Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Langmuir ; 31(34): 9432-40, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26079283

ABSTRACT

The realization of long, aligned molecular wires is a great challenge, and a variety of approaches have been proposed. Interestingly, hexapentyloxytriphenylene (HAT5) discotic liquid crystal molecules, a model system of molecules with flat and aromatic cores, can spontaneously form well-aligned, micrometer long, yet only tens of nanometers thick, nanowires on solid surfaces. We have investigated the formation mechanism of these wires using different solvents with selected characteristics, including chemical structure, boiling point, vapor pressure, and surface tension. When casting from toluene and benzene solutions, atomic force microscopy reveals that the discotics spontaneously form very long and thin wires, self-aligning along a common orientation. If instead dodecane or heptane are used, different and in general thicker structures are obtained. The chemical structure of the solvent appears to have a key role, coupling to the liquid crystal self-assembly by allowing solvent molecules to enter the ordered structure if their design matches the core of HAT5 molecules, thereby guiding the assembly. However, other aspects are also relevant in the assembly, including the nature of the substrate and the rate of solvent evaporation, and these can favor or interfere with the self-assembly into long structures. The use of solvents with aromatic structure is advantageous not only because it affects the geometry of the assembly, promoting long wire formation, but it is also compatible with good quality of the intermolecular order, as suggested by a high anisotropy of the Raman spectra of the nanowires formed from these solvents. Finally, the electrical properties of ordered systems show a clearly higher electrical conductivity compared to the disorganized aggregates.

2.
Chemphyschem ; 15(7): 1477-84, 2014 May 19.
Article in English | MEDLINE | ID: mdl-24677344

ABSTRACT

The intrinsic ability of cellulose nanocrystals (CNCs) to self-organize into films and bulk materials with helical order in a cholesteric liquid crystal is scientifically intriguing and potentially important for the production of renewable multifunctional materials with attractive optical properties. A major obstacle, however, has been the lack of control of helix direction, which results in a defect-rich, mosaic-like domain structure. Herein, a method for guiding the helix during film formation is introduced, which yields dramatically improved uniformity, as confirmed by using polarizing optical and scanning electron microscopy. By raising the CNC concentration in the initial suspension to the fully liquid crystalline range, a vertical helix orientation is promoted, as directed by the macroscopic phase boundaries. Further control of the helix orientation is achieved by subjecting the suspension to a circular shear flow during drying.

3.
Vaccine ; 40(24): 3366-3371, 2022 05 26.
Article in English | MEDLINE | ID: mdl-35473659

ABSTRACT

GSK is currently working to improve the commercial presentation of the licensed quadrivalent conjugate vaccine (Menveo) for use against meningococcal serogroup A, C, W, Y (MenACWY) infections. Menveo consists of a primary, lyophilized vial, containing the serogroup A antigen that is reconstituted with the content of a second, liquid, vial that contains the serogroup C, W, Y antigens, to give the final liquid MenACWY product. Since the MenA structure is prone to hydrolytic degradation in liquid formulations, we used mathematical models to rationally design a clinical Phase 2 development plan and provide end of shelf-life (EoSL) and release specification setting for the MenACWY liquid product. By using development and clinical stability data, statistical models were built and used to predict both the MenA free saccharide (FS) and O-Acetyl (OAc) content during long-term storage conditions at 5 °C and stressed (accelerated) stability studies at 15 °C, 22.5 °C, 25 °C, 37 °C and 50 °C. This approach allowed us to define an aging plan for the clinical material to reach at least the required levels of MenA FS and OAc levels at product EoSL. The clinical material was then exposed to a temperature of 22.5 ± 2.5 °C for 59 days to generate FS OAc content of about 35% and 40%, respectively, which was then delivered to the patients in the clinical trial. To the best of our knowledge, this work represents the first example in the field of vaccine research where statistical models have been used to rationally design tailored lots, with the goal of setting EoSL and release specification limits based on data collected on artificially aged clinical material, in which the FS and OAc levels tested were intended to support a product shelf-life of at least 24 months.


