Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Biotechnol Appl Biochem ; 69(2): 492-502, 2022 Apr.
Article in English | MEDLINE | ID: mdl-33586804

ABSTRACT

Serum albumin is the most prominent protein in blood, and it aids in bone fracture healing, though the manner through which enhanced healing occurs is not well understood. This study investigates the influence of calcium on the bioactivity of albumin due to the prevalence of calcium at bone injury sites. Bovine serum albumin (BSA) was exposed to varying concentrations of calcium, adsorbed to tissue culture polystyrene, and the subsequent BSA-coated surfaces were evaluated with calcium titration, and cell adhesion, viability, and binding inhibition studies. Calcium-modified BSA improved overall MC3T3-E1 osteoblast-like cell adhesion, although high calcium concentrations induced cell death. Inhibiting specific integrins revealed that without calcium exposure, cell binding to BSA was primarily mediated by integrins that typically bind to the GFOGER sequence of collagen. As calcium exposure increases, the primary binding interaction transitioned to integrins known to bind RGD. However, cell binding to calcium-modified BSA was not completely eliminated during the inhibition studies indicating additional unidentified binding interactions occur. Overall, these results suggest that the exposure to calcium induces conformational changes that affect the cell-binding bioactivity of BSA, which may explain the beneficial impact of albumin in bone tissue.


Subject(s)
Calcium , Osteoblasts , Calcium/metabolism , Cell Adhesion , Integrins/metabolism , Osteoblasts/metabolism , Serum Albumin, Bovine/chemistry
2.
J Biomech Eng ; 143(6)2021 06 01.
Article in English | MEDLINE | ID: mdl-33537729

ABSTRACT

Mechanical loading may be required for proper tendon formation. However, it is not well understood how tendon formation is impacted by the development of weight-bearing locomotor activity in the neonate. This study assessed tendon mechanical properties, and concomitant changes in weight-bearing locomotion, in neonatal rats subjected to a low thoracic spinal cord transection or a sham surgery at postnatal day (P)1. On P10, spontaneous locomotion was evaluated in spinal cord transected and sham controls to determine impacts on weight-bearing hindlimb movement. The mechanical properties of P10 Achilles tendons (ATs), as representative energy-storing, weight-bearing tendons, and tail tendons (TTs), as representative positional, non-weight-bearing tendons were evaluated. Non- and partial weight-bearing hindlimb activity decreased in spinal cord transected rats compared to sham controls. No spinal cord transected rats showed full weight-bearing locomotion. ATs from spinal cord transected rats had increased elastic modulus, while cross-sectional area trended lower compared to sham rats. TTs from spinal cord transected rats had higher stiffness and cross-sectional area. Collagen structure of ATs and TTs did not appear impacted by surgery condition, and no significant differences were detected in the collagen crimp pattern. Our findings suggest that mechanical loading from weight-bearing locomotor activity during development regulates neonatal AT lateral expansion and maintains tendon compliance, and that TTs may be differentially regulated. The onset and gradual increase of weight-bearing movement in the neonate may provide the mechanical loading needed to direct functional postnatal tendon formation.


Subject(s)
Tail , Animals , Weight-Bearing
3.
Biochem Biophys Res Commun ; 508(3): 889-893, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30538046

ABSTRACT

Tenogenic differentiation of stem cells is needed for tendon tissue engineering approaches. A current challenge is the limited information on the cellular-level changes during tenogenic induction. Tendon cells in embryonic and adult tendons possess an array of cell-cell junction proteins that include cadherins and connexins, but how these proteins are impacted by tenogenic differentiation is unknown. Our objective was to explore how tenogenic induction of mesenchymal stem cells (MSCs) using the transforming growth factor (TGF)ß2 impacted protein markers of tendon differentiation and protein levels of N-cadherin, cadherin-11 and connexin-43. MSCs were treated with TGFß2 for 21 days. At 3 days, TGFß2-treated MSCs developed a fibroblastic morphology and significantly decreased levels of N-cadherin protein, which were maintained through 21 days. Similar decreases in protein levels were found for cadherin-11. Connexin-43 protein levels significantly increased at 3 days, but then decreased below control levels, though not significantly. Protein levels of scleraxis and tenomodulin were significantly increased at day 14 and 21, respectively. Taken together, our results indicate that TGFß2 is an inducer of tendon marker proteins (scleraxis and tenomodulin) in MSCs and that tenogenesis alters the protein levels of N-cadherin, cadherin-11 and connexin-43. These findings suggest a role for connexin-43 early in tenogenesis, and show that early-onset and sustained decreases in N-cadherin and cadherin-11 may be novel markers of tenogenesis in MSCs.


