Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 131
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 166(1): 102-14, 2016 Jun 30.
Article in English | MEDLINE | ID: mdl-27293192

ABSTRACT

Co-option of RAG1 and RAG2 for antigen receptor gene assembly by V(D)J recombination was a crucial event in the evolution of jawed vertebrate adaptive immunity. RAG1/2 are proposed to have arisen from a transposable element, but definitive evidence for this is lacking. Here, we report the discovery of ProtoRAG, a DNA transposon family from lancelets, the most basal extant chordates. A typical ProtoRAG is flanked by 5-bp target site duplications and a pair of terminal inverted repeats (TIRs) resembling V(D)J recombination signal sequences. Between the TIRs reside tail-to-tail-oriented, intron-containing RAG1-like and RAG2-like genes. We demonstrate that ProtoRAG was recently active in the lancelet germline and that the lancelet RAG1/2-like proteins can mediate TIR-dependent transposon excision, host DNA recombination, transposition, and low-efficiency TIR rejoining using reaction mechanisms similar to those used by vertebrate RAGs. We propose that ProtoRAG represents a molecular "living fossil" of the long-sought RAG transposon.


Subject(s)
DNA Transposable Elements , Evolution, Molecular , Lancelets/genetics , V(D)J Recombination , Animals , DNA-Binding Proteins , Homeodomain Proteins , Terminal Repeat Sequences
2.
Cell ; 163(4): 947-59, 2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26593423

ABSTRACT

RAG initiates antibody V(D)J recombination in developing lymphocytes by generating "on-target" DNA breaks at matched pairs of bona fide recombination signal sequences (RSSs). We employ bait RAG-generated breaks in endogenous or ectopically inserted RSS pairs to identify huge numbers of RAG "off-target" breaks. Such breaks occur at the simple CAC motif that defines the RSS cleavage site and are largely confined within convergent CTCF-binding element (CBE)-flanked loop domains containing bait RSS pairs. Marked orientation dependence of RAG off-target activity within loops spanning up to 2 megabases implies involvement of linear tracking. In this regard, major RAG off-targets in chromosomal translocations occur as convergent RSS pairs at enhancers within a loop. Finally, deletion of a CBE-based IgH locus element disrupts V(D)J recombination domains and, correspondingly, alters RAG on- and off-target distributions within IgH. Our findings reveal how RAG activity is developmentally focused and implicate mechanisms by which chromatin domains harness biological processes within them.


Subject(s)
Chromosomes, Mammalian/metabolism , Regulatory Sequences, Nucleic Acid , V(D)J Recombination , Animals , CCCTC-Binding Factor , Chromosomes, Mammalian/chemistry , DNA-Binding Proteins/metabolism , Genes, myc , Genome , High-Throughput Nucleotide Sequencing , Homeodomain Proteins/metabolism , Humans , Immunoglobulin Heavy Chains/genetics , Lymphoma/genetics , Mice , Nucleotide Motifs , Repressor Proteins/metabolism , Sequence Analysis, DNA , Translocation, Genetic
3.
Cell ; 162(4): 751-65, 2015 Aug 13.
Article in English | MEDLINE | ID: mdl-26234156

ABSTRACT

The RAG1 endonuclease, together with its cofactor RAG2, is essential for V(D)J recombination but is a potent threat to genome stability. The sources of RAG1 mis-targeting and the mechanisms that have evolved to suppress it are poorly understood. Here, we report that RAG1 associates with chromatin at thousands of active promoters and enhancers in the genome of developing lymphocytes. The mouse and human genomes appear to have responded by reducing the abundance of "cryptic" recombination signals near RAG1 binding sites. This depletion operates specifically on the RSS heptamer, whereas nonamers are enriched at RAG1 binding sites. Reversing this RAG-driven depletion of cleavage sites by insertion of strong recombination signals creates an ectopic hub of RAG-mediated V(D)J recombination and chromosomal translocations. Our findings delineate rules governing RAG binding in the genome, identify areas at risk of RAG-mediated damage, and highlight the evolutionary struggle to accommodate programmed DNA damage in developing lymphocytes.


Subject(s)
Genomic Instability , Homeodomain Proteins/metabolism , Lymphocytes/metabolism , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , Base Sequence , Binding Sites , Cell Line , DNA-Binding Proteins/metabolism , Humans , Lymphocytes/cytology , Mice , Molecular Sequence Data , Translocation, Genetic , V(D)J Recombination
4.
Genes Dev ; 36(7-8): 433-450, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35450882

ABSTRACT

Somatic hypermutation (SHM) produces point mutations in immunoglobulin (Ig) genes in B cells when uracils created by the activation-induced deaminase are processed in a mutagenic manner by enzymes of the base excision repair (BER) and mismatch repair (MMR) pathways. Such uracil processing creates DNA strand breaks and is susceptible to the generation of deleterious deletions. Here, we demonstrate that the DNA repair factor HMCES strongly suppresses deletions without significantly affecting other parameters of SHM in mouse and human B cells, thereby facilitating the production of antigen-specific antibodies. The deletion-prone repair pathway suppressed by HMCES operates downstream from the uracil glycosylase UNG and is mediated by the combined action of BER factor APE2 and MMR factors MSH2, MSH6, and EXO1. HMCES's ability to shield against deletions during SHM requires its capacity to form covalent cross-links with abasic sites, in sharp contrast to its DNA end-joining role in class switch recombination but analogous to its genome-stabilizing role during DNA replication. Our findings lead to a novel model for the protection of Ig gene integrity during SHM in which abasic site cross-linking by HMCES intercedes at a critical juncture during processing of vulnerable gapped DNA intermediates by BER and MMR enzymes.


Subject(s)
Genes, Immunoglobulin , Somatic Hypermutation, Immunoglobulin , Animals , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , DNA/genetics , DNA-Binding Proteins , Genes, Immunoglobulin/genetics , Immunoglobulin Class Switching/genetics , Mice , Somatic Hypermutation, Immunoglobulin/genetics , Uracil
5.
Cell ; 159(7): 1490-2, 2014 Dec 18.
Article in English | MEDLINE | ID: mdl-25525869

ABSTRACT

AID mis-targeting is poorly understood but contributes significantly to B cell genome instability. Two new papers in Cell reveal that AID mistargeting occurs primarily in gene bodies within a nuclear microenvironment characterized by high levels of transcriptional activity, interconnected transcriptional regulatory elements, and overlapping sense and antisense (convergent) transcription.

6.
Cell ; 159(1): 94-107, 2014 Sep 25.
Article in English | MEDLINE | ID: mdl-25259923

ABSTRACT

The emergence of recombination-activating genes (RAGs) in jawed vertebrates endowed adaptive immune cells with the ability to assemble a diverse set of antigen receptor genes. In contrast, innate lymphocytes, such as natural killer (NK) cells, are not believed to require RAGs. Here, we report that NK cells unable to express RAGs or RAG endonuclease activity during ontogeny exhibit a cell-intrinsic hyperresponsiveness but a diminished capacity to survive following virus-driven proliferation, a reduced expression of DNA damage response mediators, and defects in the repair of DNA breaks. Evidence for this novel function of RAG has also been observed in T cells and innate lymphoid cells (ILCs), revealing an unexpected role for RAG proteins beyond V(D)J recombination. We propose that DNA cleavage events mediated by RAG endow developing adaptive and innate lymphocytes with a cellular "fitness" that safeguards their persistence later in life during episodes of rapid proliferation or cellular stress.


Subject(s)
DNA-Binding Proteins/metabolism , Homeodomain Proteins/metabolism , Killer Cells, Natural/immunology , Animals , Cytomegalovirus Infections/immunology , DNA Breaks, Double-Stranded , DNA-Binding Proteins/genetics , Homeodomain Proteins/genetics , Killer Cells, Natural/cytology , Killer Cells, Natural/metabolism , Lymphocytes/immunology , Mice, Inbred C57BL , Mice, SCID , Muromegalovirus/physiology , Stem Cells/cytology , Stem Cells/metabolism , V(D)J Recombination
7.
Nat Immunol ; 16(10): 1094-103, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26301565

ABSTRACT

B lymphopoiesis requires that immunoglobulin genes be accessible to RAG1-RAG2 recombinase. However, the RAG proteins bind widely to open chromatin, which suggests that additional mechanisms must restrict RAG-mediated DNA cleavage. Here we show that developmental downregulation of interleukin 7 (IL-7)-receptor signaling in small pre-B cells induced expression of the bromodomain-family member BRWD1, which was recruited to a specific epigenetic landscape at Igk dictated by pre-B cell receptor (pre-BCR)-dependent Erk activation. BRWD1 enhanced RAG recruitment, increased gene accessibility and positioned nucleosomes 5' to each Jκ recombination signal sequence. BRWD1 thus targets recombination to Igk and places recombination within the context of signaling cascades that control B cell development. Our findings represent a paradigm in which, at any particular antigen-receptor locus, specialized mechanisms enforce lineage- and stage-specific recombination.


Subject(s)
Histone Acetyltransferases/metabolism , Immunoglobulins/genetics , Recombination, Genetic/immunology , Animals , Apoptosis , Down-Regulation/immunology , Histone Acetyltransferases/genetics , Histone Acetyltransferases/immunology , Interleukin-7/genetics , Interleukin-7/immunology , Mice , Signal Transduction/immunology , Up-Regulation/immunology
8.
Nat Immunol ; 16(7): 766-774, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25985233

ABSTRACT

Childhood acute lymphoblastic leukemia (ALL) can often be traced to a pre-leukemic clone carrying a prenatal genetic lesion. Postnatally acquired mutations then drive clonal evolution toward overt leukemia. The enzymes RAG1-RAG2 and AID, which diversify immunoglobulin-encoding genes, are strictly segregated in developing cells during B lymphopoiesis and peripheral mature B cells, respectively. Here we identified small pre-BII cells as a natural subset with increased genetic vulnerability owing to concurrent activation of these enzymes. Consistent with epidemiological findings on childhood ALL etiology, susceptibility to genetic lesions during B lymphopoiesis at the transition from the large pre-BII cell stage to the small pre-BII cell stage was exacerbated by abnormal cytokine signaling and repetitive inflammatory stimuli. We demonstrated that AID and RAG1-RAG2 drove leukemic clonal evolution with repeated exposure to inflammatory stimuli, paralleling chronic infections in childhood.


Subject(s)
B-Lymphocytes/immunology , Clonal Evolution/immunology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology , Precursor Cells, B-Lymphoid/immunology , Adolescent , Animals , Antibody Diversity/genetics , Antibody Diversity/immunology , B-Lymphocytes/metabolism , Child , Child, Preschool , Clonal Evolution/genetics , Cytidine Deaminase/genetics , Cytidine Deaminase/immunology , Cytidine Deaminase/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/immunology , DNA-Binding Proteins/metabolism , Female , Flow Cytometry , Homeodomain Proteins/genetics , Homeodomain Proteins/immunology , Homeodomain Proteins/metabolism , Humans , Immunoblotting , Infant , Male , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Mice, Transgenic , Microscopy, Fluorescence , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor Cells, B-Lymphoid/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured
9.
Cell ; 141(3): 419-31, 2010 Apr 30.
Article in English | MEDLINE | ID: mdl-20398922

ABSTRACT

The critical initial step in V(D)J recombination, binding of RAG1 and RAG2 to recombination signal sequences flanking antigen receptor V, D, and J gene segments, has not previously been characterized in vivo. Here, we demonstrate that RAG protein binding occurs in a highly focal manner to a small region of active chromatin encompassing Ig kappa and Tcr alpha J gene segments and Igh and Tcr beta J and J-proximal D gene segments. Formation of these small RAG-bound regions, which we refer to as recombination centers, occurs in a developmental stage- and lineage-specific manner. Each RAG protein is independently capable of specific binding within recombination centers. While RAG1 binding was detected only at regions containing recombination signal sequences, RAG2 binds at thousands of sites in the genome containing histone 3 trimethylated at lysine 4. We propose that recombination centers coordinate V(D)J recombination by providing discrete sites within which gene segments are captured for recombination.


Subject(s)
DNA-Binding Proteins/metabolism , Gene Rearrangement, B-Lymphocyte , Gene Rearrangement, T-Lymphocyte , Homeodomain Proteins/metabolism , Animals , Genes, Immunoglobulin Heavy Chain , Genes, T-Cell Receptor alpha , Genes, T-Cell Receptor beta , Immunoglobulin kappa-Chains/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Recombination, Genetic
10.
Nature ; 575(7783): 540-544, 2019 11.
Article in English | MEDLINE | ID: mdl-31723264

ABSTRACT

Transposons have had a pivotal role in genome evolution1 and are believed to be the evolutionary progenitors of the RAG1-RAG2 recombinase2, an essential component of the adaptive immune system in jawed vertebrates3. Here we report one crystal structure and five cryo-electron microscopy structures of Transib4,5, a RAG1-like transposase from Helicoverpa zea, that capture the entire transposition process from the apo enzyme to the terminal strand transfer complex with transposon ends covalently joined to target DNA, at resolutions of 3.0-4.6 Å. These structures reveal a butterfly-shaped complex that undergoes two cycles of marked conformational changes in which the 'wings' of the transposase unfurl to bind substrate DNA, close to execute cleavage, open to release the flanking DNA and close again to capture and attack target DNA. Transib possesses unique structural elements that compensate for the absence of a RAG2 partner, including a loop that interacts with the transposition target site and an accordion-like C-terminal tail that elongates and contracts to help to control the opening and closing of the enzyme and assembly of the active site. Our findings reveal the detailed reaction pathway of a eukaryotic cut-and-paste transposase and illuminate some of the earliest steps in the evolution of the RAG recombinase.


Subject(s)
Biocatalysis , Homeodomain Proteins , Moths/enzymology , Transposases/chemistry , Transposases/metabolism , Amino Acid Sequence , Animals , Apoenzymes/chemistry , Apoenzymes/metabolism , Apoenzymes/ultrastructure , Base Sequence , Cryoelectron Microscopy , Crystallography, X-Ray , DNA/chemistry , DNA/genetics , DNA/metabolism , DNA Cleavage , DNA-Binding Proteins , Evolution, Molecular , Homeodomain Proteins/chemistry , Homeodomain Proteins/metabolism , Homeodomain Proteins/ultrastructure , Models, Molecular , Moths/ultrastructure , Protein Domains , Transposases/ultrastructure
11.
Nature ; 569(7754): 79-84, 2019 05.
Article in English | MEDLINE | ID: mdl-30971819

ABSTRACT

Domestication of a transposon (a DNA sequence that can change its position in a genome) to give rise to the RAG1-RAG2 recombinase (RAG) and V(D)J recombination, which produces the diverse repertoire of antibodies and T cell receptors, was a pivotal event in the evolution of the adaptive immune system of jawed vertebrates. The evolutionary adaptations that transformed the ancestral RAG transposase into a RAG recombinase with appropriately regulated DNA cleavage and transposition activities are not understood. Here, beginning with cryo-electron microscopy structures of the amphioxus ProtoRAG transposase (an evolutionary relative of RAG), we identify amino acid residues and domains the acquisition or loss of which underpins the propensity of RAG for coupled cleavage, its preference for asymmetric DNA substrates and its inability to perform transposition in cells. In particular, we identify two adaptations specific to jawed-vertebrates-arginine 848 in RAG1 and an acidic region in RAG2-that together suppress RAG-mediated transposition more than 1,000-fold. Our findings reveal a two-tiered mechanism for the suppression of RAG-mediated transposition, illuminate the evolution of V(D)J recombination and provide insight into the principles that govern the molecular domestication of transposons.


Subject(s)
DNA Transposable Elements/genetics , Evolution, Molecular , Genes, RAG-1 , Homeodomain Proteins/chemistry , Homeodomain Proteins/ultrastructure , Lancelets/enzymology , V(D)J Recombination , Amino Acid Sequence , Animals , Base Sequence , Cryoelectron Microscopy , DNA Cleavage , Homeodomain Proteins/metabolism , Models, Molecular , Protein Domains , Structure-Activity Relationship
12.
Mol Biol Evol ; 40(11)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37850912

ABSTRACT

A series of "molecular domestication" events are thought to have converted an invertebrate RAG-like (RAGL) transposase into the RAG1-RAG2 (RAG) recombinase, a critical enzyme for adaptive immunity in jawed vertebrates. The timing and order of these events are not well understood, in part because of a dearth of information regarding the invertebrate RAGL-A transposon family. In contrast to the abundant and divergent RAGL-B transposon family, RAGL-A most closely resembles RAG and is represented by a single orphan RAG1-like (RAG1L) gene in the genome of the hemichordate Ptychodera flava (PflRAG1L-A). Here, we provide evidence for the existence of complete RAGL-A transposons in the genomes of P. flava and several echinoderms. The predicted RAG1L-A and RAG2L-A proteins encoded by these transposons intermingle sequence features of jawed vertebrate RAG and RAGL-B transposases, leading to a prediction of DNA binding, catalytic, and transposition activities that are a hybrid of RAG and RAGL-B. Similarly, the terminal inverted repeats (TIRs) of the RAGL-A transposons combine features of both RAGL-B transposon TIRs and RAG recombination signal sequences. Unlike all previously described RAG2L proteins, RAG2L-A proteins contain an acidic hinge region, which we demonstrate is capable of efficiently inhibiting RAG-mediated transposition. Our findings provide evidence for a critical intermediate in RAG evolution and argue that certain adaptations thought to be specific to jawed vertebrates (e.g. the RAG2 acidic hinge) actually arose in invertebrates, thereby focusing attention on other adaptations as the pivotal steps in the completion of RAG domestication in jawed vertebrates.


Subject(s)
DNA Transposable Elements , Homeodomain Proteins , Animals , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Vertebrates/genetics , Vertebrates/metabolism , Adaptive Immunity/genetics
13.
EMBO J ; 39(21): e105857, 2020 11 02.
Article in English | MEDLINE | ID: mdl-32945578

ABSTRACT

Jawed vertebrate adaptive immunity relies on the RAG1/RAG2 (RAG) recombinase, a domesticated transposase, for assembly of antigen receptor genes. Using an integration-activated form of RAG1 with methionine at residue 848 and cryo-electron microscopy, we determined structures that capture RAG engaged with transposon ends and U-shaped target DNA prior to integration (the target capture complex) and two forms of the RAG strand transfer complex that differ based on whether target site DNA is annealed or dynamic. Target site DNA base unstacking, flipping, and melting by RAG1 methionine 848 explain how this residue activates transposition, how RAG can stabilize sharp bends in target DNA, and why replacement of residue 848 by arginine during RAG domestication led to suppression of transposition activity. RAG2 extends a jawed vertebrate-specific loop to interact with target site DNA, and functional assays demonstrate that this loop represents another evolutionary adaptation acquired during RAG domestication to inhibit transposition. Our findings identify mechanistic principles of the final step in cut-and-paste transposition and the molecular and structural logic underlying the transformation of RAG from transposase to recombinase.


Subject(s)
DNA-Binding Proteins/chemistry , Evolution, Molecular , Homeodomain Proteins/chemistry , Recombinases/chemistry , Animals , Cryoelectron Microscopy , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , HMGB1 Protein/chemistry , HMGB1 Protein/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Models, Molecular , Nuclear Proteins , Protein Conformation , Recombinases/genetics , Recombination, Genetic , Transposases/chemistry , Transposases/genetics , Transposases/metabolism , Vertebrates
14.
Nat Immunol ; 13(12): 1205-12, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23104096

ABSTRACT

Genes encoding immunoglobulin heavy chains (Igh) are assembled by rearrangement of variable (V(H)), diversity (D(H)) and joining (J(H)) gene segments. Three critical constraints govern V(H) recombination. These include timing (V(H) recombination follows D(H) recombination), precision (V(H) gene segments recombine only to DJ(H) junctions) and allele specificity (V(H) recombination is restricted to DJ(H)-recombined alleles). Here we provide a model for these universal features of V(H) recombination. Analyses of DJ(H)-recombined alleles showed that DJ(H) junctions were selectively epigenetically marked, became nuclease sensitive and bound RAG recombinase proteins, which thereby permitted D(H)-associated recombination signal sequences to initiate the second step of Igh gene assembly. We propose that V(H) recombination is precise, because these changes did not extend to germline D(H) segments located 5' of the DJ(H) junction.


Subject(s)
B-Lymphocytes/metabolism , Epigenesis, Genetic , Gene Rearrangement, B-Lymphocyte, Heavy Chain , Genes, Immunoglobulin Heavy Chain , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Joining Region/genetics , Immunoglobulin Variable Region/genetics , Animals , Cell Line , Chromatin/metabolism , Histones/metabolism , Mice , Precursor Cells, B-Lymphoid/immunology , Precursor Cells, B-Lymphoid/metabolism , Recombinases/metabolism , Recombination, Genetic
15.
J Immunol ; 208(1): 143-154, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34862258

ABSTRACT

Somatic hypermutation (SHM) drives the genetic diversity of Ig genes in activated B cells and supports the generation of Abs with increased affinity for Ag. SHM is targeted to Ig genes by their enhancers (diversification activators [DIVACs]), but how the enhancers mediate this activity is unknown. We show using chicken DT40 B cells that highly active DIVACs increase the phosphorylation of RNA polymerase II (Pol II) and Pol II occupancy in the mutating gene with little or no accompanying increase in elongation-competent Pol II or production of full-length transcripts, indicating accumulation of stalled Pol II. DIVAC has similar effect also in human Ramos Burkitt lymphoma cells. The DIVAC-induced stalling is weakly associated with an increase in the detection of ssDNA bubbles in the mutating target gene. We did not find evidence for antisense transcription, or that DIVAC functions by altering levels of H3K27ac or the histone variant H3.3 in the mutating gene. These findings argue for a connection between Pol II stalling and cis-acting targeting elements in the context of SHM and thus define a mechanistic basis for locus-specific targeting of SHM in the genome. Our results suggest that DIVAC elements render the target gene a suitable platform for AID-mediated mutation without a requirement for increasing transcriptional output.


Subject(s)
Avian Proteins/metabolism , B-Lymphocyte Subsets/immunology , Burkitt Lymphoma/immunology , Enhancer Elements, Genetic/genetics , Immunoglobulins/metabolism , RNA Polymerase II/metabolism , Animals , Antibody Diversity , Avian Proteins/genetics , Burkitt Lymphoma/genetics , Chickens , Cytidine Deaminase/genetics , Humans , Immunoglobulins/genetics , Lymphocyte Activation , Mutagenesis, Site-Directed , Mutation/genetics , RNA Polymerase II/genetics , Somatic Hypermutation, Immunoglobulin , Transcription, Genetic
16.
Genes Dev ; 30(8): 909-17, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-27056670

ABSTRACT

The recombination-activating gene 1 (RAG1) and RAG2 proteins initiate V(D)J recombination, the process that assembles the B- and T-lymphocyte antigen receptor genes of jawed vertebrates. RAG1 and RAG2 are thought to have arisen from a transposable element, but the origins of this element are not understood. We show that two ancestral RAG1 proteins, Transib transposase and purple sea urchin RAG1-like, have a latent ability to initiate V(D)J recombination when coexpressed with RAG2 and that in vitro transposition by Transib transposase is stimulated by RAG2. Conversely, we report low levels of V(D)J recombination by RAG1 in the absence of RAG2. Recombination by RAG1 alone differs from canonical V(D)J recombination in having lost the requirement for asymmetric DNA substrates, implicating RAG2 in the origins of the "12/23 rule," a fundamental regulatory feature of the reaction. We propose that evolution of RAG1/RAG2 began with a Transib transposon whose intrinsic recombination activity was enhanced by capture of an ancestral RAG2, allowing for the development of adaptive immunity.


Subject(s)
DNA-Binding Proteins/metabolism , Evolution, Molecular , Homeodomain Proteins/metabolism , V(D)J Recombination/genetics , 3T3 Cells , Adaptive Immunity/genetics , Animals , DNA Transposable Elements/genetics , DNA-Binding Proteins/genetics , Homeodomain Proteins/genetics , Mice , Strongylocentrotus purpuratus/genetics , Transposases/metabolism
17.
Nat Immunol ; 12(1): 70-6, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21151102

ABSTRACT

Activation-induced deaminase (AID) initiates diversity of immunoglobulin genes through deamination of cytosine to uracil. Two opposing models have been proposed for the deamination of DNA or RNA by AID. Although most data support DNA deamination, there is no physical evidence of uracil residues in immunoglobulin genes. Here we demonstrate their presence by determining the sensitivity of DNA to digestion with uracil DNA glycosylase (UNG) and abasic endonuclease. Using several methods of detection, we identified uracil residues in the variable and switch regions. Uracil residues were generated within 24 h of B cell stimulation, were present on both DNA strands and were found to replace mainly cytosine bases. Our data provide direct evidence for the model that AID functions by deaminating cytosine residues in DNA.


Subject(s)
B-Lymphocytes/metabolism , Cytidine Deaminase/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Uracil-DNA Glycosidase/metabolism , Animals , Antigenic Variation/genetics , B-Lymphocytes/immunology , B-Lymphocytes/pathology , Cells, Cultured , Cytidine Deaminase/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , Immunoglobulin Class Switching , Immunoglobulin Variable Region , Interleukin-4/immunology , Interleukin-4/metabolism , Lipopolysaccharides/immunology , Lipopolysaccharides/metabolism , Lymphocyte Activation/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Chemical , Spleen/pathology , Uracil/analysis , Uracil-DNA Glycosidase/genetics
18.
Proc Natl Acad Sci U S A ; 117(8): 4300-4309, 2020 02 25.
Article in English | MEDLINE | ID: mdl-32047031

ABSTRACT

V(D)J recombination assembles and diversifies Ig and T cell receptor genes in developing B and T lymphocytes. The reaction is initiated by the RAG1-RAG2 protein complex which binds and cleaves at discrete gene segments in the antigen receptor loci. To identify mechanisms that regulate V(D)J recombination, we used proximity-dependent biotin identification to analyze the interactomes of full-length and truncated forms of RAG1 in pre-B cells. This revealed an association of RAG1 with numerous nucleolar proteins in a manner dependent on amino acids 216 to 383 and allowed identification of a motif required for nucleolar localization. Experiments in transformed pre-B cell lines and cultured primary pre-B cells reveal a strong correlation between disruption of nucleoli, reduced association of RAG1 with a nucleolar marker, and increased V(D)J recombination activity. Mutation of the RAG1 nucleolar localization motif boosts recombination while removal of the first 215 amino acids of RAG1, required for efficient egress from nucleoli, reduces recombination activity. Our findings indicate that nucleolar sequestration of RAG1 is a negative regulatory mechanism in V(D)J recombination and identify regions of the RAG1 N-terminal region that control nucleolar association and egress.


Subject(s)
Cell Nucleolus/metabolism , Homeodomain Proteins/metabolism , V(D)J Recombination , Amino Acid Motifs , Animals , Cell Nucleolus/genetics , Cells, Cultured , Homeodomain Proteins/chemistry , Homeodomain Proteins/genetics , Mice , Precursor Cells, B-Lymphoid/metabolism , Protein Transport
19.
Nucleic Acids Res ; 48(12): 6726-6739, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32449932

ABSTRACT

Developing lymphocytes of jawed vertebrates cleave and combine distinct gene segments to assemble antigen-receptor genes. This process called V(D)J recombination that involves the RAG recombinase binding and cutting recombination signal sequences (RSSs) composed of conserved heptamer and nonamer sequences flanking less well-conserved 12- or 23-bp spacers. Little quantitative information is known about the contributions of individual RSS positions over the course of the RAG-RSS interaction. We employ a single-molecule method known as tethered particle motion to track the formation, lifetime and cleavage of individual RAG-12RSS-23RSS paired complexes (PCs) for numerous synthetic and endogenous 12RSSs. We reveal that single-bp changes, including in the 12RSS spacer, can significantly and selectively alter PC formation or the probability of RAG-mediated cleavage in the PC. We find that some rarely used endogenous gene segments can be mapped directly to poor RAG binding on their adjacent 12RSSs. Finally, we find that while abrogating RSS nicking with Ca2+ leads to substantially shorter PC lifetimes, analysis of the complete lifetime distributions of any 12RSS even on this reduced system reveals that the process of exiting the PC involves unidentified molecular details whose involvement in RAG-RSS dynamics are crucial to quantitatively capture kinetics in V(D)J recombination.


Subject(s)
Nucleic Acid Conformation , Protein Sorting Signals/genetics , Receptors, Antigen/genetics , V(D)J Recombination/genetics , Animals , DNA Cleavage , Lymphocytes/metabolism , Single Molecule Imaging , Vertebrates/genetics , Vertebrates/growth & development
20.
Eur J Immunol ; 50(3): 380-395, 2020 03.
Article in English | MEDLINE | ID: mdl-31821534

ABSTRACT

Secondary diversification of the Ig repertoire occurs through somatic hypermutation (SHM), gene conversion (GCV), and class switch recombination (CSR)-three processes that are initiated by activation-induced cytidine deaminase (AID). AID targets Ig genes at orders of magnitude higher than the rest of the genome, but the basis for this specificity is poorly understood. We have previously demonstrated that enhancers and enhancer-like sequences from Ig genes are capable of stimulating SHM of neighboring genes in a capacity distinct from their roles in increasing transcription. Here, we use an in vitro proteomics approach to identify E-box, MEF2, Ets, and Ikaros transcription factor family members as potential binders of these enhancers. ChIP assays in the hypermutating Ramos B cell line confirmed that many of these factors bound the endogenous Igλ enhancer and/or the IgH intronic enhancer (Eµ) in vivo. Further investigation using SHM reporter assays identified binding sites for E2A and MEF2B in Eµ and demonstrated an association between loss of factor binding and decreases in the SHM stimulating activity of Eµ mutants. Our results provide novel insights into trans-acting factors that dictate SHM targeting and link their activity to specific DNA binding sites within Ig enhancers.


Subject(s)
Somatic Hypermutation, Immunoglobulin/physiology , Animals , Chickens , Genes, Immunoglobulin , Humans , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL