Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Water Sci Technol ; 78(10): 2119-2130, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30629540

ABSTRACT

This paper summarizes recent developments in biological phosphorus removal modelling, with special attention to side-stream enhanced biological phosphorus removal (S2EBPR) systems on which previous models proved to be ineffective without case-by-case parameter adjustments. Through the research and experience of experts and practitioners, a new bio-kinetic model was developed including an additional group of biomass (glycogen accumulating organisms - GAOs) and new processes (such as aerobic and anoxic maintenance for PAO and GAO; enhanced denitrification processes; fermentation by PAOs which - along with PAO selection - is driven by oxidation-reduction potential (ORP)). This model successfully described various conditions in laboratory measurements and full plant data. The calibration data set is provided by Clean Water Services from Rock Creek Facility (Hillsboro, OR) including two parallel trains: conventional A2O and Westbank configurations, allowing the model to be verified on conventional and side-stream EBPR systems as well.


Subject(s)
Models, Chemical , Phosphorus/chemistry , Water Pollutants, Chemical/analysis , Biomass , Bioreactors , Denitrification , Glycogen , Phosphorus/analysis , Polyphosphates
2.
Water Res ; 245: 120540, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37688851

ABSTRACT

Side-stream enhanced biological phosphorus removal process (S2EBPR) has been demonstrated to improve performance stability and offers a suite of advantages compared to conventional EBPR design. Design and optimization of S2EBPR require modification of the current EBPR models that were not able to fully reflect the metabolic functions of and competition between the polyphosphate-accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs) under extended anaerobic conditions as in the S2EBPR conditions. In this study, we proposed and validated an improved model (iEBPR) for simulating PAO and GAO competition that incorporated heterogeneity and versatility in PAO sequential polymer usage, staged maintenance-decay, and glycolysis-TCA pathway shifts. The iEBPR model was first calibrated against bulk batch testing experiment data and proved to perform better than the previous EBPR model for predicting the soluble orthoP, ammonia, biomass glycogen, and PHA temporal profiles in a starvation batch testing under prolonged anaerobic conditions. We further validated the model with another independent set of anaerobic testing data that included high-resolution single-cell and specific population level intracellular polymer measurements acquired with single-cell Raman micro-spectroscopy technique. The model accurately predicted the temporal changes in the intracellular polymers at cellular and population levels within PAOs and GAOs, and further confirmed the proposed mechanism of sequential polymer utilization, and polymer availability-dependent and staged maintenance-decay in PAOs. These results indicate that under extended anaerobic phases as in S2EBPR, the PAOs may gain competitive advantages over GAOs due to the possession of multiple intracellular polymers and the adaptive switching of the anaerobic metabolic pathways that consequently lead to the later and slower decay in PAOs than GAOs. The iEBPR model can be applied to facilitate and optimize the design and operations of S2EBPR for more reliable nutrient removal and recovery from wastewater.

3.
Water Res ; 220: 118714, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35687977

ABSTRACT

Many wastewater utilities have discharge permits directly tied with the receiving river flow, so it is critical to have accurate prediction of the hydraulic throughput to ensure safe operation and environment protection. Current empirical knowledge-based operation faces many challenges, so in this study we developed and assessed daily-adaptive, probabilistic soft sensor prediction models to forecast the next month's average receiving river flowrate and guide the utility operations. By comparing 11 machine-learning methods, extra trees regression exhibits desired deterministic prediction accuracy at day 0 (overall accuracy index: 3.9 × 10-3 1/cms2) (cms: cubic meter per second), which also increases steadily over the course of the month (e.g., MAPE and RMSE decrease from 41.46% and 23.31 cms to 3.31% and 2.81 cms, respectively). The overall classification accuracy of three river flow classes reaches 0.79 at the beginning and increases to about 0.97 over the course of the predicted month. To manage the uncertainty caused by potential false negative classification as overestimations, a probabilistic assessment on the predictions based on 95% lower PI is developed and successfully reduces the false negative classification from 17% to nearly zero with a slight sacrifice of overall classification accuracy.


Subject(s)
Rivers , Water Purification , Conservation of Natural Resources , Machine Learning , Risk Management
4.
Water Res ; 206: 117725, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34653799

ABSTRACT

Candidatus Accumulibacter phosphatis (CAP) and its clade-level micro-diversity has been associated with and implicated in functional differences in phosphorus removal performance in enhanced biological phosphorus removal (EBPR) systems. Side-stream EBPR (S2EBPR) is an emerging process that has been shown to present a suite of advantages over the conventional EBPR design, however, large knowledge gaps remain in terms of its underlying ecological mechanisms. Here, we compared and revealed the higher-resolution differences in microbial ecology of CAP between a full-scale side-stream EBPR configuration and a conventional A2O EBPR process that were operated in parallel and with the same influent feed. Even though the relative abundance of CAP, revealed by 16S rRNA gene amplicon sequencing, was similar in both treatment trains, a clade-level analysis, using combined 16S rRNA-gene based amplicon sequencing and oligotyping analysis and metagenomics analysis, revealed the distinct CAP microdiversity between the S2EBPR and A2O configurations that likely attributed to the improved performance in S2EBPR in comparison to conventional EBPR. Furthermore, genome-resolved metagenomics enabled extraction of three metagenome-assembled genomes (MAGs) belonging to CAP clades IIB (RCAB4-2), IIC (RC14) and II (RC18), from full-scale EBPR sludge for the first time, including a distinct Ca. Accumulibacter clade that is dominant and associated only with the S2EBPR configuration. The results also revealed the temporally increasing predominance of RC14, which belonged to Clade IIC, during the implementation of the S2EBPR configuration. Finally, we also show the existence of previously uncharacterized diversity of clades of CAP, namely the clades IIB and as yet unidentified clade of type II, in full-scale EBPR communities, highlighting the unknown diversity of CAP communities in full-scale EBPR systems.


Subject(s)
Metagenomics , Phosphorus , Bioreactors , Phylogeny , RNA, Ribosomal, 16S/genetics , Rivers , Sewage
5.
Water Environ Res ; 92(3): 403-417, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31402530

ABSTRACT

Sidestream EBPR (S2EBPR) is an emerging alternative process to address common challenges in EBPR related to weak wastewater influent and may improve EBPR process stability. A systematic evaluation and comparison of the process performance and microbial community structure was conducted between conventional and S2EBPR facilities in North America. The statistical analysis suggested higher performance stability in S2EBPR than conventional EBPR, although possible bias associated with other plant-specific factors might have affected the comparison. Variations in stoichiometric values related to EBPR activity and discrepancies between the observed values and current model predictions suggested a varying degree of metabolic versatility of PAOs in S2EBPR systems that warrant further investigation. Microbial community analysis using various techniques suggested comparable known candidate PAO relative abundances in S2EBPR and conventional EBPR systems, whereas the relative abundance of known candidate GAOs seemed to be consistently lower in S2EBPR facilities than conventional EBPR facilities. 16S rRNA gene sequencing analysis revealed differences in the community phylogenetic fingerprints between S2EBPR and conventional facilities and indicated statistically higher microbial diversity index values in S2EBPR facilities than those in conventional EBPRs. PRACTITIONER POINTS: Sidestream EBPR (S2EBPR) can be implemented with varying and flexible configurations, and they offer advantages over conventional configurations for addressing the common challenges in EBPR related to weak wastewater influent and may improve EBPR process stability. Survey of S2EBPR plants in North America suggested statistically more stable phosphorus removal performance in S2EBPR plants than conventional EBPRs, although possible bias might affect the comparison due to other plant-specific factors. The EBPR kinetics and stoichiometry of the S2EBPR facilities seemed to vary and are associated with metabolic versatility of PAOs in S2EBPR systems that warrant further investigation. The abundance of known candidate PAOs in S2EBPR plants was similar to those in conventional EBPRs, and the abundance of known candidate GAOs was generally lower in S2EBPR than conventional EBPR facilities. Further finer-resolution analysis of PAOs and GAOs, as well as identification of other unknown PAOs and GAOs, is needed. Microbial diversity is higher in S2EBPR facilities compared with conventional ones, implying that S2EBPR microbial communities could show better resilience to perturbations due to potential functional redundancy.


Subject(s)
Bioreactors , Phosphorus , Kinetics , North America , Phylogeny , Polyphosphates , RNA, Ribosomal, 16S , Surveys and Questionnaires
6.
Water Res ; 167: 115109, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31585384

ABSTRACT

To address the common challenges in enhanced biological phosphorus removal (EBPR) related to stability and unfavorable influent carbon to phosphorus ratio, a side-stream EBPR (S2EBPR) process that involves a side-stream anaerobic biological sludge hydrolysis and fermentation reactor was proposed as an emerging alternative. In this study, a full-scale pilot testing was performed with side-by-side operation of a conventional anaerobic-anoxic-aerobic (A2O) process versus a S2EBPR process. A comparison of the performance, activity and microbial community between the two configurations was performed. The results demonstrated that, with the same influent wastewater characteristics, S2EBPR configuration showed improved P removal performance and stability than the conventional A2O configuration, especially when the mixers in the side-stream anaerobic reactor were operated intermittently. Mass balance analysis illustrated that both denitrification and EBPR were enhanced in S2EBPR configuration, where return activated sludge was diverted into the anaerobic zone to promote fermentation and enrichment of polyphosphate accumulating organisms (PAOs), and the influent was bypassed to the anoxic zone for enhancing denitrification. A relatively higher PAO activity and total PAO abundance were observed in S2EBPR than in A2O configuration, accompanied by a higher degree of dependence on glycolysis pathway than tricarboxylic acid cycle. No significant difference in the relative abundances of putative PAOs, including Ca. Accumulibacter and Tetrasphaera, were observed between the two configurations. However, higher microbial community diversity indices were observed in S2EBPR configuration than in conventional one. In addition, consistently lower relative abundance of known glycogen accumulating organisms (GAOs) was observed in S2EBPR system. Extended anaerobic retention time and conditions that generate continuous and more complex volatile fatty acids in the side-stream anaerobic reactor of S2EBPR process likely give more competitive advantage for PAOs over GAOs. PAOs exhibited sustained EBPR activity and delayed decay under extended anaerobic condition, likely due to their versatile metabolic pathways depending on the availability and utilization of multiple intracellular polymers. This study provided new insights into the effects of implementing side-stream EBPR configuration on microbial populations, EBPR activity profiles and resulted system performance.


Subject(s)
Phosphorus , Rivers , Bioreactors , Polyphosphates , Sewage , Wastewater
7.
J Fungi (Basel) ; 5(2)2019 Jun 13.
Article in English | MEDLINE | ID: mdl-31200520

ABSTRACT

Oral candidiasis is a common side effect of cancer chemotherapy. To better understand predisposing factors, we followed forty-five subjects who received 5-fluorouracil- or doxorubicin-based treatment, during one chemotherapy cycle. Subjects were evaluated at baseline, prior to the first infusion, and at three additional visits within a two-week window. We assessed the demographic, medical and oral health parameters, neutrophil surveillance, and characterized the salivary bacteriome and mycobiome communities through amplicon high throughput sequencing. Twenty percent of all subjects developed oral candidiasis. Using multivariate statistics, we identified smoking, amount of dental plaque, low bacteriome and mycobiome alpha-diversity, and the proportions of specific bacterial and fungal taxa as baseline predictors of oral candidiasis development during the treatment cycle. All subjects who developed oral candidiasis had baseline microbiome communities dominated by Candida and enriched in aciduric bacteria. Longitudinally, oral candidiasis was associated with a decrease in salivary flow prior to lesion development, and occurred simultaneously or before oral mucositis. Candidiasis was also longitudinally associated with a decrease in peripheral neutrophils but increased the neutrophil killing capacity of Candida albicans. Oral candidiasis was not found to be associated with mycobiome structure shifts during the cycle but was the result of an increase in Candida load, with C. albicans and Candida dubliniensis being the most abundant species comprising the salivary mycobiome of the affected subjects. In conclusion, we identified a set of clinical and microbiome baseline factors associated with susceptibility to oral candidiasis, which might be useful tools in identifying at risk individuals, prior to chemotherapy.

8.
Microbiome ; 7(1): 66, 2019 04 25.
Article in English | MEDLINE | ID: mdl-31018870

ABSTRACT

BACKGROUND: Gastrointestinal mucosal injury (mucositis), commonly affecting the oral cavity, is a clinically significant yet incompletely understood complication of cancer chemotherapy. Although antineoplastic cytotoxicity constitutes the primary injury trigger, the interaction of oral microbial commensals with mucosal tissues could modify the response. It is not clear, however, whether chemotherapy and its associated treatments affect oral microbial communities disrupting the homeostatic balance between resident microorganisms and the adjacent mucosa and if such alterations are associated with mucositis. To gain knowledge on the pathophysiology of oral mucositis, 49 subjects receiving 5-fluorouracil (5-FU) or doxorubicin-based chemotherapy were evaluated longitudinally during one cycle, assessing clinical outcomes, bacterial and fungal oral microbiome changes, and epithelial transcriptome responses. As a control for microbiome stability, 30 non-cancer subjects were longitudinally assessed. Through complementary in vitro assays, we also evaluated the antibacterial potential of 5-FU on oral microorganisms and the interaction of commensals with oral epithelial tissues. RESULTS: Oral mucositis severity was associated with 5-FU, increased salivary flow, and higher oral granulocyte counts. The oral bacteriome was disrupted during chemotherapy and while antibiotic and acid inhibitor intake contributed to these changes, bacteriome disruptions were also correlated with antineoplastics and independently and strongly associated with oral mucositis severity. Mucositis-associated bacteriome shifts included depletion of common health-associated commensals from the genera Streptococcus, Actinomyces, Gemella, Granulicatella, and Veillonella and enrichment of Gram-negative bacteria such as Fusobacterium nucleatum and Prevotella oris. Shifts could not be explained by a direct antibacterial effect of 5-FU, but rather resembled the inflammation-associated dysbiotic shifts seen in other oral conditions. Epithelial transcriptional responses during chemotherapy included upregulation of genes involved in innate immunity and apoptosis. Using a multilayer epithelial construct, we show mucositis-associated dysbiotic shifts may contribute to aggravate mucosal damage since the mucositis-depleted Streptococcus salivarius was tolerated as a commensal, while the mucositis-enriched F. nucleatum displayed pro-inflammatory and pro-apoptotic capacity. CONCLUSIONS: Altogether, our work reveals that chemotherapy-induced oral mucositis is associated with bacterial dysbiosis and demonstrates the potential for dysbiotic shifts to aggravate antineoplastic-induced epithelial injury. These findings suggest that control of oral bacterial dysbiosis could represent a novel preventive approach to ameliorate oral mucositis.


Subject(s)
Drug-Related Side Effects and Adverse Reactions/microbiology , Dysbiosis/etiology , Microbiota/drug effects , Mouth Mucosa/microbiology , Mouth Mucosa/pathology , Stomatitis/etiology , Antineoplastic Agents/adverse effects , Bacteria/drug effects , Drug Therapy , Dysbiosis/microbiology , Fluorouracil/adverse effects , Fungi/drug effects , Humans , Inflammation , Longitudinal Studies , Mouth/microbiology , Mouth Mucosa/drug effects , Prospective Studies , Stomatitis/microbiology
9.
Angiology ; 55(1): 93-7, 2004.
Article in English | MEDLINE | ID: mdl-14759096

ABSTRACT

The authors report the case of a 70-year-old man with metastatic colon cancer and no known history of coronary disease or major risk factors who developed coronary vasospasm after the initiation of capecitabine (Xeloda). Although coronary vasospasm has been associated with another older fluoropyrimidine compound, 5-fluorouracil, this is the first reported occurrence with this relatively newer cancer drug.


Subject(s)
Antimetabolites, Antineoplastic/adverse effects , Coronary Vasospasm/chemically induced , Deoxycytidine/analogs & derivatives , Deoxycytidine/adverse effects , Aged , Capecitabine , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Fluorouracil/analogs & derivatives , Humans , Male
11.
Cancer Immunol Immunother ; 52(8): 497-505, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12783216

ABSTRACT

Prostate-specific antigen (PSA) is a valuable marker antigen for prostate cancer. Lately considerable interest has been generated in the prospect of developing a vaccine for prostate cancer with PSA-derived peptide epitopes to induce cytotoxic T-cell (CTL) response. We report here that T cells capable of exhibiting PSA epitope-specific effector function-in their native state, i.e, without having to be further stimulated, in vitro-are detectable in more than half of the prostate cancer patients we studied. Ex vivo cultured autologous dendritic cells (DC) were used to present four HLA-A2-binding PSA peptide epitopes to freshly isolated peripheral blood lymphocytes (PBL) from patients and healthy volunteers. Ten out of 14 patients' PBL recognized at least one of the four peptides and 6 out of 10 patients' PBL recognized more than one peptide antigen as measured by IFN-gamma secretion upon stimulation of the PBL with the peptide antigen. Intracytoplasmic cytokine analysis for IFN-gamma in purified CD8(+) cells after stimulation with peptide antigens was tested in 6 patients and this technique demonstrated a similar response. Freshly isolated and purified CD8(+) cells when tested, also recognized the epitopes, as measured by IFN assay, when presented by transporter associated with antigen-processing (TAP) deficient T2 cells in an MHC-I restricted fashion. PBL from 9 normal donors when tested in identical fashion did not show any IFN-gamma production in recognition to the peptide antigens. Interestingly, neither of these CD8(+) T cells having IFN-gamma-producing ability did show any cytolytic activity in their native state against peptide loaded target cells or tumor cells when tested in cytotoxicity assay. In long term cocultures stimulation of purified CD8(+) T cells with matured DC pulsed with PSA peptides generated a PSA-specific CTL response in 4 of 6 patients studied and in 2 of 9 normal donors. While our observations of CTL generation are consistent with the prior reports that have demonstrated that specific CD8(+) CTL could be generated which recognize PSA-derived epitopes by in vitro stimulation by one means or another, this observation that IFN-gamma-producing CD8(+) T cells are present in patients which are antigen experienced, and do not require in vitro stimulation, is novel and has major implications for prostate cancer vaccine preparation.


Subject(s)
Adenocarcinoma/immunology , CD8-Positive T-Lymphocytes/immunology , Peptide Fragments/immunology , Prostate-Specific Antigen/immunology , Prostatic Neoplasms/immunology , Aged , Aged, 80 and over , Antigen Presentation , Case-Control Studies , Cells, Cultured , Cytokines/metabolism , Dendritic Cells , Enzyme-Linked Immunosorbent Assay , Epitopes , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , HLA-A2 Antigen/immunology , Humans , Interferon-gamma/metabolism , Male , Middle Aged , T-Lymphocytes, Cytotoxic/immunology
SELECTION OF CITATIONS
SEARCH DETAIL