Subject(s)
Meningococcal Infections , Meningococcal Vaccines , Neisseria meningitidis , Aged , Antibodies, Bacterial , Humans , Meningococcal Infections/prevention & control , Serogroup , Vaccines, Combined , Vaccines, Conjugate
4.
ACS Omega ; 7(44): 39875-39883, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36385865

ABSTRACT

GlaxoSmithKline (GSK) is currently developing a fully liquid presentation to ease the administration of the licensed quadrivalent conjugate vaccine (Menveo) against meningococcal serogroup A, C, W, and Y (MenACWY) infections. Herein, we report a new method for determining the free saccharide (FS) content of CRM197-MenACWY conjugated antigens, with the aim of improving accuracy and reproducibility. Mathematical models have been used to support technical knowledge in reducing the need for experimental development. This results in an improved, faster, and platform-based technique for FS separation with one single pretreatment applicable to all antigens of the multivalent meningococcal vaccine.

5.
Chemphyschem ; 11(2): 333-40, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-20013984

ABSTRACT

The organization of carbon nanotubes is an important but challenging issue. This Minireview focuses on a novel approach based on the use of liquid crystals as host for nanotube dispersion and ordering. With these self-organizing fluids it is possible to control the nanotube orientation on a macroscopic scale, as the orientational order of the liquid crystal, the direction of which can easily be selected and dynamically modulated, is transferred onto embedded carbon nanotubes. Both main classes of liquid crystals, thermotropics and lyotropics, have been used successfully. This reveals an aligning mechanism resulting from the liquid crystallinity per se, independent of specific molecular structures, although these can affect the degree of order and the quality of the tube dispersion. The enormous variety of systems that form liquid crystalline phases provides additional strength and potentialities to the liquid-crystal-based route towards nanotube alignment. The exploration of this new use of liquid crystals has just started, hence we can expect exciting developments in the years to come.

6.
Beilstein J Org Chem ; 6: 51, 2010 May 20.
Article in English | MEDLINE | ID: mdl-20625522

ABSTRACT

Thin films of the discotic liquid crystal hexapentyloxytriphenylene (HAT5), prepared from solution via casting or spin-coating, were investigated by atomic force microscopy and polarizing optical microscopy, revealing large-scale ordered structures substantially different from those typically observed in standard samples of the same material. Thin and very long fibrils of planar-aligned liquid crystal were found, possibly formed as a result of an intermediate lyotropic nematic state arising during the solvent evaporation process. Moreover, in sufficiently thin films the crystallization seems to be suppressed, extending the uniform order of the liquid crystal phase down to room temperature. This should be compared to the bulk situation, where the same material crystallizes into a polymorphic structure at 68 °C.

7.
RSC Adv ; 10(36): 21473-21480, 2020 Jun 02.
Article in English | MEDLINE | ID: mdl-35518743

ABSTRACT

In the presence of a disclination line, inclusions within an aligned nematic liquid crystal (LC) are first attracted and ultimately trapped in it. The kind of orientational distortion created by the inclusions is fundamental in determining the trapping. In the present work, we observe differences in the trapping behaviour, onto a ½ defect line in a nematic LC, of two types of particles both elongated but different in their actual geometry. Even if both types have cylindrical shape, aggregates of Mo6S2I8 nanowires (rod-like shape) and multiwall carbon nanotubes (tubular shape, i.e. hollow) trap differently although still due to deformations induced in the LC director field. Attractive forces are stronger on elongated bundles of nanowires than on similarly sized bundles of multi-wall carbon nanotubes. The reason is the difference in the attraction forces originating from different types of distortions of the LCs. The hollow and the full cylinders are not homotopically equivalent and this inequivalence holds also for the liquid crystal around them. The nanowires induce defects in the LC close-by their surfaces as shown for microrods, topologically equivalent to spheres. In contrast, multi-wall carbon nanotubes, being hollow, do not form defects close to their ends. However, the tubes are strongly bent and the strong planar anchoring of LC at the surface induces deformation in the LC enabling attraction forces with the defect line. HiPco single wall carbon nanotubes could not be trapped because their bundles looked much straighter and smaller than the ones of MWCNTs and thus neither defects nor standard strong deformations are expected. In conclusion, even if the shape of both types of particles is cylindrical, the topological difference between rods and tubes has profound consequences on the physical behaviour and on the presence and type of defect-mediated nematic attraction forces.

