Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
EMBO J ; 39(18): e104185, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32705708

ABSTRACT

Regions of the genome with the potential to form secondary DNA structures pose a frequent and significant impediment to DNA replication and must be actively managed in order to preserve genetic and epigenetic integrity. How the replisome detects and responds to secondary structures is poorly understood. Here, we show that a core component of the fork protection complex in the eukaryotic replisome, Timeless, harbours in its C-terminal region a previously unappreciated DNA-binding domain that exhibits specific binding to G-quadruplex (G4) DNA structures. We show that this domain contributes to maintaining processive replication through G4-forming sequences, and exhibits partial redundancy with an adjacent PARP-binding domain. Further, this function of Timeless requires interaction with and activity of the helicase DDX11. Loss of both Timeless and DDX11 causes epigenetic instability at G4-forming sequences and DNA damage. Our findings indicate that Timeless contributes to the ability of the replisome to sense replication-hindering G4 formation and ensures the prompt resolution of these structures by DDX11 to maintain processive DNA synthesis.


Subject(s)
Cell Cycle Proteins/metabolism , DEAD-box RNA Helicases/metabolism , DNA Damage , DNA Helicases/metabolism , DNA Replication , G-Quadruplexes , Intracellular Signaling Peptides and Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Line , DEAD-box RNA Helicases/genetics , DNA Helicases/genetics , Humans , Intracellular Signaling Peptides and Proteins/genetics , Protein Domains
2.
Mol Cell ; 61(1): 161-9, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26626482

ABSTRACT

G quadruplexes (G4s) can present potent blocks to DNA replication. Accurate and timely replication of G4s in vertebrates requires multiple specialized DNA helicases and polymerases to prevent genetic and epigenetic instability. Here we report that PrimPol, a recently described primase-polymerase (PrimPol), plays a crucial role in the bypass of leading strand G4 structures. While PrimPol is unable to directly replicate G4s, it can bind and reprime downstream of these structures. Disruption of either the catalytic activity or zinc-finger of PrimPol results in extreme G4-dependent epigenetic instability at the BU-1 locus in avian DT40 cells, indicative of extensive uncoupling of the replicative helicase and polymerase. Together, these observations implicate PrimPol in promoting restart of DNA synthesis downstream of, but closely coupled to, G4 replication impediments.


Subject(s)
Avian Proteins/metabolism , DNA Primase/metabolism , DNA Replication , DNA-Directed DNA Polymerase/metabolism , DNA/biosynthesis , G-Quadruplexes , Multifunctional Enzymes/metabolism , Animals , Avian Proteins/genetics , Base Sequence , Cell Line , Chickens , Chromatin Assembly and Disassembly , DNA/chemistry , DNA Primase/genetics , DNA-Directed DNA Polymerase/genetics , Epigenesis, Genetic , Genomic Instability , Histones/metabolism , Molecular Sequence Data , Multifunctional Enzymes/genetics , Transfection
3.
EMBO J ; 35(13): 1452-64, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27220848

ABSTRACT

Immunoglobulin diversification is driven by activation-induced deaminase (AID), which converts cytidine to uracil within the Ig variable (IgV) regions. Central to the recruitment of AID to the IgV genes are factors that regulate the generation of single-stranded DNA (ssDNA), the enzymatic substrate of AID Here, we report that chicken DT40 cells lacking variant histone H3.3 exhibit reduced IgV sequence diversification. We show that this results from impairment of the ability of AID to access the IgV genes due to reduced formation of ssDNA during IgV transcription. Loss of H3.3 also diminishes IgV R-loop formation. However, reducing IgV R-loops by RNase HI overexpression in wild-type cells does not affect IgV diversification, showing that these structures are not necessary intermediates for AID access. Importantly, the reduction in the formation of AID-accessible ssDNA in cells lacking H3.3 is independent of any effect on the level of transcription or the kinetics of RNAPII elongation, suggesting the presence of H3.3 in the nucleosomes of the IgV genes increases the chances of the IgV DNA becoming single-stranded, thereby creating an effective AID substrate.