Subject(s)
Cadherins/metabolism , Connexin 43/metabolism , Mesenchymal Stem Cells/metabolism , Transforming Growth Factor beta2/physiology , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cells, Cultured , Fibroblasts/ultrastructure , Membrane Proteins/metabolism , Mesenchymal Stem Cells/ultrastructure , Mice
4.
MethodsX ; 12: 102565, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38292310

ABSTRACT

Micro-computed tomography (CT) is an X-ray-based imaging modality that produces three-dimensional (3D), high-resolution images of whole-mount tissues, but is typically limited to dense tissues, such as bone. The X-rays readily pass-through tendons, rendering them transparent. Contrast-enhancing chemical stains have been explored, but their use to improve contrast in different tendon types and across developmental stages for micro-CT imaging has not been systematically evaluated. Therefore, we investigated how phosphotungstic acid (PTA) staining and tissue hydration impacts tendon contrast for micro-CT imaging. We showed that PTA staining increased X-ray absorption of tendon to enhance tissue contrast and obtain 3D micro-CT images of immature (postnatal day 21) and sexually mature (postnatal day 50) rat tendons within the tail and hindlimb. Further, we demonstrated that tissue hydration state following PTA staining significantly impacts soft tissue contrast. Using this method, we also found that tail tendon fascicles appear to cross between fascicle bundles. Ultimately, contrast-enhanced 3D micro-CT imaging will lead to better understanding of tendon structure, and relationships between the bone and soft tissues.•Simple tissue fixation and staining technique enhances soft tissue contrast for tendon visualization using micro-CT.•3D tendon visualization in situ advances understanding of musculoskeletal tissue structure and organization.

5.
Stem Cells Dev ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38770821

ABSTRACT

Tendons are frequently injured and have limited regenerative capacity. This motivates tissue engineering efforts aimed at restoring tendon function through strategies to direct functional tendon formation. Generation of a crosslinked collagen matrix is paramount to forming mechanically functional tendon. However, it is unknown how lysyl oxidase (LOX), the primary mediator of enzymatic collagen crosslinking, is regulated by stem cells. This study investigates how multiple factors previously identified to promote tendon formation and healing (transforming growth factor [TGF]ß1 and TGFß2, mechanical stimuli, and hypoxia-inducible factor [HIF]-1α) regulate LOX production in the murine C3H10T1/2 mesenchymal stem cell (MSC) line. We hypothesized that TGFß signaling promotes LOX activity in C3H10T1/2 MSCs, which is regulated by both mechanical stimuli and HIF-1α activation. TGFß1 and TGFß2 increased LOX levels as a function of concentration and time. Inhibiting the TGFß type I receptor (TGFßRI) decreased TGFß2-induced LOX production by C3H10T1/2 MSCs. Low (5 mPa) and high (150 mPa) magnitudes of fluid shear stress were applied to test impacts of mechanical stimuli, but without TGFß2, loading alone did not alter LOX levels. Low loading (5 mPa) with TGFß2 increased LOX at 7 days greater than TGFß2 treatment alone. Neither HIF-1α knockdown (siRNA) nor activation (CoCl2) affected LOX levels. Ultimately, results suggest that TGFß2 and appropriate loading magnitudes contribute to LOX production by C3H10T1/2 MSCs. Potential application of these findings includes treatment with TGFß2 and appropriate mechanical stimuli to modulate LOX production by stem cells to ultimately control collagen matrix stiffening and support functional tendon formation.

6.
bioRxiv ; 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38014288

ABSTRACT

There is limited understanding of how mechanical signals regulate tendon development. The nucleus has emerged as a major regulator of cellular mechanosensation, via the linker of nucleoskeleton and cytoskeleton (LINC) protein complex. Specific roles of LINC in tenogenesis have not been explored. In this study, we investigate how LINC regulates tendon development by disabling LINC-mediated mechanosensing via dominant negative (dn) expression of the Klarsicht, ANC-1, and Syne Homology (KASH) domain, which is necessary for LINC to function. We hypothesized that LINC regulates mechanotransduction in developing tendon, and that disabling LINC would impact tendon mechanical properties and structure in a mouse model of dnKASH. We used Achilles (AT) and tail (TT) tendons as representative energy-storing and limb-positioning tendons, respectively. Mechanical testing at postnatal day 10 showed that disabling the LINC complex via dnKASH significantly impacted tendon mechanical properties and cross-sectional area, and that effects differed between ATs and TTs. Collagen crimp distance was also impacted in dnKASH tendons, and was significantly decreased in ATs, and increased in TTs. Overall, we show that disruption to the LINC complex specifically impacts tendon mechanics and collagen crimp structure, with unique responses between an energy-storing and limb-positioning tendon. This suggests that nuclear mechanotransduction through LINC plays a role in regulating tendon formation during neonatal development.

7.
J Appl Polym Sci ; 139(35)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36404914

ABSTRACT

Tissue engineered scaffolds are currently being explored to aid in healing and regeneration of non-union fractures in bone. Additionally, albumin has been demonstrated to provide benefits to healing when applied to injury sites. This paper focuses on delivery of calcium modified, bioactive bovine serum albumin (BSA) from a multi-functional polyampholyte polymer scaffold. First, the inherent nonfouling and conjugation properties of the polyampholyte hydrogel were verified to determine the impact of calcium exposure. The polyampholyte hydrogel delivery platform was then assessed with calcium titrations and osteoblast-like cell (MC3T3-E1) adhesion, proliferation, and viability evaluations. Finally, integrin inhibitors were used to identify the binding mechanisms that mediate cell adhesion to the calcium-modified BSA-conjugated hydrogels. An increase in cell adhesion was observed following calcium exposure up to 0.075 M, although this and higher calcium concentrations affected hydrogel stability and cell growth. BSA exposed to 0.05 M calcium and delivered from polyampholyte hydrogels promoted the most promising viable cell adhesion over 7 days. Cell adhesion to the calcium-modified BSA-conjugated hydrogels appeared to be regulated by arginine-glycine-aspartic acid (RGD) and collagen specific integrins. These results demonstrate that the delivery of calcium modified BSA from an implantable polymer scaffold is promising for bone tissue engineering applications.

8.
HardwareX ; 11: e00253, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35509920

ABSTRACT

The physiological oxygen levels for several mammalian cell types in vivo are considered to be hypoxic (low oxygen tension), but the vast majority of in vitro mammalian cell culture is conducted at atmospheric oxygen levels of around 21%. In order to understand the impact of low oxygen environments on cells, oxygen levels need to be regulated during in vitro culture. Two common methods for simulating a hypoxic environment are through the regulation of gas composition or chemical induction. Chemically mimicking hypoxia can have adverse effects such as reducing cell viability, making oxygen regulation in cell culture chambers crucial for long-term culture. However, oxygen-regulating cell culture incubators and commercial hypoxia chambers may not always be a viable option due to cost and limited customization. Other low-cost chambers have been developed, but they tend to lack control systems or are fairly small scale. Thus, the objective of this project was to design and develop a low-cost, open-source, controllable, and reproducible hypoxia chamber that can fit inside a standard cell culture incubator. This design allows for the control of O2 between 1 and 21%, while maintaining CO2 levels at 5%, as well as monitoring of temperature, pressure, and relative humidity. Testing showed our hypoxia chamber was able to maintain CO2 levels at 5% and hypoxic O2 levels at 1% and 5% for long-term cell culture. This simple and easy-to-manufacture design uses off the shelf components, and the total material cost was $832.47 (USD).

