ABSTRACT
Tuberculosis (TB), caused by Mycobacterium tuberculosis (M.tb), is a major global health concern, particularly affecting those with weakened immune systems, including the elderly. CD4+ T cell response is crucial for immunity against M.tb, but chronic infections and aging can lead to T cell exhaustion and senescence, worsening TB disease. Mitochondrial dysfunction, prevalent in aging and chronic diseases, disrupts cellular metabolism, increases oxidative stress, and impairs T-cell functions. This study investigates the effect of mitochondrial transplantation (mito-transfer) on CD4+ T cell differentiation and function in aged mouse models and human CD4+ T cells from elderly individuals. Mito-transfer in naïve CD4+ T cells is found to promote protective effector and memory T cell generation during M.tb infection in mice. Additionally, it improves elderly human T cell function by increasing mitochondrial mass and altering cytokine production, thereby reducing markers of exhaustion and senescence. These findings suggest mito-transfer as a novel approach to enhance aged CD4+ T cell functionality, potentially benefiting immune responses in the elderly and chronic TB patients. This has broader implications for diseases where mitochondrial dysfunction contributes to T-cell exhaustion and senescence.
Subject(s)
CD4-Positive T-Lymphocytes , Disease Models, Animal , Mitochondria , Mycobacterium tuberculosis , Tuberculosis , CD4-Positive T-Lymphocytes/immunology , Humans , Mice , Animals , Mitochondria/immunology , Mitochondria/metabolism , Mycobacterium tuberculosis/immunology , Tuberculosis/immunology , Aged , Cellular Senescence/immunology , Male , Female , Mice, Inbred C57BL , Aging/immunologyABSTRACT
Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis (M.tb), remains a significant health concern worldwide, especially in populations with weakened or compromised immune systems, such as the elderly. Proper adaptive immune function, particularly a CD4+ T cell response, is central to host immunity against M.tb. Chronic infections, such as M.tb, as well as aging promote T cell exhaustion and senescence, which can impair immune control and promote progression to TB disease. Mitochondrial dysfunction contributes to T cell dysfunction, both in aging and chronic infections and diseases. Mitochondrial perturbations can disrupt cellular metabolism, enhance oxidative stress, and impair T-cell signaling and effector functions. This study examined the impact of mitochondrial transplantation (mito-transfer) on CD4+ T cell differentiation and function using aged mouse models and human CD4+ T cells from elderly individuals. Our study revealed that mito-transfer in naïve CD4+ T cells promoted the generation of protective effector and memory CD4+ T cells during M.tb infection in mice. Further, mito-transfer enhanced the function of elderly human T cells by increasing their mitochondrial mass and modulating cytokine production, which in turn reduced exhaustion and senescence cell markers. Our results suggest that mito-transfer could be a novel strategy to reestablish aged CD4+ T cell function, potentially improving immune responses in the elderly and chronic TB patients, with a broader implication for other diseases where mitochondrial dysfunction is linked to T cell exhaustion and senescence.
ABSTRACT
Mycobacterium tuberculosis (M.tb), the causative agent of tuberculosis (TB), is considered one of the top infectious killers in the world. In recent decades, drug resistant (DR) strains of M.tb have emerged that make TB even more difficult to treat and pose a threat to public health. M.tb has a complex cell envelope that provides protection to the bacterium from chemotherapeutic agents. Although M.tb cell envelope lipids have been studied for decades, very little is known about how their levels change in relation to drug resistance. In this study, we examined changes in the cell envelope lipids [namely, phthiocerol dimycocerosates (PDIMs)], glycolipids [phosphatidyl-myo-inositol mannosides (PIMs)], and the PIM associated lipoglycans [lipomannan (LM); mannose-capped lipoarabinomannan (ManLAM)] of 11 M.tb strains that range from drug susceptible (DS) to multi-drug resistant (MDR) to pre-extensively drug resistant (pre-XDR). We show that there was an increase in the PDIMs:PIMs ratio as drug resistance increases, and provide evidence of PDIM species only present in the DR-M.tb strains studied. Overall, the LM and ManLAM cell envelope levels did not differ between DS- and DR-M.tb strains, but ManLAM surface exposure proportionally increased with drug resistance. Evaluation of host-pathogen interactions revealed that DR-M.tb strains have decreased association with human macrophages compared to DS strains. The pre-XDR M.tb strain with the largest PDIMs:PIMs ratio had decreased uptake, but increased intracellular growth rate at early time points post-infection when compared to the DS-M.tb strain H37Rv. These findings suggest that PDIMs may play an important role in drug resistance and that this observed increase in hydrophobic cell envelope lipids on the DR-M.tb strains studied may influence M.tb-host interactions.
ABSTRACT
Mitochondrial dysfunction alters cellular metabolism, increases tissue oxidative stress, and may be principal to the dysregulated signaling and function of CD4+ T lymphocytes in the elderly. In this proof of principle study, it is investigated whether the transfer of functional mitochondria into CD4+ T cells that are isolated from old mice (aged CD4+ T cells), can abrogate aging-associated mitochondrial dysfunction, and improve the aged CD4+ T cell functionality. The results show that the delivery of exogenous mitochondria to aged non-activated CD4+ T cells led to significant mitochondrial proteome alterations highlighted by improved aerobic metabolism and decreased cellular mitoROS. Additionally, mito-transferred aged CD4+ T cells showed improvements in activation-induced TCR-signaling kinetics displaying markers of activation (CD25), increased IL-2 production, enhanced proliferation ex vivo. Importantly, immune deficient mouse models (RAG-KO) showed that adoptive transfer of mito-transferred naive aged CD4+ T cells, protected recipient mice from influenza A and Mycobacterium tuberculosis infections. These findings support mitochondria as targets of therapeutic intervention in aging.
Subject(s)
Aging , Mitochondrial Diseases , Humans , Aged , Mice , Animals , CD4-Positive T-Lymphocytes , T-Lymphocytes, Regulatory , MitochondriaABSTRACT
The elderly population is highly susceptible to developing respiratory diseases, including tuberculosis, a devastating disease caused by the airborne pathogen Mycobacterium tuberculosis (M.tb) that kills one person every 18 seconds. Once M.tb reaches the alveolar space, it contacts alveolar lining fluid (ALF), which dictates host-cell interactions. We previously determined that age-associated dysfunction of soluble innate components in human ALF leads to accelerated M.tb growth within human alveolar macrophages. Here we determined the impact of human ALF on M.tb infection of alveolar epithelial type cells (ATs), another critical lung cellular determinant of infection. We observed that elderly ALF (E-ALF)-exposed M.tb had significantly increased intracellular growth with rapid replication in ATs compared to adult ALF (A-ALF)-exposed bacteria, as well as a dampened inflammatory response. A potential mechanism underlying this accelerated growth in ATs was our observation of increased bacterial translocation into the cytosol, a compartment that favors bacterial replication. These findings in the context of our previous studies highlight how the oxidative and dysfunctional status of the elderly lung mucosa determines susceptibility to M.tb infection, including dampening immune responses and favoring bacterial replication within alveolar resident cell populations, including ATs, the most abundant resident cell type within the alveoli.
Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Aged , Adult , Humans , Alveolar Epithelial Cells , Cytosol , Lung/microbiology , Macrophages, AlveolarABSTRACT
In the past few decades, drug-resistant (DR) strains of Mycobacterium tuberculosis (M.tb), the causative agent of tuberculosis (TB), have become increasingly prevalent and pose a threat to worldwide public health. These strains range from multi (MDR) to extensively (XDR) drug-resistant, making them very difficult to treat. Further, the current and future impact of the Coronavirus Disease 2019 (COVID-19) pandemic on the development of DR-TB is still unknown. Although exhaustive studies have been conducted depicting the uniqueness of the M.tb cell envelope, little is known about how its composition changes in relation to drug resistance acquisition. This knowledge is critical to understanding the capacity of DR-M.tb strains to resist anti-TB drugs, and to inform us on the future design of anti-TB drugs to combat these difficult-to-treat strains. In this review, we discuss the complexities of the M.tb cell envelope along with recent studies investigating how M.tb structurally and biochemically changes in relation to drug resistance. Further, we will describe what is currently known about the influence of M.tb drug resistance on infection outcomes, focusing on its impact on fitness, persister-bacteria, and subclinical TB.
Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Humans , Mycobacterium tuberculosis/genetics , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Tuberculosis/drug therapy , Tuberculosis/microbiology , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology , Global Health , Drug Resistance, Multiple, BacterialABSTRACT
Upon infection, Mycobacterium tuberculosis ( M.tb ) reaches the alveolar space and comes in close contact with human alveolar lining fluid (ALF) for an uncertain period of time prior to its encounter with alveolar cells. We showed that homeostatic ALF hydrolytic enzymes modify the M.tb cell envelope, driving M.tb -host cell interactions. Still, the contribution of ALF during M.tb infection is poorly understood. Here, we exposed 4 M.tb strains with different levels of virulence, transmissibility, and drug resistance (DR) to physiological concentrations of human ALF for 15-min and 12-h, and performed RNA sequencing. Gene expression analysis showed a temporal and strain-specific adaptation to human ALF. Differential expression (DE) of ALF-exposed vs. unexposed M.tb revealed a total of 397 DE genes associated with lipid metabolism, cell envelope and processes, intermediary metabolism and respiration, and regulatory proteins, among others. Most DE genes were detected at 12-h post-ALF exposure, with DR- M.tb strain W-7642 having the highest number of DE genes. Interestingly, genes from the KstR2 regulon, which controls the degradation of cholesterol C and D rings, were significantly upregulated in all strains post-ALF exposure. These results indicate that M.tb -ALF contact drives initial metabolic and physiologic changes in M.tb , with potential implications in infection outcome. IMPORTANCE: Tuberculosis, caused by airborne pathogen Mycobacterium tuberculosis ( M.tb ), is one of the leading causes of mortality worldwide. Upon infection, M.tb reaches the alveoli and gets in contact with human alveolar lining fluid (ALF), where ALF hydrolases modify the M.tb cell envelope driving subsequent M.tb -host cell interactions. Still, the contributions of ALF during infection are poorly understood. We exposed 4 M.tb strains to ALF for 15-min and 12-h and performed RNA sequencing, demonstrating a temporal and strain-specific adaptation of M.tb to ALF. Interestingly, genes associated with cholesterol degradation were highly upregulated in all strains. This study shows for the first time that ALF drives global metabolic changes in M.tb during the initial stages of the infection, with potential implications in disease outcome. Biologically relevant networks and common and strain-specific bacterial determinants derived from this study could be further investigated as potential therapeutic candidates.
ABSTRACT
Tuberculosis (TB), considered an ancient disease, is still killing one person every 21 seconds. Diagnosis of Mycobacterium tuberculosis (M.tb) still has many challenges, especially in low and middle-income countries with high burden disease rates. Over the last two decades, the amount of drug-resistant (DR)-TB cases has been increasing, from mono-resistant (mainly for isoniazid or rifampicin resistance) to extremely drug resistant TB. DR-TB is problematic to diagnose and treat, and thus, needs more resources to manage it. Together with+ TB clinical symptoms, phenotypic and genotypic diagnosis of TB includes a series of tests that can be used on different specimens to determine if a person has TB, as well as if the M.tb strain+ causing the disease is drug susceptible or resistant. Here, we review and discuss advantages and disadvantages of phenotypic vs. genotypic drug susceptibility testing for DR-TB, advances in TB immunodiagnostics, and propose a call to improve deployable and low-cost TB diagnostic tests to control the DR-TB burden, especially in light of the increase of the global burden of bacterial antimicrobial resistance, and the potentially long term impact of the coronavirus disease 2019 (COVID-19) disruption on TB programs.
Subject(s)
COVID-19 , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , COVID-19/diagnosis , Humans , Microbial Sensitivity Tests , Mycobacterium tuberculosis/genetics , Tuberculosis/diagnosis , Tuberculosis/drug therapy , Tuberculosis/microbiology , Tuberculosis, Multidrug-Resistant/diagnosis , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiologyABSTRACT
Non-human primate models will expedite therapeutics and vaccines for coronavirus disease 2019 (COVID-19) to clinical trials. Here, we compare acute severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in young and old rhesus macaques, baboons and old marmosets. Macaques had clinical signs of viral infection, mild to moderate pneumonitis and extra-pulmonary pathologies, and both age groups recovered in two weeks. Baboons had prolonged viral RNA shedding and substantially more lung inflammation compared with macaques. Inflammation in bronchoalveolar lavage was increased in old versus young baboons. Using techniques including computed tomography imaging, immunophenotyping, and alveolar/peripheral cytokine response and immunohistochemical analyses, we delineated cellular immune responses to SARS-CoV-2 infection in macaque and baboon lungs, including innate and adaptive immune cells and a prominent type-I interferon response. Macaques developed T-cell memory phenotypes/responses and bystander cytokine production. Old macaques had lower titres of SARS-CoV-2-specific IgG antibody levels compared with young macaques. Acute respiratory distress in macaques and baboons recapitulates the progression of COVID-19 in humans, making them suitable as models to test vaccines and therapies.
Subject(s)
COVID-19/veterinary , Callithrix/immunology , Lung/immunology , Macaca mulatta/immunology , Monkey Diseases/virology , Papio/immunology , SARS-CoV-2/immunology , Adaptive Immunity , Animals , Antibodies, Viral/immunology , Bronchoalveolar Lavage , Bronchoalveolar Lavage Fluid , COVID-19/diagnostic imaging , COVID-19/immunology , COVID-19/pathology , Female , Humans , Immunity, Cellular/immunology , Immunoglobulin G/immunology , Inflammation/pathology , Lung/virology , Male , Monkey Diseases/immunology , Myeloid Cells/immunology , Viral Load , Virus SheddingABSTRACT
Fat-Specific Protein 27 (FSP27) belongs to a small group of vertebrate proteins containing a Cell-death Inducing DNA fragmentation factor-α-like Effector (CIDE)-C domain and is involved in lipid droplet (LD) accumulation and energy homeostasis. FSP27 is predominantly expressed in white and brown adipose tissues, as well as liver, and plays a key role in mediating LD-LD fusion. No orthologs have been identified in invertebrates or plants. In this study, we tested the function of mouse FSP27 in stably-transformed Arabidopsis thaliana leaves and seeds, as well as through transient expression in Nicotiana tabacum suspension-cultured cells and N. benthamiana leaves. Confocal microscopic analysis of plant cells revealed that, similar to ectopic expression in mammalian cells, FSP27 produced in plants 1) correctly localized to LDs, 2) accumulated at LD-LD contact sites, and 3) induced an increase in the number and size of LDs and also promoted LD clustering and fusion. Furthermore, FSP27 increased oil content in transgenic A. thaliana seeds. Given that plant oils have uses in human and animal nutrition as well as industrial uses such as biofuels and bioplastics, our results suggest that ectopic expression of FSP27 in plants represents a potential strategy for increasing oil content and energy density in bioenergy or oilseed crops.
Subject(s)
Arabidopsis/genetics , Diacylglycerol O-Acyltransferase/genetics , Lipid Droplets/metabolism , Lipid Metabolism/genetics , Nicotiana/genetics , Proteins/genetics , Animals , Arabidopsis/metabolism , Cloning, Molecular , Diacylglycerol O-Acyltransferase/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Lipid Droplets/ultrastructure , Membrane Fusion , Mice , Organelle Size , Plant Cells/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plants, Genetically Modified , Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Seeds/genetics , Seeds/metabolism , Nicotiana/metabolismABSTRACT
Vaccine and antiviral development against SARS-CoV-2 infection or COVID-19 disease would benefit from validated small animal models. Here, we show that transgenic mice expressing human angiotensin-converting enzyme 2 (hACE2) by the human cytokeratin 18 promoter (K18 hACE2) represent a susceptible rodent model. K18 hACE2 transgenic mice succumbed to SARS-CoV-2 infection by day 6, with virus detected in lung airway epithelium and brain. K18 ACE2 transgenic mice produced a modest TH1/2/17 cytokine storm in the lung and spleen that peaked by day 2, and an extended chemokine storm that was detected in both lungs and brain. This chemokine storm was also detected in the brain at day 6. K18 hACE2 transgenic mice are, therefore, highly susceptible to SARS-CoV-2 infection and represent a suitable animal model for the study of viral pathogenesis, and for identification and characterization of vaccines (prophylactic) and antivirals (therapeutics) for SARS-CoV-2 infection and associated severe COVID-19 disease.