Subject(s)
DNA, Single-Stranded/metabolism , Histones/metabolism , Immunoglobulin Variable Region/metabolism , Animals , Cell Line , Chickens , Cytidine Deaminase/metabolism
4.
EMBO J ; 33(21): 2507-20, 2014 Nov 03.
Article in English | MEDLINE | ID: mdl-25190518

ABSTRACT

REV1-deficient chicken DT40 cells are compromised in replicating G quadruplex (G4)-forming DNA. This results in localised, stochastic loss of parental chromatin marks and changes in gene expression. We previously proposed that this epigenetic instability arises from G4-induced replication fork stalls disrupting the accurate propagation of chromatin structure through replication. Here, we test this model by showing that a single G4 motif is responsible for the epigenetic instability of the BU-1 locus in REV1-deficient cells, despite its location 3.5 kb from the transcription start site (TSS). The effect of the G4 is dependent on it residing on the leading strand template, but is independent of its in vitro thermal stability. Moving the motif to more than 4 kb from the TSS stabilises expression of the gene. However, loss of histone modifications (H3K4me3 and H3K9/14ac) around the transcription start site correlates with the position of the G4 motif, expression being lost only when the promoter is affected. This supports the idea that processive replication is required to maintain the histone modification pattern and full transcription of this model locus.


Subject(s)
DNA Replication/physiology , Epigenesis, Genetic/physiology , G-Quadruplexes , Genomic Instability/physiology , Nucleotidyltransferases , Animals , Cell Line , Chickens , Genetic Loci/physiology , Histones/genetics , Histones/metabolism , Protein Processing, Post-Translational/physiology , Transcription, Genetic/physiology
5.
Hum Mutat ; 34(5): 735-42, 2013 May.
Article in English | MEDLINE | ID: mdl-23420607

ABSTRACT

Polymorphisms in regulatory DNA regions are believed to play an important role in determining phenotype, including disease, and in providing raw material for evolution. We devised a new pipeline for the systematic identification of functional variation in human regulatory sequences. The algorithm is based on the identification of SNPs leading to significant changes in both the affinity of a regulatory region for transcription factors (TFs) and the expression in vivo of the regulated gene. We tested the algorithm by identifying SNPs leading to altered regulation by STAT3 in human promoters and introns, and experimentally validated the top-scoring ones, showing that most of the SNPs identified by the algorithm indeed correspond to differential binding of STAT3 and differential induction of the target gene upon stimulation with IL6. Using the same computational approach, we compiled a database of thousands of predicted functional regulatory SNPs for hundreds of human TFs, which we provide as online Supporting Information. We discuss possible applications to the interpretation of noncoding SNPs associated with human diseases. The method we propose and the database of predicted functional cis-regulatory polymorphisms will be useful in future studies of regulatory variation and in particular to interpret the results of past and future genome-wide association studies.


Subject(s)
Genome, Human , Polymorphism, Single Nucleotide , Regulatory Sequences, Nucleic Acid , Algorithms , Cell Line , Databases, Protein , Humans , Real-Time Polymerase Chain Reaction , STAT3 Transcription Factor/genetics
6.
Proc Natl Acad Sci U S A ; 106(13): 5117-22, 2009 Mar 31.
Article in English | MEDLINE | ID: mdl-19282476

ABSTRACT

The identification of direct targets of transcription factors is a key problem in the study of gene regulatory networks. However, the use of high throughput experimental methods, such as ChIP-chip and ChIP-sequencing, is limited by their high cost and strong dependence on cellular type and context. We developed a computational method for the genome-wide identification of functional transcription factor binding sites based on positional weight matrices, comparative genomics, and gene expression profiling. The method was applied to Stat3, a transcription factor playing crucial roles in inflammation, immunity and oncogenesis, and able to induce distinct subsets of target genes in different cell types or conditions. A newly generated positional weight matrix enabled us to assign affinity scores of high specificity, as measured by EMSA competition assays. Phylogenetic conservation with 7 vertebrate species was used to select the binding sites most likely to be functional. Validation was carried out on predicted sites within genes identified as differentially expressed in the presence or absence of Stat3 by microarray analysis. Twelve of the fourteen sites tested were bound by Stat3 in vivo, as assessed by Chromatin Immunoprecipitation, allowing us to identify 9 Stat3 transcriptional targets. Given its high validation rate, and the availability of large transcription factor-dependent gene expression datasets obtained under diverse experimental conditions, our approach appears to be a valid alternative to high-throughput experimental assays for the discovery of novel direct targets of transcription factors.