9.
Biosensors (Basel) ; 11(2)2021 Feb 16.
Article in English | MEDLINE | ID: mdl-33669223

ABSTRACT

Tendons are collagenous musculoskeletal tissues that connect muscles to bones and transfer the forces necessary for movement. Tendons are susceptible to injury and heal poorly, with long-term loss of function. Mesenchymal stem cell (MSC)-based therapies are a promising approach for treating tendon injuries but are challenged by the difficulties of controlling stem cell fate and of generating homogenous populations of stem cells optimized for tenogenesis (differentiation toward tendon). To address this issue, we aim to explore methods that can be used to identify and ultimately separate tenogenically differentiated MSCs from non-tenogenically differentiated MSCs. In this study, baseline and tenogenically differentiating murine MSCs were characterized for dielectric properties (conductivity and permittivity) of their outer membrane and cytoplasm using a dielectrophoretic (DEP) crossover technique. Experimental results showed that unique dielectric properties distinguished tenogenically differentiating MSCs from controls after three days of tenogenic induction. A single shell model was used to quantify the dielectric properties and determine membrane and cytoplasm conductivity and permittivity. Together, cell responses at the crossover frequency, cell morphology, and shell models showed that changes potentially indicative of early tenogenesis could be detected in the dielectric properties of MSCs as early as three days into differentiation. Differences in dielectric properties with tenogenesis indicate that the DEP-based label-free separation of tenogenically differentiating cells is possible and avoids the complications of current label-dependent flow cytometry-based separation techniques. Overall, this work illustrates the potential of DEP to generate homogeneous populations of differentiated stem cells for applications in tissue engineering and regenerative medicine.


Subject(s)
Mesenchymal Stem Cells , Tendons , Tissue Engineering , Animals , Cell Differentiation , Cells, Cultured , Humans , Mice , Signal Transduction
10.
Stem Cell Res Ther ; 12(1): 88, 2021 01 26.
Article in English | MEDLINE | ID: mdl-33499914

ABSTRACT

BACKGROUND: Tissue engineered and regenerative approaches for treating tendon injuries are challenged by the limited information on the cellular signaling pathways driving tenogenic differentiation of stem cells. Members of the transforming growth factor (TGF) ß family, particularly TGFß2, play a role in tenogenesis, which may proceed via Smad-mediated signaling. However, recent evidence suggests some aspects of tenogenesis may be independent of Smad signaling, and other pathways potentially involved in tenogenesis are understudied. Here, we examined the role of Akt/mTORC1/P70S6K signaling in early TGFß2-induced tenogenesis of mesenchymal stem cells (MSCs) and evaluated TGFß2-induced tenogenic differentiation when Smad3 is inhibited. METHODS: Mouse MSCs were treated with TGFß2 to induce tenogenesis, and Akt or Smad3 signaling was chemically inhibited using the Akt inhibitor, MK-2206, or the Smad3 inhibitor, SIS3. Effects of TGFß2 alone and in combination with these inhibitors on the activation of Akt signaling and its downstream targets mTOR and P70S6K were quantified using western blot analysis, and cell morphology was assessed using confocal microscopy. Levels of the tendon marker protein, tenomodulin, were also assessed. RESULTS: TGFß2 alone activated Akt signaling during early tenogenic induction. Chemically inhibiting Akt prevented increases in tenomodulin and attenuated tenogenic morphology of the MSCs in response to TGFß2. Chemically inhibiting Smad3 did not prevent tenogenesis, but appeared to accelerate it. MSCs treated with both TGFß2 and SIS3 produced significantly higher levels of tenomodulin at 7 days and morphology appeared tenogenic, with localized cell alignment and elongation. Finally, inhibiting Smad3 did not appear to impact Akt signaling, suggesting that Akt may allow TGFß2-induced tenogenesis to proceed during disruption of Smad3 signaling. CONCLUSIONS: These findings show that Akt signaling plays a role in TGFß2-induced tenogenesis and that tenogenesis of MSCs can be initiated by TGFß2 during disruption of Smad3 signaling. These findings provide new insights into the signaling pathways that regulate tenogenic induction in stem cells.


Subject(s)
Mesenchymal Stem Cells , Animals , Cell Differentiation , Cells, Cultured , Mice , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction
11.
Tissue Barriers ; 8(1): 1695491, 2020.
Article in English | MEDLINE | ID: mdl-31818195

ABSTRACT

Tendons connect muscles to bones to transfer the forces necessary for movement. Cell-cell junction proteins, cadherins and connexins, may play a role in tendon development and injury. In this review, we begin by highlighting current understanding of how cell-cell junctions may regulate embryonic tendon development and differentiation. We then examine cell-cell junctions in postnatal tendon, before summarizing the role of cadherins and connexins in adult tendons. More information exists regarding the role of cell-cell junctions in the formation and homeostasis of other musculoskeletal tissues, namely cartilage and bone. Therefore, to inform future tendon studies, we include a brief survey of cadherins and connexins in chondrogenesis and osteogenesis, and summarize how cell-cell junctions are involved in some musculoskeletal tissue pathologies. An enhanced understanding of how cell-cell junctions participate in tendon development, maintenance, and disease will benefit future regenerative strategies.


Subject(s)
Intercellular Junctions/physiology , Tendons/anatomy & histology , Tissue Engineering/methods , Cell Differentiation , Humans
12.
Biophys Rev (Melville) ; 1(1): 011304, 2020 Dec.
Article in English | MEDLINE | ID: mdl-38505626

ABSTRACT

Dielectrophoresis (DEP), a nonlinear electrokinetic technique caused by Maxwell-Wagner interfacial polarization of neutral particles in an electrolyte solution, is a powerful cell manipulation method used widely for various applications such as enrichment, trapping, and sorting of heterogeneous cell populations. While conventional cell characterization and sorting methods require tagging or labeling of cells, DEP has the potential to manipulate cells in a label-free way. Due to its unique ability to characterize and sort cells without the need of labeling, there is renewed interest in using DEP for stem cell research and regenerative medicine. Stem cells have the potential to differentiate into various lineages, but achieving homogeneous cell phenotypes from an initially heterogeneous cell population is a challenge. Using DEP to efficiently and affordably identify, sort, and enrich either undifferentiated or differentiated stem cell populations in a label-free way would advance their potential uses for applications in tissue engineering and regenerative medicine. This review summarizes recent, significant research findings regarding the electrophysiological characterization of stem cells, with a focus on cellular dielectric properties, i.e., permittivity and conductivity, and on studies that have obtained these measurements using techniques that preserve cell viability, such as crossover frequency. Potential applications for DEP in regenerative medicine are also discussed. Overall, DEP is a promising technique and, when used to characterize, sort, and enrich stem cells, will advance stem cell-based regenerative therapies.

13.
HardwareX ; 7: e00097, 2020 Apr.
Article in English | MEDLINE | ID: mdl-35495209

ABSTRACT

There is a need for a small-scale, laboratory treadmill to investigate impacts of neonatal locomotion on neuromuscular and musculoskeletal development in small animal models. Adult mice and rats are routinely assessed using commercially available treadmills, but these treadmills can be relatively expensive and they may lack features needed to evaluate developing animals. Therefore, to overcome these limitations, a new treadmill was designed, built and calibrated. This open-source treadmill was designed specifically for neonatal and postnatal mice and rats, and it fits within a neonatal incubator. By using predominantly off-the-shelf and 3D printed components, and a microcontroller, this treadmill was low cost and easy to reproduce. The design also included variable incline, and a transparent belt and enclosures for video and gait analysis. A touchscreen interface provided user-friendly control over belt speed and run time. Moreover, validation experiments showed high accuracy in belt speed control, allowing for tightly regulated experimental conditions. Overall, this new low-cost, open-source, variable speed and incline treadmill can be used to advance understanding of neonatal locomotion, and neuromuscular and musculoskeletal development.

14.
Fluids Barriers CNS ; 17(1): 68, 2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33183314

ABSTRACT

BACKGROUND: The pia arachnoid complex (PAC) is a cerebrospinal fluid-filled tissue conglomerate that surrounds the brain and spinal cord. Pia mater adheres directly to the surface of the brain while the arachnoid mater adheres to the deep surface of the dura mater. Collagen fibers, known as subarachnoid trabeculae (SAT) fibers, and microvascular structure lie intermediately to the pia and arachnoid meninges. Due to its structural role, alterations to the biomechanical properties of the PAC may change surface stress loading in traumatic brain injury (TBI) caused by sub-concussive hits. The aim of this study was to quantify the mechanical and morphological properties of ovine PAC. METHODS: Ovine brain samples (n = 10) were removed from the skull and tissue was harvested within 30 min post-mortem. To access the PAC, ovine skulls were split medially from the occipital region down the nasal bone on the superior and inferior aspects of the skull. A template was used to remove arachnoid samples from the left and right sides of the frontal and occipital regions of the brain. 10 ex-vivo samples were tested with uniaxial tension at 2 mm s-1, average strain rate of 0.59 s-1, until failure at < 5 h post extraction. The force and displacement data were acquired at 100 Hz. PAC tissue collagen fiber microstructure was characterized using second-harmonic generation (SHG) imaging on a subset of n = 4 stained tissue samples. To differentiate transverse blood vessels from SAT by visualization of cell nuclei and endothelial cells, samples were stained with DAPI and anti-von Willebrand Factor, respectively. The Mooney-Rivlin model for average stress-strain curve fit was used to model PAC material properties. RESULTS: The elastic modulus, ultimate stress, and ultimate strain were found to be 7.7 ± 3.0, 2.7 ± 0.76 MPa, and 0.60 ± 0.13, respectively. No statistical significance was found across brain dissection locations in terms of biomechanical properties. SHG images were post-processed to obtain average SAT fiber intersection density, concentration, porosity, tortuosity, segment length, orientation, radial counts, and diameter as 0.23, 26.14, 73.86%, 1.07 ± 0.28, 17.33 ± 15.25 µm, 84.66 ± 49.18°, 8.15%, 3.46 ± 1.62 µm, respectively. CONCLUSION: For the sizes, strain, and strain rates tested, our results suggest that ovine PAC mechanical behavior is isotropic, and that the Mooney-Rivlin model is an appropriate curve-fitting constitutive equation for obtaining material parameters of PAC tissues.


Subject(s)
Arachnoid/anatomy & histology , Arachnoid/physiology , Biomechanical Phenomena/physiology , Pia Mater/anatomy & histology , Pia Mater/physiology , Animals , Models, Animal , Models, Biological , Sheep
15.
Article in English | MEDLINE | ID: mdl-32095779

ABSTRACT

Tendons link muscle to bone and transfer forces necessary for normal movement. Tendon injuries can be debilitating and their intrinsic healing potential is limited. These challenges have motivated the development of model systems to study the factors that regulate tendon formation and tendon injury. Recent advances in understanding of embryonic and postnatal tendon formation have inspired approaches that aimed to mimic key aspects of tendon development. Model systems have also been developed to explore factors that regulate tendon injury and healing. We highlight current model systems that explore developmentally inspired cellular, mechanical, and biochemical factors in tendon formation and tenogenic stem cell differentiation. Next, we discuss in vivo, in vitro, ex vivo, and computational models of tendon injury that examine how mechanical loading and biochemical factors contribute to tendon pathologies and healing. These tendon development and injury models show promise for identifying the factors guiding tendon formation and tendon pathologies, and will ultimately improve regenerative tissue engineering strategies and clinical outcomes.

16.
Sci Rep ; 9(1): 8196, 2019 06 03.
Article in English | MEDLINE | ID: mdl-31160640

ABSTRACT

Tendons must be able to withstand the forces generated by muscles and not fail. Accordingly, a previous comparative analysis across species has shown that tendon strength (i.e., failure stress) increases for larger species. In addition, the elastic modulus increases proportionally to the strength, demonstrating that the two properties co-vary. However, some species may need specially adapted tendons to support high performance motor activities, such as sprinting and jumping. Our objective was to determine if the tendons of kangaroo rats (k-rat), small bipedal animals that can jump as high as ten times their hip height, are an exception to the linear relationship between elastic modulus and strength. We measured and compared the material properties of tendons from k-rat ankle extensor muscles to those of similarly sized white rats. The elastic moduli of k-rat and rat tendons were not different, but k-rat tendon failure stresses were much larger than the rat values (nearly 2 times larger), as were toughness (over 2.5 times larger) and ultimate strain (over 1.5 times longer). These results support the hypothesis that the tendons from k-rats are specially adapted for high motor performance, and k-rat tendon could be a novel model for improving tissue engineered tendon replacements.


Subject(s)
Tendons/physiology , Animals , Ankle Joint/physiology , Biomechanical Phenomena , Dipodomys , Elastic Modulus , Elasticity , Female , Hindlimb/physiology , Male , Muscle Strength , Muscle, Skeletal/physiology , Pressure , Stress, Mechanical , Tensile Strength
17.
Ann N Y Acad Sci ; 1442(1): 118-127, 2019 04.
Article in English | MEDLINE | ID: mdl-30815893

ABSTRACT

Adult tendons heal as scar tissue, whereas embryonic tendons heal scarlessly via unknown mechanisms. Scarred tendon healing results from inflammation-driven imbalances in anabolic and catabolic functions. To test scarless versus scarring age tendon cell responses to inflammatory conditions, we treated embryonic and postnatal tendon cells with interleukin (IL)-1ß and characterized expression of collagens, matrix metalloproteinases (MMPs), inflammatory mediators, and phosphorylation of signaling molecules. At baseline, postnatal cells expressed significantly higher levels of inflammatory mediators. When treated with IL-1ß, both postnatal and embryonic cells upregulated inflammatory mediators and MMPs. Notably, postnatal cells secreted inflammatory factors up to 12.5 times the concentration in embryonic cultures. IL-1ß activated NF-κB p65 and p38 mitogen-activated protein kinase (MAPK) pathways in both cell types, but phosphorylated p38 MAPK levels were two times higher in postnatal than embryonic cells. Our results suggest that scarred healing tendon cells respond to proinflammatory cytokines by promoting an imbalance in anabolic and catabolic functions, and that the heightened response involves p38 MAPK signaling activity. In contrast, embryonic cell responses are smaller in magnitude. These intriguing findings support a potential role for tendon cells in determining scarless versus scarred healing outcomes by regulating the balance between anabolic and catabolic functions during tendon healing.


Subject(s)
Interleukin-1beta/pharmacology , Tendons/drug effects , Animals , Cells, Cultured , Cicatrix/metabolism , Collagen/metabolism , Inflammation Mediators/metabolism , Matrix Metalloproteinases/metabolism , Mice , Phosphorylation , Signal Transduction , Tendons/embryology , Tendons/growth & development , Tendons/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
18.
J Biomech ; 96: 109354, 2019 Nov 11.
Article in English | MEDLINE | ID: mdl-31630773

ABSTRACT

Tendon tissue engineering approaches are challenged by a limited understanding of the role mechanical loading plays in normal tendon development. We propose that the increased loading that developing postnatal tendons experience with the onset of locomotor behavior impacts tendon formation. The objective of this study was to assess the onset of spontaneous weight-bearing locomotion in postnatal day (P) 1, 5, and 10 rats, and characterize the relationship between locomotion and the mechanical development of weight-bearing and non-weight-bearing tendons. Movement was video recorded and scored to determine non-weight-bearing, partial weight-bearing, and full weight-bearing locomotor behavior at P1, P5, and P10. Achilles tendons, as weight-bearing tendons, and tail tendons, as non-weight-bearing tendons, were mechanically evaluated. We observed a significant increase in locomotor behavior in P10 rats, compared to P1 and P5. We also found corresponding significant differences in the maximum force, stiffness, displacement at maximum force, and cross-sectional area in Achilles tendons, as a function of postnatal age. However, the maximum stress, strain at maximum stress, and elastic modulus remained constant. Tail tendons of P10 rats had significantly higher maximum force, maximum stress, elastic modulus, and stiffness compared to P5. Our results suggest that the onset of locomotor behavior may be providing the mechanical cues regulating postnatal tendon growth, and their mechanical development may proceed differently in weight-bearing and non-weight-bearing tendons. Further analysis of how this loading affects developing tendons in vivo may inform future engineering approaches aiming to apply such mechanical cues to regulate engineered tendon formation in vitro.


Subject(s)
Locomotion/physiology , Tendons/growth & development , Animals , Animals, Newborn , Behavior, Animal , Calcaneus/physiology , Elastic Modulus , Rats, Sprague-Dawley , Stress, Mechanical , Tail/physiology , Tendons/physiology , Tissue Engineering , Weight-Bearing/physiology
19.
MethodsX ; 5: 924-932, 2018.
Article in English | MEDLINE | ID: mdl-30167382

ABSTRACT

Mechanical loading is an important cue for directing stem cell fate and engineered tissue formation in vitro. Stem cells cultured on 2-dimensional (D) substrates and in 3D scaffolds have been shown to differentiate toward bone, tendon, cartilage, ligament, and skeletal muscle lineages depending on their exposure to mechanical stimuli. To apply this mechanical stimulus in vitro, mechanical bioreactors are needed. However, current bioreactor systems are challenged by their high cost, limited ability for customization, and lack of force measurement capabilities. We demonstrate the use of 3-dimensional printing (3DP) technology to design and fabricate a low-cost custom bioreactor system that can be used to apply controlled mechanical stimuli to cells in culture and measure the mechanical properties of small soft tissues. The results of our in vitro studies and mechanical evaluations show that 3DP technology is feasible as a platform for developing a low-cost, customizable, and multifunctional mechanical bioreactor system. • 3DP technology was used to print a multifunctional bioreactor system/tensile load frame for a fraction of the cost of commercial systems. • The system mechanically stimulated cells in culture and evaluated the mechanical properties of soft tissues. • This system is easily customizable and can be used to evaluate multiple types of soft tissues.

20.
J Tissue Eng Regen Med ; 11(12): 3326-3336, 2017 12.
Article in English | MEDLINE | ID: mdl-28066993

ABSTRACT

A long-term goal is to bioengineer, fully functional, living teeth for regenerative medicine and dentistry applications. Biologically based replacement teeth would avoid insufficiencies of the currently used dental implants. Using natural tooth development as a guide, a model was fabricated using post-natal porcine dental epithelial (pDE), porcine dental mesenchymal (pDM) progenitor cells, and human umbilical vein endothelial cells (HUVEC) encapsulated within gelatin methacrylate (GelMA) hydrogels. Previous publications have shown that post-natal DE and DM cells seeded onto synthetic scaffolds exhibited mineralized tooth crowns composed of dentin and enamel. However, these tooth structures were small and formed within the pores of the scaffolds. The present study shows that dental cell-encapsulated GelMA constructs can support mineralized dental tissue formation of predictable size and shape. Individually encapsulated pDE or pDM cell GelMA constructs were analysed to identify formulas that supported pDE and pDM cell attachment, spreading, metabolic activity, and neo-vasculature formation with co-seeded endothelial cells (HUVECs). GelMa constructs consisting of pDE-HUVECS in 3% GelMA and pDM-HUVECs within 5% GelMA supported dental cell differentiation and vascular mineralized dental tissue formation in vivo. These studies are the first to demonstrate the use of GelMA hydrogels to support the formation of post-natal dental progenitor cell-derived mineralized and functionally vascularized tissues of specified size and shape. These results introduce a novel three-dimensional biomimetic tooth bud model for eventual bioengineered tooth replacement teeth in humans. Copyright © 2017 John Wiley & Sons, Ltd.


Subject(s)
Biomimetics/methods , Models, Biological , Tooth Germ/physiology , Animals , Bioengineering , Cell Differentiation/drug effects , Elastic Modulus/drug effects , Gelatin/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Methacrylates/pharmacology , Rats, Nude , Sus scrofa , Tissue Scaffolds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL