower risk is unclear. Objective: To determine whether TAVI is noninferior to surgery in patients at moderately increased operative risk. Design, Setting, and Participants: In this randomized clinical trial conducted at 34 UK centers, 913 patients aged 70 years or older with severe, symptomatic aortic stenosis and moderately increased operative risk due to age or comorbidity were enrolled between April 2014 and April 2018 and followed up through April 2019. Interventions: TAVI using any valve with a CE mark (indicating conformity of the valve with all legal and safety requirements for sale throughout the European Economic Area) and any access route (n = 458) or surgical aortic valve replacement (surgery; n = 455). Main Outcomes and Measures: The primary outcome was all-cause mortality at 1 year. The primary hypothesis was that TAVI was noninferior to surgery, with a noninferiority margin of 5% for the upper limit of the 1-sided 97.5% CI for the absolute between-group difference in mortality. There were 36 secondary outcomes (30 reported herein), including duration of hospital stay, major bleeding events, vascular complications, conduction disturbance requiring pacemaker implantation, and aortic regurgitation. Results: Among 913 patients randomized (median age, 81 years [IQR, 78 to 84 years]; 424 [46%] were female; median Society of Thoracic Surgeons mortality risk score, 2.6% [IQR, 2.0% to 3.4%]), 912 (99.9%) completed follow-up and were included in the noninferiority analysis. At 1 year, there were 21 deaths (4.6%) in the TAVI group and 30 deaths (6.6%) in the surgery group, with an adjusted absolute risk difference of -2.0% (1-sided 97.5% CI, -∞ to 1.2%; P < .001 for noninferiority). Of 30 prespecified secondary outcomes reported herein, 24 showed no significant difference at 1 year. TAVI was associated with significantly shorter postprocedural hospitalization (median of 3 days [IQR, 2 to 5 days] vs 8 days [IQR, 6 to 13 days] in the surgery group). At 1 year, there were significantly fewer major bleeding events after TAVI compared with surgery (7.2% vs 20.2%, respectively; adjusted hazard ratio [HR], 0.33 [95% CI, 0.24 to 0.45]) but significantly more vascular complications (10.3% vs 2.4%; adjusted HR, 4.42 [95% CI, 2.54 to 7.71]), conduction disturbances requiring pacemaker implantation (14.2% vs 7.3%; adjusted HR, 2.05 [95% CI, 1.43 to 2.94]), and mild (38.3% vs 11.7%) or moderate (2.3% vs 0.6%) aortic regurgitation (adjusted odds ratio for mild, moderate, or severe [no instance of severe reported] aortic regurgitation combined vs none, 4.89 [95% CI, 3.08 to 7.75]). Conclusions and Relevance: Among patients aged 70 years or older with severe, symptomatic aortic stenosis and moderately increased operative risk, TAVI was noninferior to surgery with respect to all-cause mortality at 1 year. Trial Registration: isrctn.com Identifier: ISRCTN57819173.


Subject(s)
Aortic Valve Stenosis , Transcatheter Aortic Valve Replacement , Aged , Aged, 80 and over , Aortic Valve/surgery , Aortic Valve Insufficiency/etiology , Aortic Valve Stenosis/mortality , Aortic Valve Stenosis/surgery , Female , Heart Valve Prosthesis , Heart Valve Prosthesis Implantation/adverse effects , Heart Valve Prosthesis Implantation/methods , Heart Valve Prosthesis Implantation/mortality , Humans , Male , Risk Factors , Transcatheter Aortic Valve Replacement/adverse effects , Transcatheter Aortic Valve Replacement/mortality , Treatment Outcome
8.
Circulation ; 141(24): 1971-1985, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32438845

ABSTRACT

BACKGROUND: Why some but not all patients with severe aortic stenosis (SevAS) develop otherwise unexplained reduced systolic function is unclear. We investigate the hypothesis that reduced creatine kinase (CK) capacity and flux is associated with this transition. METHODS: We recruited 102 participants to 5 groups: moderate aortic stenosis (ModAS) (n=13), SevAS, left ventricular (LV) ejection fraction ≥55% (SevAS-preserved ejection fraction, n=37), SevAS, LV ejection fraction <55% (SevAS-reduced ejection fraction, n=15), healthy volunteers with nonhypertrophied hearts with normal systolic function (normal healthy volunteer, n=30), and patients with nonhypertrophied, non-pressure-loaded hearts with normal systolic function undergoing cardiac surgery and donating LV biopsy (non-pressure-loaded heart biopsy, n=7). All underwent cardiac magnetic resonance imaging and 31P magnetic resonance spectroscopy for myocardial energetics. LV biopsies (AS and non-pressure-loaded heart biopsy) were analyzed for CK total activity, CK isoforms, citrate synthase activity, and total creatine. Mitochondria-sarcomere diffusion distances were calculated by using serial block-face scanning electron microscopy. RESULTS: In the absence of failure, CK flux was lower in the presence of AS (by 32%, P=0.04), driven primarily by reduction in phosphocreatine/ATP (by 17%, P<0.001), with CK kf unchanged (P=0.46). Although lowest in the SevAS-reduced ejection fraction group, CK flux was not different from the SevAS-preserved ejection fraction group (P>0.99). Accompanying the fall in CK flux, total CK and citrate synthase activities and the absolute activities of mitochondrial-type CK and CK-MM isoforms were also lower (P<0.02, all analyses). Median mitochondria-sarcomere diffusion distances correlated well with CK total activity (r=0.86, P=0.003). CONCLUSIONS: Total CK capacity is reduced in SevAS, with median values lowest in those with systolic failure, consistent with reduced energy supply reserve. Despite this, in vivo magnetic resonance spectroscopy measures of resting CK flux suggest that ATP delivery is reduced earlier, at the moderate AS stage, where LV function remains preserved. These findings show that significant energetic impairment is already established in moderate AS and suggest that a fall in CK flux is not by itself a necessary cause of transition to systolic failure. However, because ATP demands increase with AS severity, this could increase susceptibility to systolic failure. As such, targeting CK capacity and flux may be a therapeutic strategy to prevent and treat systolic failure in AS.


Subject(s)
Aortic Valve Stenosis/blood , Creatine Kinase/blood , Energy Metabolism/physiology , Stroke Volume/physiology , Ventricular Dysfunction, Left/blood , Ventricular Function, Left/physiology , Adenosine Triphosphate/blood , Adult , Aged , Aged, 80 and over , Aortic Valve Stenosis/diagnosis , Aortic Valve Stenosis/physiopathology , Biomarkers/blood , Female , Humans , Magnetic Resonance Spectroscopy/methods , Male , Middle Aged , Prospective Studies , Ventricular Dysfunction, Left/diagnosis , Ventricular Dysfunction, Left/physiopathology
9.
Catheter Cardiovasc Interv ; 96(2): 432-439, 2020 08.
Article in English | MEDLINE | ID: mdl-31742885

ABSTRACT

OBJECTIVES: To identify clinical and procedural practice predictors of avoidable complications during transcatheter aortic valve replacement (TAVR). BACKGROUND: TAVR is evolving as a viable strategy for treatment of aortic stenosis (AS). Vascular complications, major bleeding, or pericardial tamponade may be influenced by procedural practice. METHODS: The Oxford TAVR (OxTAVI) prospective registry was retrospectively analyzed to identify predictors of avoidable procedural complications in a contemporary cohort of transfemoral TAVR between January 2015 and September 2018. The primary endpoint was defined as a hierarchic composite of in-hospital mortality, pericardial effusion/cardiac tamponade, major bleeding, and vascular access complications. Individual components of the primary endpoint have been analyzed separately. RESULTS: Five-hundred-twenty-nine patients underwent transfemoral TAVR using contemporary techniques during the study period and were enrolled in the OxTAVI registry. Female sex and high frailty were associated with a higher risk of death, major bleeding, vascular complication or pericardial tamponade. The use of ultrasound (US) guidance for vascular access management was independently associated with a reduced composite primary endpoint (OR = 0.35, CI:0.14-0.86, p = .02) after adjustment for clinical confounders, largely driven by a threefold reduction in vascular access complication (OR = 0.29, CI:0.15-0.55, p < .001). Performing rapid pacing via the left ventricle guidewire (LV-GW) was associated with a significant decrease in the risk of cardiac tamponade/pericardial effusion (OR = 0.19, CI:0.05-0.66, p = .009). CONCLUSION: US-guided vascular access management and rapid pacing via the LV-GW are important determinants of reduced procedural complications during TAVR.


Subject(s)
Aortic Valve Stenosis/surgery , Cardiac Pacing, Artificial , Postoperative Complications/prevention & control , Transcatheter Aortic Valve Replacement , Ultrasonography, Interventional , Ventricular Function, Left , Aged , Aged, 80 and over , Aortic Valve Stenosis/diagnostic imaging , Aortic Valve Stenosis/mortality , Aortic Valve Stenosis/physiopathology , Cardiac Pacing, Artificial/adverse effects , Cardiac Pacing, Artificial/mortality , Female , Frail Elderly , Frailty/mortality , Hospital Mortality , Humans , Male , Postoperative Complications/mortality , Registries , Retrospective Studies , Risk Assessment , Risk Factors , Severity of Illness Index , Sex Factors , Time Factors , Transcatheter Aortic Valve Replacement/adverse effects , Transcatheter Aortic Valve Replacement/mortality , Treatment Outcome , Ultrasonography, Interventional/adverse effects , Ultrasonography, Interventional/mortality
10.
NMR Biomed ; 32(6): e4085, 2019 06.
Article in English | MEDLINE | ID: mdl-30920054

ABSTRACT

Changes in the kinetics of the creatine kinase (CK) shuttle are sensitive markers of cardiac energetics but are typically measured at rest and in the prone position. This study aims to measure CK kinetics during pharmacological stress at 3 T, with measurement in the supine position. A shorter "stressed saturation transfer" (StreST) extension to the triple repetition time saturation transfer (TRiST) method is proposed. We assess scanning in a supine position and validate the MR measurement against biopsy assay of CK activity. We report normal ranges of stress CK forward rate (kfCK ) for healthy volunteers and obese patients. TRiST measures kfCK in 40 min at 3 T. StreST extends the previously developed TRiST to also make a further kfCK measurement during <20 min of dobutamine stress. We test our TRiST implementation in skeletal muscle and myocardium in both prone and supine positions. We evaluate StreST in the myocardium of six healthy volunteers and 34 obese subjects. We validated MR-measured kfCK against biopsy assays of CK activity. TRiST kfCK values matched literature values in skeletal muscle (kfCK  = 0.25 ± 0.03 s-1 vs 0.27 ± 0.03 s-1 ) and myocardium when measured in the prone position (0.32 ± 0.15 s-1 ), but a significant difference was found for TRiST kfCK measured supine (0.24 ± 0.12 s-1 ). This difference was because of different respiratory- and cardiac-motion-induced B0 changes in the two positions. Using supine TRiST, cardiac kfCK values for normal-weight subjects were 0.15 ± 0.09 s-1 at rest and 0.17 ± 0.15 s-1 during stress. For obese subjects, kfCK was 0.16 ± 0.07 s-1 at rest and 0.17 ± 0.10 s-1 during stress. Rest myocardial kfCK and CK activity from LV biopsies of the same subjects correlated (R = 0.43, p = 0.03). We present an independent implementation of TRiST on the Siemens platform using a commercially available coil. Our extended StreST protocol enables cardiac kfCK to be measured during dobutamine-induced stress in the supine position.


Subject(s)
Creatine Kinase/metabolism , Heart/physiopathology , Magnetic Resonance Spectroscopy , Rest , Stress, Physiological , Adult , Biopsy , Case-Control Studies , Female , Humans , Kinetics , Male , Middle Aged , Myocardium/metabolism , Obesity/enzymology , Obesity/physiopathology , Posture , Reproducibility of Results , Respiration
11.
Circ Res ; 118(5): 842-55, 2016 Mar 04.
Article in English | MEDLINE | ID: mdl-26838789

ABSTRACT

RATIONALE: Adiponectin has anti-inflammatory effects in experimental models, but its role in the regulation of myocardial redox state in humans is unknown. Although adiponectin is released from epicardial adipose tissue (EpAT), it is unclear whether it exerts any paracrine effects on the human myocardium. OBJECTIVE: To explore the cross talk between EpAT-derived adiponectin and myocardial redox state in the human heart. METHODS AND RESULTS: EpAT and atrial myocardium were obtained from 306 patients undergoing coronary artery bypass grafting. Functional genetic polymorphisms that increase ADIPOQ expression (encoding adiponectin) led to reduced myocardial nicotinamide adenine dinucleotide phosphate oxidase-derived O2 (-), whereas circulating adiponectin and ADIPOQ expression in EpAT were associated with elevated myocardial O2 (-). In human atrial tissue, we demonstrated that adiponectin suppresses myocardial nicotinamide adenine dinucleotide phosphate oxidase activity, by preventing AMP kinase-mediated translocation of Rac1 and p47(phox) from the cytosol to the membranes. Induction of O2 (-) production in H9C2 cardiac myocytes led to the release of a transferable factor able to induce peroxisome proliferator-activated receptor-γ-mediated upregulation of ADIPOQ expression in cocultured EpAT. Using a NOX2 transgenic mouse and a pig model of rapid atrial pacing, we found that oxidation products (such as 4-hydroxynonenal) released from the heart trigger peroxisome proliferator-activated receptor-γ-mediated upregulation of ADIPOQ in EpAT. CONCLUSIONS: We demonstrate for the first time in humans that adiponectin directly decreases myocardial nicotinamide adenine dinucleotide phosphate oxidase activity via endocrine or paracrine effects. Adiponectin expression in EpAT is controlled by paracrine effects of oxidation products released from the heart. These effects constitute a novel defense mechanism of the heart against myocardial oxidative stress.


Subject(s)
Adiponectin/biosynthesis , Adipose Tissue/metabolism , Myocardium/metabolism , PPAR gamma/biosynthesis , Pericardium/metabolism , Adipose Tissue/cytology , Animals , Cell Line , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myocardium/cytology , Organ Culture Techniques , Oxidation-Reduction , Pericardium/cytology , Rats , Swine
12.
Eur Heart J ; 38(41): 3094-3104, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28444175

ABSTRACT

AIMS: Experimental evidence suggests that telomere length (TL) is shortened by oxidative DNA damage, reflecting biological aging. We explore the value of blood (BTL) and vascular TL (VTL) as biomarkers of systemic/vascular oxidative stress in humans and test the clinical predictive value of BTL in acute myocardial infarction (AMI). METHODS AND RESULTS: In a prospective cohort of 290 patients surviving recent AMI, BTL measured on admission was a strong predictor of all-cause [hazard ratio (HR) [95% confidence interval (CI)]: 3.21 [1.46-7.06], P = 0.004] and cardiovascular mortality (HR [95% CI]: 3.96 [1.65-9.53], P = 0.002) 1 year after AMI (for comparisons of short vs. long BTL, as defined by a T/S ratio cut-off of 0.916, calculated using receiver operating characteristic analysis; P adjusted for age and other predictors). To explore the biological meaning of these findings, BTL was quantified in 727 consecutive patients undergoing coronary artery bypass grafting (CABG), and superoxide (O2.-) was measured in peripheral blood mononuclear cells (PBMNC). VTL/vascular O2.- were quantified in saphenous vein (SV) and mammary artery (IMA) segments. Patients were genotyped for functional genetic polymorphisms in P22ph°x (activating NADPH-oxidases) and vascular smooth muscle cells (VSMC) selected by genotype were cultured from vascular tissue. Short BTL was associated with high O2.- in PBMNC (P = 0.04) but not in vessels, whereas VTL was related to O2.- in IMA (ρ = -0.49, P = 0.004) and SV (ρ = -0.52, P = 0.01). Angiotensin II (AngII) incubation of VSMC (30 days), as a means of stimulating NADPH-oxidases, increased O2.- and reduced TL in carriers of the high-responsiveness P22ph°x alleles (P = 0.007). CONCLUSION: BTL predicts cardiovascular outcomes post-AMI, independently of age, whereas VTL is a tissue-specific (rather than a global) biomarker of vascular oxidative stress. The lack of a strong association between BTL and VTL reveals the importance of systemic vs. vascular factors in determining clinical outcomes after AMI.


Subject(s)
Myocardial Infarction/mortality , Oxidative Stress/physiology , Telomere/physiology , Aged , Biomarkers/metabolism , Cardiovascular Diseases/mortality , Female , Humans , Leukocytes, Mononuclear/metabolism , Male , Mammary Arteries/metabolism , Middle Aged , Muscle, Smooth, Vascular/metabolism , Myocardial Infarction/genetics , NADPH Oxidases/metabolism , Oxidative Stress/genetics , Polymorphism, Genetic/genetics , Prognosis , Prospective Studies , Saphenous Vein/metabolism , Superoxides/metabolism
13.
Lancet ; 385 Suppl 1: S49, 2015 Feb 26.
Article in English | MEDLINE | ID: mdl-26312871

ABSTRACT

BACKGROUND: The mechanism responsible for left ventricular dysfunction after cardiac surgery is only partly understood. In isolated rat hearts subjected to an ischaemia-reperfusion protocol, left ventricular dysfunction was associated with uncoupling of endothelial nitric oxide synthase (NOS) activity secondary to oxidation of the NOS cofactor, tetrahydrobiopterin (BH4). Here we investigated the effect of cardiopulmonary bypass and reperfusion on myocardial nitroso-redox balance in patients undergoing cardiac surgery. METHODS: From 116 patients who underwent elective cardiac surgery on cardiopulmonary bypass, paired samples of the right atrial appendages were obtained before venous cannulation of the right atrium and after myocardial reperfusion. Superoxide production from atrial samples was measured by lucigenin (5 µmol/L) enhanced chemiluminescence and 2-hydroxyethidium (2-OHE) detection by high-performance liquid chromatography (HPLC). BH4, oxidised biopterins, GTP-cyclohydrolase 1 (GTPCH-1, the rate-limiting enzyme in BH4 synthesis), and NOS activity ((14)C L-arginine to L-citrulline conversion) were measured by HPLC. FINDINGS: Atrial superoxide production increased significantly after reperfusion (from mean 37·83 relative light units per s per mg [SE 3·71] before cannulation to 65·02 [6·01] after reperfusion, p<0·0001; n=46 samples from 23 patients) due to increased mitochondrial and NOX2 oxidase activity (by 309% and 149%; p=0·002 and p=0·0002, respectively) and uncoupling of NOS activity. Atrial content of BH4 after perfusion was reduced (by 32%, p=0·001), as was activity of GTPCH1 (50%, p<0·0001). NOS activity decreased significantly after reperfusion (60%, p=0·0005) and this reduction was not affected by BH4 supplementation (10 µM) or NOX2 inhibition ex vivo. Instead, we identified increased endothelial NOS s-glutathionylation as the main mechanism for NOS uncoupling after reperfusion. Reversing NOS s-glutathionylation with dithiothreitol (100 µmol/L) completely restored NOS activity after reperfusion (p=0·34). INTERPRETATION: Our findings suggest that NOS s-glutathionylation, rather than BH4 depletion, accounts for NOS dysfunction in patients after cardiac surgery and cardiopulmonary bypass. FUNDING: British Heart Foundation.

14.
Lancet ; 385 Suppl 1: S82, 2015 Feb 26.
Article in English | MEDLINE | ID: mdl-26312904

ABSTRACT

BACKGROUND: The management of atrial fibrillation remains a challenge. This condition remodels atrial electrical properties, which promote resistance to treatment. Although remodelling has long been a therapeutic target in atrial fibrillation, its causes remain incompletely understood. We aimed to evaluate the role of miR-31-dependent reduction in dystrophin and neuronal nitric oxide synthase (nNOS, also known as NOS1) on atrial electrical properties and atrial fibrillation inducibility. METHODS: We recruited 258 patients (209 patients in sinus rhythm and 49 with permanent atrial fibrillation) from the John Radcliffe Hospital, Oxford, UK; written informed consent was obtained from each participant. We also used a goat model of pacing-induced atrial fibrillation (24 with atrial fibrillation vs 20 controls in normal sinus rythm) and nNos-knock-out mice (n=28 compared with 27 wild-type littermates). Gene expression of miR-31, dystrophin, and nNOS was assessed by quantitative RT-PCR; protein content was measured by immunoblotting; NOS activity was evaluated with high-performance liquid chromatography; action potential duration (APD) and rate dependent adaptation were assessed by single-cell patch-clamping, and atrial fibrillation inducibility was evaluated by transoesophageal atrial burst stimulation. FINDINGS: We found that atrial-specific upregulation of miR-31 in human atrial fibrillation caused dystrophin (DYS) translational repression and accelerated mRNA degradation of nNOS leading to a profound reduction in atrial DYS and nNOS protein content and in nitric oxide availability. In human atrial myocytes obtained from patients in sinus rhythm, nNOS inhibition was sufficient to recapitulate hallmark features of remodelling induced by atrial fibrillation, such as shortening of APD and loss of APD rate-dependency, but had no effect in patients with atrial fibrillation. In mice, nNos gene deletion or inhibition shortened atrial APD and increased atrial fibrillation inducibility in vivo. Inhibition of miR-31 in human atrial fibrillation recovered DYS and nNOS, and normalised APD and APD rate-dependency. Prevention of miR-31 binding to nNOS 3'UTR recovered both nNOS protein and gene expression but had no effect on the DYS protein or mRNA level (consistent with the mRNA degradation of nNOS by miR-31). Prevention of miR-31 binding to DYS 3'UTR increased DYS protein but not mRNA is consistent with translation repression of DYS by miR-31; recovery of DYS protein increased nNOS protein but not mRNA in keeping with a stabilising effect of DYS on nNOS protein. In goats, a reduction in dystrophin and nNOS protein content was associated with upregulation of miR-31 in the atria but not in the ventricles. INTERPRETATION: The findings suggest that atrial-specific upregulation of miR-31 in human atrial fibrillation is a key mechanism causing atrial loss of dystrophin and nNOS; this loss leads to the electrical phenotype induced by atrial fibrillation. FUNDING: British Heart Foundation (BHF) Programme grant (for BC and XL), BHF Centre of Excellence in Oxford (SR), Leducq Foundation (in part for BC and SR), the European Union's seventh Framework Programme Grant Agree.

15.
Arterioscler Thromb Vasc Biol ; 34(9): 2151-9, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25060790

ABSTRACT

OBJECTIVE: To explore the role of systemic inflammation in the regulation of adiponectin levels in patients with ischemic heart disease. APPROACH AND RESULTS: In a cross-sectional study of 575 subjects, serum adiponectin was compared between healthy subjects, patients with coronary artery disease with no/mild/severe heart failure (HF), and patients with nonischemic HF. Adiponectin expression and release from femoral, subcutaneous and thoracic adipose tissue was determined in 258 additional patients with coronary artery bypass grafting. Responsiveness of the various human adipose tissue depots to interleukin-6, tumor necrosis factor-α, and brain natriuretic peptide (BNP) was examined by using ex vivo models of human fat. The effects of inducible low-grade inflammation were tested by using the model of Salmonella typhi vaccine-induced inflammation in healthy individuals. In the cross-sectional study, HF strikingly increased adiponectin levels. Plasma BNP was the strongest predictor of circulating adiponectin and its release from all adipose tissue depots in patients with coronary artery bypass grafting, even in the absence of HF. Femoral AT was the depot with the least macrophages infiltration and the largest adipocyte cell size and the only responsive to systemic and ex vivo proinflammatory stimulation (effect reversible by BNP). Low-grade inflammation reduced circulating adiponectin levels, while circulating BNP remained unchanged. CONCLUSIONS: This study demonstrates the regional variability in the responsiveness of human adipose tissue to systemic inflammation and suggests that BNP (not systemic inflammation) is the main driver of circulating adiponectin in patients with advanced atherosclerosis even in the absence of HF. Any interpretation of circulating adiponectin as a biomarker should take into account the underlying disease state, background inflammation, and BNP levels.


Subject(s)
Adiponectin/biosynthesis , Adipose Tissue/metabolism , Heart Failure/metabolism , Inflammation/metabolism , Myocardial Ischemia/metabolism , Natriuretic Peptide, Brain/physiology , Adiponectin/genetics , Aged , Brachial Artery/diagnostic imaging , Brachial Artery/physiopathology , Coronary Artery Bypass , Coronary Artery Disease/complications , Coronary Artery Disease/metabolism , Cross-Sectional Studies , Female , Heart Failure/etiology , Humans , Interleukin-6/blood , Interleukin-6/pharmacology , Male , Middle Aged , Myocardial Ischemia/complications , Natriuretic Peptide, Brain/blood , Organ Culture Techniques , Organ Specificity , Risk Factors , Subcutaneous Fat , Thigh , Thorax , Tumor Necrosis Factor-alpha/pharmacology , Ultrasonography , Vasodilation , Ventricular Dysfunction, Left/etiology , Ventricular Dysfunction, Left/physiopathology
16.
Circulation ; 127(22): 2209-21, 2013 Jun 04.
Article in English | MEDLINE | ID: mdl-23625959

ABSTRACT

BACKGROUND: Adiponectin is an adipokine with potentially important roles in human cardiovascular disease states. We studied the role of adiponectin in the cross-talk between adipose tissue and vascular redox state in patients with atherosclerosis. METHODS AND RESULTS: The study included 677 patients undergoing coronary artery bypass graft surgery. Endothelial function was evaluated by flow-mediated dilation of the brachial artery in vivo and by vasomotor studies in saphenous vein segments ex vivo. Vascular superoxide (O2(-)) and endothelial nitric oxide synthase (eNOS) uncoupling were quantified in saphenous vein and internal mammary artery segments. Local adiponectin gene expression and ex vivo release were quantified in perivascular (saphenous vein and internal mammary artery) subcutaneous and mesothoracic adipose tissue from 248 patients. Circulating adiponectin was independently associated with nitric oxide bioavailability and O2(-) production/eNOS uncoupling in both arteries and veins. These findings were supported by a similar association between functional polymorphisms in the adiponectin gene and vascular redox state. In contrast, local adiponectin gene expression/release in perivascular adipose tissue was positively correlated with O2(-) and eNOS uncoupling in the underlying vessels. In ex vivo experiments with human saphenous veins and internal mammary arteries, adiponectin induced Akt-mediated eNOS phosphorylation and increased tetrahydrobiopterin bioavailability, improving eNOS coupling. In ex vivo experiments with human saphenous veins/internal mammary arteries and adipose tissue, we demonstrated that peroxidation products produced in the vascular wall (ie, 4-hydroxynonenal) upregulate adiponectin gene expression in perivascular adipose tissue via a peroxisome proliferator-activated receptor-γ-dependent mechanism. CONCLUSIONS: We demonstrate for the first time that adiponectin improves the redox state in human vessels by restoring eNOS coupling, and we identify a novel role of vascular oxidative stress in the regulation of adiponectin expression in human perivascular adipose tissue.


Subject(s)
Adiponectin/metabolism , Adipose Tissue/metabolism , Coronary Artery Disease/metabolism , Nitric Oxide Synthase Type III/metabolism , Adiponectin/genetics , Aged , Aldehydes/metabolism , Coronary Artery Bypass , Coronary Artery Disease/surgery , Female , Gene Expression/physiology , Humans , Male , Mammary Arteries/metabolism , Mammary Arteries/transplantation , Nitric Oxide/metabolism , Oxidation-Reduction , Oxidative Stress/physiology , PPAR gamma/metabolism , Saphenous Vein/metabolism , Saphenous Vein/transplantation , Superoxides/metabolism , Vasodilation/physiology
17.
J Cardiovasc Magn Reson ; 16: 29, 2014 Apr 29.
Article in English | MEDLINE | ID: mdl-24779370

ABSTRACT

BACKGROUND: Left ventricular (LV) hypertrophy in aortic stenosis (AS) is characterized by reduced myocardial perfusion reserve due to coronary microvascular dysfunction. However, whether this hypoperfusion leads to tissue deoxygenation is unknown. We aimed to assess myocardial oxygenation in severe AS without obstructive coronary artery disease, and to investigate its association with myocardial energetics and function. METHODS: Twenty-eight patients with isolated severe AS and 15 controls underwent cardiovascular magnetic resonance (CMR) for assessment of perfusion (myocardial perfusion reserve index-MPRI) and oxygenation (blood-oxygen level dependent-BOLD signal intensity-SI change) during adenosine stress. LV circumferential strain and phosphocreatine/adenosine triphosphate (PCr/ATP) ratios were assessed using tagging CMR and 31P MR spectroscopy, respectively. RESULTS: AS patients had reduced MPRI (1.1 ± 0.3 vs. controls 1.7 ± 0.3, p < 0.001) and BOLD SI change during stress (5.1 ± 8.9% vs. controls 18.2 ± 10.1%, p = 0.001), as well as reduced PCr/ATP (1.45 ± 0.21 vs. 2.00 ± 0.25, p < 0.001) and LV strain (-16.4 ± 2.7% vs. controls -21.3 ± 1.9%, p < 0.001). Both perfusion reserve and oxygenation showed positive correlations with energetics and LV strain. Furthermore, impaired energetics correlated with reduced strain. Eight months post aortic valve replacement (AVR) (n = 14), perfusion (MPRI 1.6 ± 0.5), oxygenation (BOLD SI change 15.6 ± 7.0%), energetics (PCr/ATP 1.86 ± 0.48) and circumferential strain (-19.4 ± 2.5%) improved significantly. CONCLUSIONS: Severe AS is characterized by impaired perfusion reserve and oxygenation which are related to the degree of derangement in energetics and associated LV dysfunction. These changes are reversible on relief of pressure overload and hypertrophy regression. Strategies aimed at improving oxygen demand-supply balance to preserve myocardial energetics and LV function are promising future therapies.


Subject(s)
Aortic Valve Stenosis/diagnosis , Coronary Circulation , Energy Metabolism , Hypertrophy, Left Ventricular/diagnosis , Magnetic Resonance Imaging, Cine , Myocardial Perfusion Imaging/methods , Myocardium/metabolism , Oxygen Consumption , Ventricular Dysfunction, Left/diagnosis , Ventricular Function, Left , Adenosine , Adenosine Triphosphate/metabolism , Aged , Aortic Valve Stenosis/complications , Aortic Valve Stenosis/metabolism , Aortic Valve Stenosis/physiopathology , Biomarkers/metabolism , Case-Control Studies , Female , Humans , Hypertrophy, Left Ventricular/etiology , Hypertrophy, Left Ventricular/metabolism , Hypertrophy, Left Ventricular/physiopathology , Magnetic Resonance Spectroscopy , Male , Middle Aged , Phosphocreatine/metabolism , Predictive Value of Tests , Severity of Illness Index , Vasodilator Agents , Ventricular Dysfunction, Left/etiology , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/physiopathology
18.
Intensive Care Med ; 50(4): 493-501, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38526578

ABSTRACT

An implantable left ventricular assist device (LVAD) is indicated as a bridge to transplantation or recovery in the United Kingdom (UK). The mechanism of action of the LVAD results in a unique state of haemodynamic stability with diminished arterial pulsatility. The clinical assessment of an LVAD recipient can be challenging because non-invasive blood pressure, pulse and oxygen saturation measurements may be hard to obtain. As a result of this unusual situation and complex interplay between the device and the native circulation, resuscitation of LVAD recipients requires bespoke guidelines. Through collaboration with key UK stakeholders, we assessed the current evidence base and developed guidelines for the recognition of clinical deterioration, inadequate circulation and time-critical interventions. Such guidelines, intended for use in transplant centres, are designed to be deployed by those providing immediate care of LVAD patients under conditions of precipitous clinical deterioration. In summary, the Joint British Societies and Transplant Centres LVAD Working Group present the UK guideline on management of emergencies in implantable LVAD recipients for use in advanced heart failure centres. These recommendations have been made with a UK resuscitation focus but are widely applicable to professionals regularly managing patients with implantable LVADs.


Subject(s)
Clinical Deterioration , Heart Failure , Heart Transplantation , Heart-Assist Devices , Humans , Emergencies , Heart Failure/therapy
19.
Circulation ; 125(11): 1356-66, 2012 Mar 20.
Article in English | MEDLINE | ID: mdl-22315282

ABSTRACT

BACKGROUND: The endothelial nitric oxide synthase cofactor tetrahydrobiopterin (BH4) plays a pivotal role in maintaining endothelial function in experimental vascular disease models and in humans. Augmentation of endogenous BH4 levels by oral BH4 treatment has been proposed as a potential therapeutic strategy in vascular disease states. We sought to determine the mechanisms relating exogenous BH4 to human vascular function and to determine oral BH4 pharmacokinetics in both plasma and vascular tissue in patients with coronary artery disease. METHODS AND RESULTS: Forty-nine patients with coronary artery disease were randomized to receive low-dose (400 mg/d) or high-dose (700 mg/d) BH4 or placebo for 2 to 6 weeks before coronary artery bypass surgery. Vascular function was quantified by magnetic resonance imaging before and after treatment, along with plasma BH4 levels. Vascular superoxide, endothelial function, and BH4 levels were determined in segments of saphenous vein and internal mammary artery. Oral BH4 treatment significantly augmented BH4 levels in plasma and in saphenous vein (but not internal mammary artery) but also increased levels of the oxidation product dihydrobiopterin (BH2), which lacks endothelial nitric oxide synthase cofactor activity. There was no effect of BH4 treatment on vascular function or superoxide production. Supplementation of human vessels and blood with BH4 ex vivo revealed rapid oxidation of BH4 to BH2 with predominant BH2 uptake by vascular tissue. CONCLUSIONS: Oral BH4 treatment augments total biopterin levels in patients with established coronary artery disease but has no net effect on vascular redox state or endothelial function owing to systemic and vascular oxidation of BH4. Alternative strategies are required to target BH4-dependent endothelial function in established vascular disease states.


Subject(s)
Biopterins/analogs & derivatives , Coronary Artery Disease/blood , Coronary Artery Disease/drug therapy , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Administration, Oral , Aged , Biopterins/administration & dosage , Biopterins/blood , Double-Blind Method , Female , Humans , Male , Oxidation-Reduction/drug effects , Treatment Outcome
20.
J Cardiothorac Surg ; 18(1): 96, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37005650

ABSTRACT

The coronavirus (COVID-19) pandemic disrupted all surgical specialties significantly and exerted additional pressures on the overburdened United Kingdom (UK) National Health Service. Healthcare professionals in the UK have had to adapt their practice. In particular, surgeons have faced organisational and technical challenges treating patients who carried higher risks, were more urgent and could not wait for prehabilitation or optimisation before their intervention. Furthermore, there were implications for blood transfusion with uncertain patterns of demand, reductions in donations and loss of crucial staff because of sickness and public health restrictions. Previous guidelines have attempted to address the control of bleeding and its consequences after cardiothoracic surgery, but there have been no targeted recommendations in light of the recent COVID-19 challenges. In this context, and with a focus on the perioperative period, an expert multidisciplinary Task Force reviewed the impact of bleeding in cardiothoracic surgery, explored different aspects of patient blood management with a focus on the use of haemostats as adjuncts to conventional surgical techniques and proposed best practice recommendations in the UK.


Subject(s)
COVID-19 , Specialties, Surgical , Humans , State Medicine , Blood Transfusion , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL