ABSTRACT
Recent publications describe the development of in vitro models of human development, for which applications in developmental toxicity testing can be envisaged. To date, these regulatory assessments have exclusively been performed in animal studies, the relevance of which to adverse reactions in humans may be questioned. Recently developed cell culture-based models of embryo-fetal development, however, do not yet exhibit sufficient levels of standardisation and reproducibility. Here, the advantages and shortcomings of both in vivo and in vitro developmental toxicity testing are addressed, as well as the possibility of integrated testing strategies as a viable option in the near future.
Subject(s)
Cell Culture Techniques , Toxicity Tests , Animals , Humans , Reproducibility of ResultsABSTRACT
To meet regulatory requirements and the political pressure to minimize the number of animals used in research, it is critical to reduce the production of surplus animals.
Subject(s)
Animal Welfare , Animals, Laboratory , AnimalsABSTRACT
Non-technical summaries of research projects allow tracking the numbers and purpose of animal experiments related to SARS-CoV2 research so as to provide greater transparency on animal use.
Subject(s)
Animal Experimentation , COVID-19 , Animals , Humans , RNA, Viral , SARS-CoV-2ABSTRACT
The Animal Study Registry (ASR; www.animalstudyregistry.org) was launched in January 2019 for preregistration of animal studies in order to increase transparency and reproducibility of bioscience research and to promote animal welfare. The registry is free of charge and is designed for exploratory and confirmatory studies within applied science as well as basic and preclinical research. The registration form helps scientists plan their study thoroughly by asking detailed questions concerning study design, methods, and statistics. With registration, the study automatically receives a digital object identifier (DOI) that marks it as intellectual property of the researcher. To accommodate the researchers concerns about theft of ideas, users can restrict the visibility of their registered studies for up to 5 years. The full content of the study becomes publicly accessible at the end of the embargo period. Because the platform is embedded in the infrastructure of the German Federal Government, continuity and data security are provided. By registering a study in the ASR, researchers can show their commitment to transparency and data quality to reviewers and editors, to third-party donors, and to the general public.
Subject(s)
Animal Experimentation/legislation & jurisprudence , Animal Welfare/legislation & jurisprudence , Registries , Research Design/legislation & jurisprudence , Animal Experimentation/ethics , Animal Welfare/ethics , Computer Security , Data Accuracy , Germany , Government Regulation , Humans , Intellectual PropertyABSTRACT
The Animal Study Registry offers scientists a range of benefits by preregistering their studies. Wider adoption could address the reproducibility problem in biomedical research and enhance animal welfare.
Subject(s)
Animal Experimentation , Biomedical Research , Animal Welfare , Animals , Animals, Laboratory , Motivation , Registries , Reproducibility of ResultsABSTRACT
In the European Union (EU), animal welfare is seen as a matter of great importance. However, with respect to animal experimentation, European citizens feel quite uninformed. The European Directive 2010/63/EU for the protection of laboratory animals aims for greater transparency and requires that a comprehensible, nontechnical summary (NTS) of each authorised research project involving animals is published by the respective Member State. However, the NTSs remain sleeping beauties if their contents are not easily and systematically accessible. The German web-based NTS database AnimalTestInfo is a unique channel for scientists to communicate their work, and provides the opportunity for large-scale analyses of planned animal studies to inform researchers and the public. For an in-depth meta-analysis, we classified the duly completed NTSs submitted to AnimalTestInfo in 2014 and 2015 according to the International Classification of Diseases and Related Health Problems (ICD) system. Indexing the NTSs with ICD codes provided a fine-grained overview of the prospective uses of experimental animals. Using this approach, transparency, especially for highly controversial animal research involving, for example, nonhuman primates, is fostered, as it enables pinpointing the envisaged beneficiary down to the level of the addressed disease. Moreover, research areas with many planned projects involving animals can be specified in detail. The development of 3R (replacement, reduction, and refinement) measures in these research areas may be most efficient, as a large number of experimental animals would benefit from it. Indexing NTSs with ICD codes can support governments and funding agencies in advancing target-oriented funding of 3R research. Data drawn from NTSs can provide a basis for the development, validation, and implementation of directed 3R strategies as well as guidance for rethinking the role of animal research models.
Subject(s)
Animal Experimentation , Animal Welfare , Biomedical Research , Research Design/legislation & jurisprudence , Research Design/standards , Animal Experimentation/ethics , Animal Experimentation/legislation & jurisprudence , Animal Experimentation/standards , Animal Experimentation/statistics & numerical data , Animal Welfare/ethics , Animal Welfare/legislation & jurisprudence , Animal Welfare/standards , Animal Welfare/statistics & numerical data , Animals , Animals, Domestic , Animals, Laboratory , Animals, Wild , Bioethics , Biomedical Research/ethics , Biomedical Research/legislation & jurisprudence , Biomedical Research/standards , Biomedical Research/statistics & numerical data , Germany/epidemiology , Humans , Prospective Studies , Research Design/statistics & numerical data , Research Personnel/ethics , Research Personnel/legislation & jurisprudence , Research Personnel/standards , Research Personnel/statistics & numerical dataABSTRACT
A key challenge of mixture toxicity testing is that a multitude of substances with even more combinations need to be tested in a broad dose range. Consequently testing in rodent bioassays, the current gold standard of toxicity testing, is hardly feasible. High-throughput compatible cell culture systems, however, suffer from limitations with respect to toxicokinetics, tissue interactions, and compensatory mechanisms. Therefore, simple organisms like the nematode Caenorhabditis elegans, combining relevant advantages of complex in vivo and fast in vitro assays might prove highly valuable within a testing strategy for mixtures. To investigate the comparability between results obtained with C. elegans and traditional rodent assays, we used five azole fungicides as well investigated model substances. Our findings suggest that azoles act additively in C. elegans which is in line with previous results in rats. Additionally, we show that toxicokinetics are one important factor for the differences in the relative toxicity of the azoles in both species. Importantly, we also demonstrate that in contrast to most rodent in vivo studies, C. elegans assays provide well-defined concentration-response relationships which are a very good basis for the prediction of mixture effects. We conclude that C. elegans may be an appropriate model for mixture toxicity testing at least within a first step to identify and prioritize relevant mixtures for further testing.
Subject(s)
Fungicides, Industrial , Nematoda , Animals , Azoles , Caenorhabditis elegans , Rats , Toxicity TestsSubject(s)
Animal Welfare , Fishes/genetics , Animals , Biomedical Research , Disease Models, Animal , Europe , Guidelines as Topic , Humans , PhenotypeSubject(s)
Animal Welfare/legislation & jurisprudence , Animals, Laboratory , Pain/veterinary , Animals , Animals, Laboratory/genetics , Animals, Laboratory/physiology , European Union , Organisms, Genetically Modified/genetics , Organisms, Genetically Modified/physiology , Pain/diagnosis , Pain/genetics , Pain/physiopathology , Pain Measurement/veterinaryABSTRACT
The advent of new testing systems and "omics"-technologies has left regulatory toxicology facing one of the biggest challenges for decades. That is the question whether and how these methods can be used for regulatory purposes. The new methods undoubtedly enable regulators to address important open questions of toxicology such as species-specific toxicity, mixture toxicity, low-dose effects, endocrine effects or nanotoxicology, while promising faster and more efficient toxicity testing with the use of less animals. Consequently, the respective assays, methods and testing strategies are subject of several research programs worldwide. On the other hand, the practical application of such tests for regulatory purposes is a matter of ongoing debate. This document summarizes key aspects of this debate in the light of the European "regulatory status quo", while elucidating new perspectives for regulatory toxicity testing.
Subject(s)
Animal Testing Alternatives/methods , Toxicity Tests/methods , Toxicology/methods , Animal Testing Alternatives/legislation & jurisprudence , Animals , Europe , Government Regulation , Humans , Species Specificity , Toxicity Tests/standards , Toxicity Tests/trends , Toxicology/legislation & jurisprudence , Toxicology/standards , Toxicology/trends , United StatesABSTRACT
The search for 3R-relevant information is a prerequisite for any planned experimental approach considering animal use. Such a literature search includes all methods to replace, reduce and refine (3Rs) animal testing with the aim of improving animal welfare, and requires an intensive screening of literature databases reflecting the current state of knowledge in experimental biomedicine. We developed SMAFIRA, a freely available online tool to facilitate the screening of PubMed/MEDLINE for possible alternatives to animal testing. SMAFIRA employs state-of-the-art language models from the field of deep learning, and provides relevant literature citations in a ranked order, classified according to the experimental model used. By using this classification, the search for alternative methods in the biomedical literature will become much more efficient. The tool is available at https://smafira.bf3r.de.
Subject(s)
Internet , Animals , Animal Testing Alternatives/methods , Information Storage and Retrieval/methods , Animal Welfare , SoftwareABSTRACT
Current animal protection laws require replacement of animal experiments with alternative methods, whenever such methods are suitable to reach the intended scientific objective. However, searching for alternative methods in the scientific literature is a time-consuming task that requires careful screening of an enormously large number of experimental biomedical publications. The identification of potentially relevant methods, e.g. organ or cell culture models, or computer simulations, can be supported with text mining tools specifically built for this purpose. Such tools are trained (or fine tuned) on relevant data sets labeled by human experts. We developed the GoldHamster corpus, composed of 1,600 PubMed (Medline) articles (titles and abstracts), in which we manually identified the used experimental model according to a set of eight labels, namely: "in vivo", "organs", "primary cells", "immortal cell lines", "invertebrates", "humans", "in silico" and "other" (models). We recruited 13 annotators with expertise in the biomedical domain and assigned each article to two individuals. Four additional rounds of annotation aimed at improving the quality of the annotations with disagreements in the first round. Furthermore, we conducted various machine learning experiments based on supervised learning to evaluate the corpus for our classification task. We obtained more than 7,000 document-level annotations for the above labels. After the first round of annotation, the inter-annotator agreement (kappa coefficient) varied among labels, and ranged from 0.42 (for "others") to 0.82 (for "invertebrates"), with an overall score of 0.62. All disagreements were resolved in the subsequent rounds of annotation. The best-performing machine learning experiment used the PubMedBERT pre-trained model with fine-tuning to our corpus, which gained an overall f-score of 0.83. We obtained a corpus with high agreement for all labels, and our evaluation demonstrated that our corpus is suitable for training reliable predictive models for automatic classification of biomedical literature according to the used experimental models. Our SMAFIRA - "Smart feature-based interactive" - search tool ( https://smafira.bf3r.de ) will employ this classifier for supporting the retrieval of alternative methods to animal experiments. The corpus is available for download ( https://doi.org/10.5281/zenodo.7152295 ), as well as the source code ( https://github.com/mariananeves/goldhamster ) and the model ( https://huggingface.co/SMAFIRA/goldhamster ).
Subject(s)
Animal Experimentation , Animals , Humans , Data Mining , MEDLINE , Machine Learning , Models, TheoreticalABSTRACT
Throughout life, continuous remodelling is part of human bone biology and depends on the simultaneous action of physicochemical parameters such as oxygen tension and varying mechanical load. Thus, suitable model systems are needed, which allow concomitant modulation of these factors to recapitulate in vivo bone formation. Here, we report on the development of a first microphysiological system (MPS) that enables perfusion, environment-independent regulation of the oxygen tension as well as precise quantification and control of mechanical load. To demonstrate the use of the MPS for future studies on the (patho-)biology of bone, we built a simplified 3D model for early de novo bone formation. Primary human osteoblasts (OBs), which are the key players during this process, were seeded onto type I collagen scaffolds and cultured in the MPS. We could not only monitor cell viability and metabolism of OBs under varied physicochemical conditions, but also visualise the mineralisation of the extracellular matrix. In summary, we present a MPS that uniquely combines the independent control of physicochemical parameters and allows investigation of their influence on bone biology. We consider our MPS highly valuable to gain deeper insights into (patho-)physiological processes of bone formation in the future.
Subject(s)
Bone and Bones , Microphysiological Systems , Humans , Osteoblasts , Oxygen/metabolism , Biology , Tissue EngineeringABSTRACT
Beyond serving as a mechanical barrier, the endothelium has important regulatory functions. The discovery of nitric oxide revolutionized our understanding of vasoregulation. In contrast, the identity of endothelium-derived vasoconstrictive factors (EDCFs) remains unclear. The supernatant obtained from mechanically stimulated human endothelial cells obtained from dermal vessels elicited a vasoconstrictive response in an isolated perfused rat kidney. A purinoceptor blocker had a greater effect than an endothelin receptor blocker in decreasing endothelially derived vasoconstriction in the isolated perfused rat kidney. The nucleotide uridine adenosine tetraphosphate (Up(4)A) was isolated from the supernatant of stimulated human endothelium and identified by mass spectrometry. Up(4)A is likely to exert vasoconstriction predominantly through P2X1 receptors, and probably also through P2Y2 and P2Y4 receptors. Plasma concentrations of Up(4)A that cause vasoconstriction are found in healthy subjects. Stimulation with adenosine 5'-triphosphate (ATP), uridine 5'-triphosphate (UTP), acetylcholine, endothelin, A23187 and mechanical stress releases Up(4)A from endothelium, suggesting that Up(4)A contributes to vascular autoregulation. To our knowledge, Up(4)A is the first dinucleotide isolated from living organisms that contains both purine and pyrimidine moieties. We conclude that Up(4)A is a novel potent nonpeptidic EDCF. Its vasoactive effects, plasma concentrations and its release upon endothelial stimulation strongly suggest that Up(4)A has a functional vasoregulatory role.
Subject(s)
Adenine Nucleotides/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Uracil Nucleotides/metabolism , Vasoconstrictor Agents/metabolism , Adenine Nucleotides/chemistry , Animals , Cells, Cultured , Endothelial Cells/cytology , Endothelium, Vascular/cytology , Humans , In Vitro Techniques , Kidney/cytology , Kidney/metabolism , Mass Spectrometry , Molecular Weight , Rats , Uracil Nucleotides/chemistry , Vasoconstrictor Agents/chemistryABSTRACT
BACKGROUND: Exposure to environmental chemicals that interfere with normal estrogen function can lead to adverse health effects, including cancer. High-throughput screening (HTS) approaches facilitate the efficient identification and characterization of such substances. OBJECTIVES: We recently described the development of the E-Morph Assay, which measures changes at adherens junctions as a clinically-relevant phenotypic readout for estrogen receptor (ER) alpha signaling activity. Here, we describe its further development and application for automated robotic HTS. METHODS: Using the advanced E-Morph Screening Assay, we screened a substance library comprising 430 toxicologically-relevant industrial chemicals, biocides, and plant protection products to identify novel substances with estrogenic activities. Based on the primary screening data and the publicly available ToxCast dataset, we performed an insilico similarity search to identify further substances with potential estrogenic activity for follow-up hit expansion screening, and built seven insilico ER models using the conformal prediction (CP) framework to evaluate the HTS results. RESULTS: The primary and hit confirmation screens identified 27 'known' estrogenic substances with potencies correlating very well with the published ToxCast ER Agonist Score (r=+0.95). We additionally detected potential 'novel' estrogenic activities for 10 primary hit substances and for another nine out of 20 structurally similar substances from insilico predictions and follow-up hit expansion screening. The concordance of the E-Morph Screening Assay with the ToxCast ER reference data and the generated CP ER models was 71% and 73%, respectively, with a high predictivity for ER active substances of up to 87%, which is particularly important for regulatory purposes. DISCUSSION: These data provide a proof-of-concept for the combination of in vitro HTS approaches with insilico methods (similarity search, CP models) for efficient analysis of large substance libraries in order to prioritize substances with potential estrogenic activity for subsequent testing against higher tier human endpoints.