8.
Chem Commun (Camb) ; (42): 5420-2, 2008 Nov 14.
Article in English | MEDLINE | ID: mdl-18985230

ABSTRACT

Liquid crystal containing composite fibres were produced via coaxial electrospinning, demonstrating that this technique can be used for producing new functional fibres and/or to study the impact of extreme confinement on liquid crystal phases.


Subject(s)
Liquid Crystals/chemistry , Povidone/chemistry , Titanium/chemistry , Electrochemistry , Particle Size , Surface Properties , Temperature
9.
Soft Matter ; 4(3): 570-576, 2008 Feb 21.
Article in English | MEDLINE | ID: mdl-32907223

ABSTRACT

The self-assembly of amphiphilic molecules in aqueous solution into lyotropic liquid crystals (LCs), characterised by soft yet long-range ordered nanoscale structures, constitutes a fascinating phenomenon at the heart of soft matter science which can be employed in a manifold of creative ways. Particularly interesting structures may arise as a result of functionalisation of the LC with appropriate guest molecules, adopting the order of their host. Here we combine cat- and anionic surfactants to form a liquid-crystalline colloidal suspension of carbon nanotubes (CNTs), which by virtue of the spontaneously formed hexagonal columnar LC structure are uniaxially aligned over macroscopic areas. The nanotube concentration can be so high, with sufficiently uniform alignment, that the mixture becomes a fluid linear polariser, the anisotropic optical properties of CNTs having been transferred to macroscopic scale by the LC. Moreover, thin and highly aligned filaments can be drawn and deposited in selected directions on arbitrary surfaces, after which the LC template can be rinsed away. Combined with recently developed methods for CNT fractionation according to chirality, the technique would yield an unprecedented degree of control in the practical realisation of carbon nanotube-based devices and materials.

10.
Angew Chem Int Ed Engl ; 46(26): 4832-87, 2007.
Article in English | MEDLINE | ID: mdl-17568461

ABSTRACT

Most associate liquid crystals with their everyday use in laptop computers, mobile phones, digital cameras, and other electronic devices. However, in contrast to their rodlike (calamitic) counterparts, first described in 1907 by Vorländer, disklike (discotic, columnar) liquid crystals, which were discovered in 1977 by Chandrasekhar et al., offer further applications as a result of their orientation in the columnar mesophase, making them ideal candidates for molecular wires in various optical and electronic devices such as photocopiers, laser printers, photovoltaic cells, light-emitting diodes, field-effect transistors, and holographic data storage. Beginning with an overview of the various mesophases and characterization methods, this Review will focus on the major classes of columnar mesogens rather than presenting a library of columnar liquid crystals. Emphasis will be given to efficient synthetic procedures, and relevant mesomorphic and physical properties. Finally, some applications and perspectives in materials science and molecular electronics will be discussed.

12.
Philos Trans A Math Phys Eng Sci ; 371(1988): 20120261, 2013 Apr 13.
Article in English | MEDLINE | ID: mdl-23459963

ABSTRACT

Liquid crystals (LCs), with their fluidity and self-organization, are attractive hosts for the dispersion and manipulation of macro- and nanoparticles, allowing the realization of their ordered assemblies. In addition, new functional materials can be created owing to the particle properties. Among the nanoparticles, carbon nanotubes (CNTs) stand out for their exceptional electrical, thermal and mechanical properties. While LCs can be used for manipulating CNTs, the nanotube properties are attractive also for influencing and tuning LC properties. In this paper, we discuss different aspects of the CNT-LC combination, briefly introducing their dispersion and interaction and then, more extensively, evaluating the CNT effect on selected properties of LCs relevant to display-related applications. We show that some previously reported improvements cannot be considered an intrinsic feature of CNT-doped LCs. In addition, we are also able to follow locally the Frederiks transition of CNT-doped LCs by Raman spectroscopy, revealing the direct effect of bundles of CNTs on LC reorientation.

13.
ACS Nano ; 7(8): 6627-35, 2013 Aug 27.
Article in English | MEDLINE | ID: mdl-23826751

ABSTRACT

Soft self-assembling photonic materials such as cholesteric liquid crystals are attractive due to their multiple unique and useful properties, in particular, an optical band gap that can be continuously and dynamically tuned in response to weak external influences, easy device integration, compatibility with flexible architectures, and, as shown here, potential for submicrometer optical applications. We study such a system formed by a short-pitch cholesteric confined in the core of polymer fibers produced by coaxial electrospinning, showing that the selective reflection arising from the helical photonic structure of the liquid crystal is present even when its confining cavity is well below a micrometer in thickness, allowing as little as just half a turn of the helix to develop. At this scale, small height variations result in a dramatic change in the reflected color, in striking difference to the bulk behavior. These conclusions are made possible by combining focused ion beam (FIB) dissection and imaging of the internal fiber morphology with optical microscopy. The FIB dissection further reveals that the cross section of the cavity within the fiber can have a shape that is quite different from that of the outside fiber. This is critical for the photonic behavior of the composite fiber because different optical textures are generated not only by change in thickness but also by the shape of the cavity. Our results provide insights into the behavior of cholesterics in submicrometer cavities and demonstrate their potential at such dimensions.


Subject(s)
Liquid Crystals/chemistry , Optics and Photonics , Equipment Design , Ions , Metals/chemistry , Microfluidics , Microscopy , Nanoparticles/chemistry , Nanotechnology/methods , Photons , Polymers/chemistry
14.
ChemMedChem ; 6(11): 2009-18, 2011 Nov 04.
Article in English | MEDLINE | ID: mdl-21990039

ABSTRACT

N-[2-Methyl-5-(triazol-1-yl)phenyl]pyrimidin-2-amine derivatives were synthesized and evaluated in vitro for their potential use as inhibitors of Bcr-Abl. The design is based on the bioisosterism between the 1,2,3-triazole ring and the amide group. The synthesis involves a copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) as the key step, with the exclusive production of anti-(1,4)-triazole derivatives. One of the compounds obtained shows general activity similar to that of imatinib; in particular, it was observed to be more effective in decreasing the fundamental function of cdc25A phosphatases in the K-562 cell line.


Subject(s)
Fusion Proteins, bcr-abl/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Apoptosis/drug effects , Benzamides , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Fusion Proteins, bcr-abl/genetics , Humans , Imatinib Mesylate , Inhibitory Concentration 50 , K562 Cells/enzymology , Models, Molecular , Mutation , Phosphorylation/drug effects , Piperazines/chemistry , Piperazines/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Pyrimidines/chemistry , Pyrimidines/pharmacology , STAT5 Transcription Factor/metabolism , Structure-Activity Relationship , Triazoles/chemistry , bcl-2-Associated X Protein/genetics , bcl-X Protein/genetics , cdc25 Phosphatases/antagonists & inhibitors , cdc25 Phosphatases/genetics , cdc25 Phosphatases/metabolism , src-Family Kinases/metabolism
15.
Nano Lett ; 8(11): 3594-7, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18942881

ABSTRACT

The position and width of the Raman G-line was analyzed for unintentionally doped single-layered graphene samples. Results indicate a significant heating of the monolayer by the laser beam. Moreover, a weak additional component was resolved in the G-band. The position of the line is independent of the level of doping of the sample. We conclude that this new component is due to the phonons coupled to the intraband electronic transitions.

SELECTION OF CITATIONS
SEARCH DETAIL