Subject(s)
Genome , Genomics/methods , STAT3 Transcription Factor/metabolism , Transcription Factors/metabolism , Animals , Binding Sites , Cell Line , Electrophoretic Mobility Shift Assay , Gene Expression Profiling , Methods , Mice , Mice, Knockout , STAT3 Transcription Factor/genetics
7.
Biochem J ; 421(2): 283-92, 2009 Jun 26.
Article in English | MEDLINE | ID: mdl-19397496

ABSTRACT

STAT3 (signal transducer and activator of transcription 3) is a transcription factor activated by cytokines, growth factors and oncogenes, whose activity is required for cell survival/proliferation of a wide variety of primary tumours and tumour cell lines. Prominent among its multiple effects on tumour cells is the stimulation of cell migration and metastasis, whose functional mechanisms are however not completely characterized. RhoU/Wrch1 (Wnt-responsive Cdc42 homologue) is an atypical Rho GTPase thought to be constitutively bound to GTP. RhoU was first identified as a Wnt-1-inducible mRNA and subsequently shown to act on the actin cytoskeleton by stimulating filopodia formation and stress fibre dissolution. It was in addition recently shown to localize to focal adhesions and to Src-induced podosomes and enhance cell migration. RhoU overexpression in mammary epithelial cells stimulates quiescent cells to re-enter the cell cycle and morphologically phenocopies Wnt-1-dependent transformation. In the present study we show that Wnt-1-mediated RhoU induction occurs at the transcriptional level. Moreover, we demonstrate that RhoU can also be induced by gp130 cytokines via STAT3, and we identify two functional STAT3-binding sites on the mouse RhoU promoter. RhoU induction by Wnt-1 is independent of beta-catenin, but does not involve STAT3. Rather, it is mediated by the Wnt/planar cell polarity pathway through the activation of JNK (c-Jun N-terminal kinase). Both the so-called non-canonical Wnt pathway and STAT3 are therefore able to induce RhoU, which in turn may be involved in mediating their effects on cell migration.


Subject(s)
Cytokine Receptor gp130/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction , Transcription, Genetic , Wnt1 Protein/metabolism , rho GTP-Binding Proteins/genetics , Animals , Cell Line, Tumor , Cells, Cultured , Cytokine Receptor gp130/genetics , Epithelial Cells/metabolism , HeLa Cells , Humans , Mice , Models, Genetic , Promoter Regions, Genetic , STAT3 Transcription Factor/genetics , Transfection , Wnt1 Protein/genetics , rho GTP-Binding Proteins/metabolism
8.
Cancers (Basel) ; 11(1)2019 Jan 16.
Article in English | MEDLINE | ID: mdl-30654518

ABSTRACT

Breast cancer is a heterogeneous disease whose clinical management is very challenging. Although specific molecular features characterize breast cancer subtypes with different prognosis, the identification of specific markers predicting disease outcome within the single subtypes still lags behind. Both the non-canonical Wingless-type MMTV Integration site (WNT) and the Signal Transducer and Activator of Transcription (STAT)3 pathways are often constitutively activated in breast tumors, and both can induce the small GTPase Ras Homolog Family Member U RhoU. Here we show that RhoU transcription can be triggered by both canonical and non-canonical WNT ligands via the activation of c-JUN N-terminal kinase (JNK) and the recruitment of the Specificity Protein 1 (SP1) transcription factor to the RhoU promoter, identifying for the first time SP1 as a JNK-dependent mediator of WNT signaling. RhoU down-regulation by silencing or treatment with JNK, SP1 or STAT3 inhibitors leads to impaired migration and invasion in basal-like MDA-MB-231 and BT-549 cells, suggesting that STAT3 and SP1 can cooperate to induce high RhoU expression and enhance breast cancer cells migration. Moreover, in vivo concomitant binding of STAT3 and SP1 defines a subclass of genes belonging to the non-canonical WNT and the Interleukin (IL)-6/STAT3 pathways and contributing to breast cancer aggressiveness, suggesting the relevance of developing novel targeted therapies combining inhibitors of the STAT3 and WNT pathways or of their downstream mediators.

9.
Eur J Med Chem ; 179: 591-607, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31279293

ABSTRACT

Antibody-drug conjugates (ADCs) containing pyrrolobenzodiazepine (PBD) dimers are currently being evaluated in human oncology clinical trials with encouraging results. To further improve the therapeutic window, next-generation PBD drug-linker design has focused on the inclusion of additional tumor-selective triggers and use of lower-potency PBDs. ß-Glucuronidase is a well-known target for discovery prodrugs due to increased presence in tumor cells and microenvironment. In this study, a ß-glucuronidase cleavable cap was investigated at the PBD N10-position and compared with corresponding free imine ADCs. SG3600 (glucuronide) ADCs showed in vitro and in vivo efficacy/tolerability comparable to SG3400 (imine) ADCs, and good 50% inhibitory concentration differentials were observed in vitro between control non-antigen-targeted ADCs and targeted ADCs. Dependence on ß-glucuronidase for SG3600 activity was demonstrated through CRISPRCas9 knockdown studies and addition of exogenous ß-glucuronidase. SG3600 showed better serum stability, improved conjugation efficiency and was able to reach high drug-to-antibody ratio without aggregation.


Subject(s)
Benzodiazepines/pharmacology , Dipeptides/pharmacology , Glucuronides/pharmacology , Immunoconjugates/pharmacology , Pyrroles/pharmacology , Benzodiazepines/chemical synthesis , Benzodiazepines/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Dipeptides/chemistry , Dose-Response Relationship, Drug , Glucuronides/chemistry , Humans , Immunoconjugates/chemistry , Molecular Structure , Pyrroles/chemical synthesis , Pyrroles/chemistry , Structure-Activity Relationship
10.
Cell Rep ; 13(11): 2491-2503, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26686635

ABSTRACT

Nucleotide pool imbalance has been proposed to drive genetic instability in cancer. Here, we show that slowing replication forks by depleting nucleotide pools with hydroxyurea (HU) can also give rise to both transient and permanent epigenetic instability of a reporter locus, BU-1, in DT40 cells. HU induces stochastic formation of Bu-1(low) variants in dividing cells, which have lost the H3K4me3 present in untreated cells. This instability is potentiated by an intragenic G quadruplex, which also promotes local H2Ax phosphorylation and transient heterochromatinization. Genome-wide, gene expression changes induced by HU significantly overlap with those resulting from loss of the G4-helicases FANCJ, WRN, and BLM. Thus, the effects of global replication stress induced by nucleotide pool depletion can be focused by local replication impediments caused by G quadruplex formation to induce epigenetic instability and changes in gene expression, a mechanism that may contribute to selectable transcriptional changes in cancer.


Subject(s)
DNA/biosynthesis , G-Quadruplexes , Nucleotides/metabolism , Animals , Aphidicolin/toxicity , Base Sequence , Cell Line , Chickens , DNA/chemistry , DNA Replication , Down-Regulation/drug effects , Genes, Reporter , Genetic Loci , Genomic Instability/drug effects , Histones/metabolism , Hydroxyurea/toxicity , Phosphorylation , Promoter Regions, Genetic , RecQ Helicases/metabolism , Up-Regulation/drug effects
11.
FEBS Lett ; 585(15): 2455-60, 2011 Aug 04.
Article in English | MEDLINE | ID: mdl-21723864

ABSTRACT

Signal transducer and activators of transcription (STAT)1 and STAT3 cross-regulate their activity downstream of gp130 cytokines, and eliminating STAT3 leads to IFN-γ-like responses to IL-6 correlating with prolonged STAT1 phosphorylation. Here we demonstrate that the increased gp130-mediated induction of the IFN-γ-responsive interferon regulatory factor 1 gene observed in STAT3(-/-) cells correlates with prolonged STAT1 binding to its promoter. Intriguingly, gp130-mediated induction of the immediate early genes FBJ osteosarcoma oncogene and early growth response 1 is also prolonged in STAT3(-/-) cells, with STAT1 binding to their promoters. Thus the abrogation of STAT3 expression, perturbing the signaling balance, directs the STAT1 oncosuppressor to transcribe new target genes, known to drive mitogen responses and tumor transformation.


Subject(s)
Early Growth Response Protein 1/genetics , Genes, Immediate-Early/genetics , Genes, fos/genetics , STAT1 Transcription Factor/genetics , STAT3 Transcription Factor/deficiency , Animals , Cells, Cultured , Cytokine Receptor gp130 , Mice , Mice, Knockout , Promoter Regions, Genetic , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL